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Holomorphic functions

Definition: holomorphic function
Let 𝒰 ⊂ ℂ be open, 𝑓 ∶ 𝒰 → ℂ and 𝑧0 ∈ 𝒰 .
We say that 𝑓 is holomorphic at 𝑧0 (or analytic1 at 𝑧0, or ℂ-differentiable at 𝑧0) if

lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ exists.

Then we set 𝑓 ′(𝑧0) ≔ lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ .

We say that 𝑓 is holomorphic/analytic/ℂ-differentiable if it is everywhere on 𝒰 .

Note that lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ = lim

𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)
𝑧 − 𝑧0

so you can use any of these two limits.

1I don’t like the word analytic because it means that 𝑓 can be locally expressed around 𝑧0 as a power series. It is true
that ℂ-differentiability is equivalent to analytic but you don’t know that yet and analyticity is also well defined over ℝ.
In MAT334, you can use interchangeably analytic or holomorphic and assume they are synonyms.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Oct 2, 2020 and Oct 5, 2020 2 / 18



Holomorphic functions

Definition: holomorphic function
Let 𝒰 ⊂ ℂ be open, 𝑓 ∶ 𝒰 → ℂ and 𝑧0 ∈ 𝒰 .
We say that 𝑓 is holomorphic at 𝑧0 (or analytic1 at 𝑧0, or ℂ-differentiable at 𝑧0) if

lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ exists.

Then we set 𝑓 ′(𝑧0) ≔ lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ .

We say that 𝑓 is holomorphic/analytic/ℂ-differentiable if it is everywhere on 𝒰 .

Note that lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ = lim

𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)
𝑧 − 𝑧0

so you can use any of these two limits.

1I don’t like the word analytic because it means that 𝑓 can be locally expressed around 𝑧0 as a power series. It is true
that ℂ-differentiability is equivalent to analytic but you don’t know that yet and analyticity is also well defined over ℝ.
In MAT334, you can use interchangeably analytic or holomorphic and assume they are synonyms.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Oct 2, 2020 and Oct 5, 2020 2 / 18



The Cauchy–Riemann equations – 1

Theorem
Let 𝒰 ⊂ ℂ be open, 𝑓 ∶ 𝒰 → ℂ, 𝑧0 = 𝑥0 + 𝑖𝑦0 ∈ ℂ. We set 𝒰̃ ≔ {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥 + 𝑖𝑦 ∈ 𝒰}.
Assume that 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) and define ̃𝑓 ∶ 𝒰̃ → ℝ2 by ̃𝑓 (𝑥, 𝑦) = (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)).
Then the following are equivalent:

• 𝑓 is holomorphic/analytic/ℂ-differentiable at 𝑧0
• ̃𝑓 is ℝ-differentiable2 at (𝑥0, 𝑦0) and its partial derivatives at (𝑥0, 𝑦0) satisfy the

Cauchy–Riemann equations

⎧⎪
⎨
⎪⎩

𝜕𝑢
𝜕𝑥(𝑥0, 𝑦0) = 𝜕𝑣

𝜕𝑦(𝑥0, 𝑦0)
𝜕𝑢
𝜕𝑦(𝑥0, 𝑦0) = − 𝜕𝑣

𝜕𝑥(𝑥0, 𝑦0)

In this case, 𝑓 ′(𝑧0) = 𝜕𝑢
𝜕𝑥(𝑥0, 𝑦0) + 𝑖 𝜕𝑣

𝜕𝑥(𝑥0, 𝑦0).

2i.e. as a real multivariable function, in the sense of your multivariable course from last year.
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The Cauchy–Riemann equations – 2

Comment
You may already notice that ”𝑓 is holomorphic/analytic/ℂ-differentiable at 𝑧0 = 𝑥0 + 𝑖𝑦0” is
stronger than ” ̃𝑓 is ℝ-differentiable at (𝑥0, 𝑦0)” since the Cauchy–Riemann equations are required
to be satisfied.

It is due to the fact that the complex multiplication plays a role in the definition of
holomorphic/analytic/ℂ-differentiable (indeed, we divide by ℎ which is a complex number, and not
by |ℎ| as in the definition of ℝ-differentiability which relies on the real scalar multiplication).

During this term we will see that holomorphic/analytic/ℂ-differentiable functions are very rigid:
they satisfy strong properties.
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The Cauchy–Riemann equations – 3
The Cauchy–Riemann equations come in various equivalent flavours:

1
⎧⎪
⎨
⎪⎩

𝜕𝑢
𝜕𝑥(𝑥0, 𝑦0) = 𝜕𝑣

𝜕𝑦 (𝑥0, 𝑦0)
𝜕𝑢
𝜕𝑦(𝑥0, 𝑦0) = − 𝜕𝑣

𝜕𝑥(𝑥0, 𝑦0)
And in this case, 𝑓 ′(𝑧0) = 𝜕𝑢

𝜕𝑥(𝑥0, 𝑦0) + 𝑖 𝜕𝑣
𝜕𝑥(𝑥0, 𝑦0).

2 Jac ̃𝑓 (𝑥0, 𝑦0) = (
𝑎 −𝑏
𝑏 𝑎 ) for some 𝑎, 𝑏 ∈ ℝ. Then 𝑓 ′(𝑧0) = 𝑎 + 𝑖𝑏.

3
𝜕𝑓
𝜕𝑦 (𝑧0) = 𝑖𝜕𝑓

𝜕𝑥 (𝑧0).

4
𝜕𝑓
𝜕𝑧

(𝑥0, 𝑦0) = 0.

Then 𝑓 ′(𝑧0) = 𝜕𝑓
𝜕𝑥 (𝑧0) = −𝑖𝜕𝑓

𝜕𝑦 (𝑧0) = 𝜕𝑓
𝜕𝑧 (𝑧0).

Remember that 𝜕𝑓
𝜕𝑧 ≔ 1

2 (
𝜕𝑓
𝜕𝑥 + 𝑖 𝜕𝑓

𝜕𝑦 ) and 𝜕𝑓
𝜕𝑧 ≔ 1

2 (
𝜕𝑓
𝜕𝑥 − 𝑖 𝜕𝑓

𝜕𝑦 ).

From the second version of the C-R equations, we obtain the following geometric interpretation:
if 𝑓 is holomorphic at 𝑧0 and 𝑓 ′(𝑧0) ≠ 0 then 𝑓 is conformal at 𝑧0, i.e. 𝑓 preserves angles at 𝑧0 (and there is a converse result).
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Example: 𝑓(𝑧) = 𝑧
We define 𝑓 ∶ ℂ → ℂ by 𝑓(𝑧) = 𝑧.

1 Direct computation: Let 𝑧0 ∈ ℂ.

We want to compute lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ = lim

ℎ→0
ℎ
ℎ .

Write ℎ = 𝜌𝑒𝑖𝜃 where 𝜌 ∈ (0, ∞) then lim
𝜌→0+

𝑓(𝑧0 + 𝜌𝑒𝑖𝜃) − 𝑓(𝑧0)
𝜌𝑒𝑖𝜃 = 𝑒−2𝑖𝜃 depends on 𝜃.

Hence lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ doesn’t exist and 𝑓 is nowhere holomorphic/analytic.

2 Cauchy–Riemann equations: ̃𝑓 ∶ ℝ2 → ℝ2 defined by ̃𝑓 (𝑥, 𝑦) = (𝑥, −𝑦) is differentiable
everywhere and for all (𝑥0, 𝑦0) ∈ ℝ2,

Jac ̃𝑓 (𝑥0, 𝑦0) = (
1 0
0 −1)

Hence the Cauchy–Riemann equations are nowhere satisfied and 𝑓 is nowhere
holomorphic/analytic.
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Example: 𝑓(𝑧) = ℜ(𝑧)
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Example: 𝑓(𝑧) = |𝑧|2 – part 1

We define 𝑓 ∶ ℂ → ℂ by 𝑓(𝑧) = |𝑧|2.

1 Direct computation:
• At 𝑧0 = 0: lim

ℎ→0

𝑓(0 + ℎ) − 𝑓(0)
ℎ = lim

ℎ→0

|ℎ|2

ℎ = 0.
Hence 𝑓 is holomorphic/analytic at 0 and 𝑓 ′(0) = 0.

• Let 𝑧0 ∈ ℂ ⧵ {0}.
Pick ℎ = 𝜌 ∈ (0, +∞), then lim

𝜌→0+

𝑓(𝑧0 + 𝜌) − 𝑓(𝑧0)
𝜌 = −𝑧0 − 𝑧0.

Pick ℎ = 𝑖𝜌, 𝜌 ∈ (0, +∞), then lim
𝜌→0+

𝑓(𝑧0 + 𝑖𝜌) − 𝑓(𝑧0)
𝑖𝜌 = −𝑧0 + 𝑧0.

Hence lim
ℎ→0

𝑓(𝑧0 + ℎ) − 𝑓(𝑧0)
ℎ doesn’t exist and 𝑓 is not holomorphic/analytic at 𝑧0.

Therefore 𝑓 is holomorphic only at 0 and 𝑓 ′(0) = 0.
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Example: 𝑓(𝑧) = |𝑧|2 – part 2

We define 𝑓 ∶ ℂ → ℂ by 𝑓(𝑧) = |𝑧|2.

2 Cauchy–Riemann equations:
̃𝑓 ∶ ℝ2 → ℝ2 defined by ̃𝑓 (𝑥, 𝑦) = (𝑥2 + 𝑦2, 0) is differentiable everywhere and for all

(𝑥0, 𝑦0) ∈ ℝ2,

Jac ̃𝑓 (𝑥0, 𝑦0) = (
2𝑥0 2𝑦0
0 0 )

Hence the Cauchy–Riemann equations are satisfied only at (𝑥0, 𝑦0) = (0, 0).

Therefore 𝑓 is holomorphic only at 0 and 𝑓 ′(0) = 0.
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Example: 𝑓(𝑧) = 𝑒𝑧

We define exp ∶ ℂ → ℂ by exp(𝑧) = 𝑒𝑧.

̃𝑓 ∶ ℝ2 → ℝ2 defined by ̃𝑓 (𝑥, 𝑦) = (𝑒𝑥 cos 𝑦, 𝑒𝑥 sin 𝑦) is differentiable everywhere and for all
(𝑥0, 𝑦0) ∈ ℝ2,

Jac ̃𝑓 (𝑥0, 𝑦0) = (
𝑒𝑥0 cos 𝑦0 −𝑒𝑥0 sin 𝑦0
𝑒𝑥0 sin 𝑦0 𝑒𝑥0 cos 𝑦0 )

The Cauchy–Riemann equations are everywhere satisfied, so exp is everywhere
holomorphic/analytic and

exp′(𝑥 + 𝑖𝑦) = 𝑒𝑥 cos 𝑦 + 𝑖𝑒𝑥 sin 𝑦 = 𝑒𝑥+𝑖𝑦 = exp(𝑥 + 𝑖𝑦)

i.e. exp′ = exp.
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Basic properties of holomorphic functions

Proposition
Let 𝑓, 𝑔 be holomorphic at 𝑧0 and 𝜆 ∈ ℂ then

• 𝜆𝑓 is holomorphic at 𝑧0 and (𝜆𝑓)′(𝑧0) = 𝜆𝑓 ′(𝑧0).
• 𝑓 + 𝑔 is holomorphic at 𝑧0 and (𝑓 + 𝑔)′(𝑧0) = 𝑓 ′(𝑧0) + 𝑔′(𝑧0).
• 𝑓𝑔 is holomorphic at 𝑧0 and (𝑓𝑔)′(𝑧0) = 𝑓 ′(𝑧0)𝑔(𝑧0) + 𝑓(𝑧0)𝑔′(𝑧0).
• If additionaly 𝑓(𝑧0) ≠ 0 then 1

𝑓 is holomorphic at 𝑧0 and (
1
𝑓 )

′
(𝑧0) = − 𝑓 ′(𝑧0)

𝑓 (𝑧0)2

Proposition
Assume that 𝑓 is holomorphic at 𝑧0 and that 𝑔 is holomorphic at 𝑓(𝑧0).
Then 𝑔 ∘ 𝑓 is holomorphic at 𝑧0 and (𝑔 ∘ 𝑓)′(𝑧0) = 𝑓 ′(𝑧0)𝑔′(𝑓 (𝑧0))

Homework
Prove these properties.
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Examples

• A polynomial 𝑓(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑧2𝑧2 + ⋯ + 𝑎𝑛𝑧𝑛 is holomorphic on ℂ and
𝑓 ′(𝑧) = 𝑎1 + 2𝑎2𝑧 + ⋯ + 𝑛𝑎𝑛𝑧𝑛−1.

• 𝑓(𝑧) = 𝑒𝑧2 is holomorphic on ℂ and 𝑓 ′(𝑧) = 2𝑧𝑒𝑧2 .

• cos(𝑧) = 𝑒𝑖𝑧+𝑒−𝑖𝑧

2 is holomorphic on ℂ and cos′(𝑧) = 𝑖𝑒𝑖𝑧 − 𝑖𝑒−𝑖𝑧

2 = −𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖 = − sin(𝑧).

• sin(𝑧) = 𝑒𝑖𝑧 − 𝑒−𝑖𝑧

2𝑖 is holomorphic on ℂ and sin′(𝑧) = 𝑖𝑒𝑖𝑧+𝑖𝑒−𝑖𝑧

2𝑖 = 𝑒𝑖𝑧+𝑒−𝑖𝑧

2 = cos(𝑧).
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Harmonic functions – 1

Definition: Laplacian
Let 𝒰 ⊂ ℝ2 be open and 𝑓 ∶ 𝒰 → ℝ be 𝒞 2.

The Laplacian of 𝑓 at (𝑥0, 𝑦0) ∈ 𝒰 is Δ𝑓(𝑥0, 𝑦0) ≔ 𝜕2𝑓
𝜕𝑥2 (𝑥0, 𝑦0) + 𝜕2𝑓

𝜕𝑦2 (𝑥0, 𝑦0)

Definition: Harmonic functions
Let 𝒰 ⊂ ℝ2 be open and 𝑓 ∶ 𝒰 → ℝ be 𝒞 2. We say that 𝑓 is harmonic if Δ𝑓 = 0 on 𝒰 .

Definition: Harmonic conjugate functions
Let 𝒰 ⊂ ℝ2 be open and 𝑢, 𝑣 ∶ 𝒰 → ℝ be two harmonic functions.

We say that 𝑣 is harmonic conjugate to 𝑢 when
⎧⎪
⎨
⎪⎩

𝜕𝑢
𝜕𝑥 = 𝜕𝑣

𝜕𝑦
𝜕𝑢
𝜕𝑦 = − 𝜕𝑣

𝜕𝑥

Check that 𝑣 is harmonic conjugate to 𝑢 if and only if −𝑢 is harmonic conjugate to 𝑣: it is not a symmetric.
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Harmonic functions – 2
Theorem
Let 𝒰 ⊂ ℂ be open and 𝑓 ∶ 𝒰 → ℂ. Set 𝒰̃ ≔ {(𝑥, 𝑦) ∈ ℝ2 ∶ 𝑥 + 𝑖𝑦 ∈ 𝒰}.
Write 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦).
If 𝑓 is holomorphic/analytic on 𝒰 then 𝑣 is harmonic conjugate to 𝑢 on 𝒰̃ .
Particularly 𝑢 and 𝑣 are harmonic functions on 𝒰̃ .

Proof. We will see later that if 𝑓 is holomorphic then 𝑢 and 𝑣 are 𝒞 2. Then

Δ𝑢 = 𝜕2𝑢
𝜕𝑥2 + 𝜕2𝑢

𝜕𝑦2 = 𝜕
𝜕𝑥 (

𝜕𝑣
𝜕𝑦) − 𝜕

𝜕𝑦 (
𝜕𝑣
𝜕𝑥) = 0

where the second equality comes from the Cauchy–Riemann equations and the last one from
Clairaut’s theorem. ■

Hence the real and imaginary parts of a holomorphic/analytic/ℂ-differentiable function are harmonic conjugate functions.
When 𝒰 is moreover assumed to be simply connected, then we have the following converse: if 𝑢 is harmonic on 𝒰̃ then 𝑢
is the real part of a function holomorphic 𝒰 (see Slide 17).
Actually, harmonic functions on ℝ2 and holomorphic functions on ℂ share many similar properties so that we may see
harmonic functions as the real analogs of holomorphic functions.
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Harmonic functions – 3

A natural question is: assuming that 𝑓 = 𝑢 + 𝑖𝑣 is holomorphic/analytic/ℂ-differentiable, up to
what extent does 𝑢 determine 𝑓? Or equivalently, up to what extent does 𝑢 determine 𝑣?

Theorem
Let 𝒰 ⊂ ℝ2 be a domain (i.e. 𝒰 is open and connected) and 𝑢, 𝑣1, 𝑣2 ∶ 𝒰 → ℝ be harmonic
functions.
If 𝑣1 and 𝑣2 are harmonic conjugates to 𝑢 then 𝑣1 and 𝑣2 differ by a constant, i.e. 𝑣1 − 𝑣2 = 𝐶 ∈ ℝ.

Proof. Indeed, 𝜕𝑥(𝑣1 − 𝑣2) = 𝜕𝑥𝑣1 − 𝜕𝑥𝑣2 = −𝜕𝑦𝑢 + 𝜕𝑦𝑢 = 0 and similarly 𝜕𝑦(𝑣1 − 𝑣2) = 0.
Hence 𝑣1 − 𝑣2 is constant since 𝒰 is connected. ■
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Harmonic functions – 4

Another natural question is: does a harmonic function always admit a harmonic conjugate?
Or, equivalently, is a harmonic function always the real part of a holomorphic function?

In general, without additional assumptions, the answer is NO:

Example
Let 𝑢 ∶ ℝ2 ⧵ {(0, 0)} → ℝ be defined by 𝑢(𝑥, 𝑦) = log(𝑥2 + 𝑦2).
Assume by contradiction that 𝑢 admits a harmonic conjugate 𝑣 on ℝ2 ⧵ {(0, 0)}.
And 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) is holomorphic and 𝑓 ′(𝑥 + 𝑖𝑦) = 2𝑥

𝑥2+𝑦2 − 𝑖 2𝑦
𝑥2+𝑦2 = 2

𝑥+𝑖𝑦 .

Then ∫𝑆1
𝑓 ′(𝑧)d𝑧 = ∫𝑆1

1
𝑧d𝑧 = 4𝜋𝑖.

But by Green’s theorem: ∫𝑆1
𝑓 ′(𝑧)d𝑧 = 𝑖 ∬𝐷1(0)

0 = 0.

Contradiction.
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Harmonic functions – 5
Nonetheless, when the assumptions of Poincaré lemma3 are satisfied, it is possible to use it in
order to construct a harmonic conjugate.

Theorem
Let 𝒰 ⊂ ℝ2 be open and star-shaped4. Let 𝑢 ∶ 𝒰 → ℝ be a harmonic function.
Then there exists 𝑣 ∶ 𝒰 → ℝ a harmonic conjugate to 𝑢.

Proof. Note that the vector field F = (− 𝜕𝑢
𝜕𝑦 , 𝜕𝑢

𝜕𝑥 ) satisfies 𝜕𝐹2
𝜕𝑥 = 𝜕𝐹1

𝜕𝑦 since 𝑢 is harmonic.
Hence, by Poincaré lemma, there exists 𝑣 ∶ 𝒰 → ℝ 𝒞2 such that F = ∇𝑣,

i.e. (− 𝜕𝑢
𝜕𝑦 , 𝜕𝑢

𝜕𝑥) = (
𝜕𝑣
𝜕𝑥 , 𝜕𝑣

𝜕𝑦 ). Hence 𝑣 is harmonic conjugate to 𝑢. ■

Corollary
A harmonic function on 𝒰 ⊂ ℝ2 open and star-shaped4 is the real part of a holomorphic function.

3See for instance Theorem 5 of http://www.math.toronto.edu/campesat/ens/1920/poincare.pdf
4Actually, we may weaken this assumption and assume that 𝒰 is open and simply-connected, i.e. that 𝒰 has no hole.
A hole of 𝑆 ⊂ ℂ is a bounded connected component of ℂ ⧵ 𝑆.
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A first example of the rigidity of holomorphic functions

Theorem
Let 𝒰 ⊂ ℂ be a domain (i.e. open and path-connected) and 𝑓 = 𝑢 + 𝑖𝑣 be holomorphic on 𝒰 .
If either 𝑢, or 𝑣, or 𝑢2 + 𝑣2 is constant on 𝒰 then 𝑓 is also constant on 𝒰 .

This theorem tells us that if the range of a holomorphic function defined on a domain lies on a
horizontal line, or on a vertical line, or on a circle, then this function is actually constant.
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A first example of the rigidity of holomorphic functions

Theorem
Let 𝒰 ⊂ ℂ be a domain (i.e. open and path-connected) and 𝑓 = 𝑢 + 𝑖𝑣 be holomorphic on 𝒰 .
If either 𝑢, or 𝑣, or 𝑢2 + 𝑣2 is constant on 𝒰 then 𝑓 is also constant on 𝒰 .

Proof.
• Assume that 𝑢 is constant (similar proof for 𝑣).

Then 𝜕𝑢
𝜕𝑥 = 𝜕𝑢

𝜕𝑦 = 0. By the Cauchy–Riemann equations we also have that 𝜕𝑣
𝜕𝑥 = 𝜕𝑣

𝜕𝑦 = 0.
Since 𝒰̃ is connected, we get that 𝑣 is constant. Therefore 𝑓 = 𝑢 + 𝑖𝑣 is constant.

• Assume that |𝑓 |2 = 𝑢2 + 𝑣2 = 𝑐 is constant. If 𝑐 = 0 then 𝑓 = 0 so we may assume that 𝑐 > 0.
From 𝑐 = |𝑓|2 = 𝑓𝑓 we get that 𝑓 = 𝑐

𝑓 is holomorphic since 𝑓 doesn’t vanish.

Hence ℜ(𝑓) = 𝑓+𝑓
2 is holomorphic with constant imaginary part equal to 0.

Then, by the previous point, ℜ(𝑓) is constant.
Finally, since the real part of 𝑓 is constant, so is 𝑓 (still by the previous point).

■
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A few words about simple connectedness
Definition: hole
A hole of 𝑆 ⊂ ℂ is a bounded connected component of ℂ ⧵ 𝑆.

Definition: simple connectedness
We say that 𝑆 ⊂ ℂ is simply connected if it is path-connected and has no hole.

Figure: A simply connected set Figure: A set NOT simply connected

Figure: A set NOT simply connected

ℂ ⧵ {0}

Figure: A set NOT simply connected


