MAT334H1-F-LEC0101 *Complex Variables* http://uoft.me/MAT334-LEC0101

HOLOMORPHIC/ANALYTIC FUNCTIONS

October 2nd, 2020 and October 5th, 2020

Holomorphic functions

Definition: holomorphic function

Let $\mathscr{U} \subset \mathbb{C}$ be open, $f : \mathscr{U} \to \mathbb{C}$ and $z_0 \in \mathscr{U}$. We say that f is **holomorphic at** z_0 (or **analytic**¹ at z_0 , or \mathbb{C} -differentiable at z_0) if

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
 exists.

Then we set
$$f'(z_0) \coloneqq \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
.
We say that f is holomorphic/analytic/ \mathbb{C} -differentiable if it is everywhere on \mathcal{U} .

¹I don't like the word *analytic* because it means that f can be locally expressed around z_0 as a power series. It is true that \mathbb{C} -differentiability is equivalent to analytic but you don't know that yet and analyticity is also well defined over \mathbb{R} . In MAT334, you can use interchangeably *analytic* or *holomorphic* and assume they are synonyms.

Holomorphic functions

Definition: holomorphic function

Let $\mathscr{U} \subset \mathbb{C}$ be open, $f : \mathscr{U} \to \mathbb{C}$ and $z_0 \in \mathscr{U}$. We say that f is **holomorphic at** z_0 (or **analytic**¹ at z_0 , or \mathbb{C} -differentiable at z_0) if

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
 exists.

Then we set
$$f'(z_0) \coloneqq \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
.
We say that f is holomorphic/analytic/ \mathbb{C} -differentiable if it is everywhere on \mathscr{U} .

Note that
$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 so you can use any of these two limits.

¹I don't like the word *analytic* because it means that f can be locally expressed around z_0 as a power series. It is true that \mathbb{C} -differentiability is equivalent to analytic but you don't know that yet and analyticity is also well defined over \mathbb{R} . In MAT334, you can use interchangeably *analytic* or *holomorphic* and assume they are synonyms.

Theorem

Let $\mathcal{U} \subset \mathbb{C}$ be open, $f : \mathcal{U} \to \mathbb{C}$, $z_0 = x_0 + iy_0 \in \mathbb{C}$. We set $\tilde{\mathcal{U}} \coloneqq \{(x, y) \in \mathbb{R}^2 : x + iy \in \mathcal{U}\}$. Assume that f(x + iy) = u(x, y) + iv(x, y) and define $\tilde{f} : \tilde{\mathcal{U}} \to \mathbb{R}^2$ by $\tilde{f}(x, y) = (u(x, y), v(x, y))$. Then the following are equivalent:

- f is holomorphic/analytic/C-differentiable at z₀
- \tilde{f} is \mathbb{R} -differentiable² at (x_0, y_0) and its partial derivatives at (x_0, y_0) satisfy the Cauchy–Riemann equations

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) &= \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial u}{\partial y}(x_0, y_0) &= -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$

In this case, $f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0).$

²i.e. as a real multivariable function, in the sense of your multivariable course from last year.

Comment

You may already notice that "*f* is holomorphic/analytic/ \mathbb{C} -differentiable at $z_0 = x_0 + iy_0$ " is stronger than " \tilde{f} is \mathbb{R} -differentiable at (x_0, y_0) " since the Cauchy–Riemann equations are required to be satisfied.

It is due to the fact that the complex multiplication plays a role in the definition of *holomorphic/analytic/* \mathbb{C} *-differentiable* (indeed, we divide by *h* which is a complex number, and not by |h| as in the definition of \mathbb{R} -differentiability which relies on the real scalar multiplication).

During this term we will see that *holomorphic/analytic/* \mathbb{C} *-differentiable* functions are very rigid: they satisfy strong properties.

The Cauchy–Riemann equations – 3

The Cauchy-Riemann equations come in various equivalent flavours:

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) &= \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial u}{\partial y}(x_0, y_0) &= -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$
And in this case, $f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$

$$\begin{cases} \frac{\partial u}{\partial y}(x_0, y_0) &= -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$
And in this case, $f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) &= -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$
Find the equation of the equati

The Cauchy–Riemann equations – 3

The Cauchy–Riemann equations come in various equivalent flavours:

$$\begin{cases} \frac{\partial u}{\partial x}(x_0, y_0) &= \frac{\partial v}{\partial y}(x_0, y_0) \\ \frac{\partial u}{\partial y}(x_0, y_0) &= -\frac{\partial v}{\partial x}(x_0, y_0) \end{cases}$$
And in this case, $f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0).$

$$\begin{cases} Jac_{\tilde{f}}(x_0, y_0) &= \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \text{ for some } a, b \in \mathbb{R}. \qquad \text{Then } f'(z_0) = a + ib. \end{cases}$$

$$\begin{cases} \frac{\partial f}{\partial y}(z_0) &= i\frac{\partial f}{\partial x}(z_0). \\ \frac{\partial f}{\partial \overline{z}}(x_0, y_0) = 0. \end{cases}$$
Then $f'(z_0) = \frac{\partial f}{\partial x}(z_0) = -i\frac{\partial f}{\partial y}(z_0) = \frac{\partial f}{\partial z}(z_0). \\ Remember that \frac{\partial f}{\partial \overline{z}} := \frac{1}{2}\left(\frac{\partial f}{\partial x} + i\frac{\partial f}{\partial y}\right) and \frac{\partial f}{\partial z} := \frac{1}{2}\left(\frac{\partial f}{\partial x} - i\frac{\partial f}{\partial y}\right). \end{cases}$

From the second version of the C-R equations, we obtain the following geometric interpretation:

if f is holomorphic at z_0 and $f'(z_0) \neq 0$ then f is conformal at z_0 , i.e. f preserves angles at z_0 (and there is a *converse* result).

Example: $f(z) = \overline{z}$

We define $f : \mathbb{C} \to \mathbb{C}$ by $f(z) = \overline{z}$.

Example: $f(z) = \overline{z}$

We define $f : \mathbb{C} \to \mathbb{C}$ by $f(z) = \overline{z}$. **1** Direct computation: Let $z_0 \in \mathbb{C}$. We want to compute $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \frac{\overline{h}}{h}$. Write $h = \rho e^{i\theta}$ where $\rho \in (0, \infty)$ then $\lim_{\rho \to 0^+} \frac{f(z_0 + \rho e^{i\theta}) - f(z_0)}{\rho e^{i\theta}} = e^{-2i\theta}$ depends on θ . Hence $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$ doesn't exist and f is nowhere holomorphic/analytic.

2 *Cauchy–Riemann equations:* $\tilde{f} : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\tilde{f}(x, y) = (x, -y)$ is differentiable everywhere and for all $(x_0, y_0) \in \mathbb{R}^2$,

$$\operatorname{Jac}_{\tilde{f}}(x_0, y_0) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

Hence the Cauchy–Riemann equations are nowhere satisfied and f is nowhere holomorphic/analytic.

Example: $f(z) = \Re(z)$

We define $f : \mathbb{C} \to \mathbb{C}$ by $f(z) = \Re(z)$.

Example: $f(z) = \Re(z)$

We define $f : \mathbb{C} \to \mathbb{C}$ by $f(z) = \Re(z)$. **1** Direct computation: Let $z_0 \in \mathbb{C}$. Pick $h = \rho \in (0, \infty)$, then $\lim_{\rho \to 0^+} \frac{f(z_0 + \rho) - f(z_0)}{\rho} = 1$. Pick $h = i\rho, \rho \in (0, \infty)$, then $\lim_{\rho \to 0^+} \frac{f(z_0 + i\rho) - f(z_0)}{i\rho} = 0$. Hence $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$ doesn't exist and f is nowhere holomorphic/analytic.

Cauchy–Riemann equations: f̃: ℝ² → ℝ² defined by f̃(x, y) = (x, 0) is differentiable everywhere and for all (x₀, y₀) ∈ ℝ²,

$$\operatorname{Jac}_{\tilde{f}}(x_0, y_0) = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$$

Hence the Cauchy–Riemann equations are nowhere satisfied and f is nowhere holomorphic/analytic.

Example: $f(z) = |z|^2 - \text{part 1}$

We define $f : \mathbb{C} \to \mathbb{C}$ by $f(z) = |z|^2$.

Example: $f(z) = |z|^2 - \text{part 1}$

We define $f : \mathbb{C} \to \mathbb{C}$ by $f(z) = |z|^2$.

1 Direct computation:

• At
$$z_0 = 0$$
: $\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|^2}{h} = 0$.
Hence *f* is holomorphic/analytic at 0 and $f'(0) = 0$

• Let
$$z_0 \in \mathbb{C} \setminus \{0\}$$
.
Pick $h = \rho \in (0, +\infty)$, then $\lim_{\rho \to 0^+} \frac{f(z_0 + \rho) - f(z_0)}{\rho} = -\overline{z_0} - z_0$.
Pick $h = i\rho, \rho \in (0, +\infty)$, then $\lim_{\rho \to 0^+} \frac{f(z_0 + i\rho) - f(z_0)}{i\rho} = -\overline{z_0} + z_0$.
Hence $\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$ doesn't exist and f is not holomorphic/analytic at z_0 .

Therefore *f* is holomorphic only at 0 and f'(0) = 0.

Example: $f(z) = |z|^2 - part 2$

We define $f : \mathbb{C} \to \mathbb{C}$ by $f(z) = |z|^2$.

2 Cauchy–Riemann equations: $\tilde{f} : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\tilde{f}(x, y) = (x^2 + y^2, 0)$ is differentiable everywhere and for all $(x_0, y_0) \in \mathbb{R}^2$, Let $(x_0, y_0) \in \mathbb{R}^2$,

$$\operatorname{Jac}_{\tilde{f}}(x_0, y_0) = \begin{pmatrix} 2x_0 & 2y_0\\ 0 & 0 \end{pmatrix}$$

Hence the Cauchy–Riemann equations are satisfied only at $(x_0, y_0) = (0, 0)$.

Therefore *f* is holomorphic only at 0 and f'(0) = 0.

Example: $f(z) = e^{z}$

We define exp : $\mathbb{C} \to \mathbb{C}$ by $\exp(z) = e^{z}$.

Example: $f(z) = e^{z}$

We define $\exp : \mathbb{C} \to \mathbb{C}$ by $\exp(z) = e^z$.

 $\tilde{f} : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\tilde{f}(x, y) = (e^x \cos y, e^x \sin y)$ is differentiable everywhere and for all $(x_0, y_0) \in \mathbb{R}^2$,

$$\operatorname{Jac}_{\tilde{f}}(x_0, y_0) = \begin{pmatrix} e^{x_0} \cos y_0 & -e^{x_0} \sin y_0 \\ e^{x_0} \sin y_0 & e^{x_0} \cos y_0 \end{pmatrix}$$

The Cauchy–Riemann equations are everywhere satisfied, so \exp is everywhere holomorphic/analytic and

$$\exp'(x+iy) = e^x \cos y + ie^x \sin y = e^{x+iy} = \exp(x+iy)$$

i.e. $\exp' = \exp$.

Basic properties of holomorphic functions

Proposition

Let f, g be holomorphic at z_0 and $\lambda \in \mathbb{C}$ then

- λf is holomorphic at z_0 and $(\lambda f)'(z_0) = \lambda f'(z_0)$.
- f + g is holomorphic at z_0 and $(f + g)'(z_0) = f'(z_0) + g'(z_0)$.
- fg is holomorphic at z_0 and $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$.
- If additionaly $f(z_0) \neq 0$ then $\frac{1}{f}$ is holomorphic at z_0 and $\left(\frac{1}{f}\right)'(z_0) = -\frac{f'(z_0)}{f(z_0)^2}$

Proposition

Assume that *f* is holomorphic at z_0 and that *g* is holomorphic at $f(z_0)$. Then $g \circ f$ is holomorphic at z_0 and $(g \circ f)'(z_0) = f'(z_0)g'(f(z_0))$

Homework

Prove these properties.

• A polynomial $f(z) = a_0 + a_1 z + z_2 z^2 + \dots + a_n z^n$ is holomorphic on \mathbb{C} and $f'(z) = a_1 + 2a_2 z + \dots + na_n z^{n-1}$.

•
$$f(z) = e^{z^2}$$
 is holomorphic on \mathbb{C} and $f'(z) = 2ze^{z^2}$.

•
$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
 is holomorphic on \mathbb{C} and $\cos'(z) = \frac{ie^{iz} - ie^{-iz}}{2} = -\frac{e^{iz} - e^{-iz}}{2i} = -\sin(z)$.

•
$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$
 is holomorphic on \mathbb{C} and $\sin'(z) = \frac{ie^{iz} + ie^{-iz}}{2i} = \frac{e^{iz} + e^{-iz}}{2} = \cos(z)$.

Definition: Laplacian

Let $\mathscr{U} \subset \mathbb{R}^2$ be open and $f : \mathscr{U} \to \mathbb{R}$ be \mathscr{C}^2 .

The **Laplacian** of
$$f$$
 at $(x_0, y_0) \in \mathcal{U}$ is $\Delta f(x_0, y_0) \coloneqq \frac{\partial^2 f}{\partial x^2}(x_0, y_0) + \frac{\partial^2 f}{\partial y^2}(x_0, y_0)$

Definition: Harmonic functions

Let $\mathscr{U} \subset \mathbb{R}^2$ be open and $f : \mathscr{U} \to \mathbb{R}$ be \mathscr{C}^2 . We say that f is **harmonic** if $\Delta f = 0$ on \mathscr{U} .

Definition: Harmonic conjugate functions

Let $\mathscr{U} \subset \mathbb{R}^2$ be open and $u, v : \mathscr{U} \to \mathbb{R}$ be two harmonic functions.

We say that *v* is **harmonic conjugate** to *u* when $\begin{cases} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{cases}$

$$\frac{d}{dx} = \frac{\partial v}{\partial y}$$
$$\frac{d}{\partial y} = -\frac{\partial v}{\partial x}$$

Check that v is harmonic conjugate to u if and only if -u is harmonic conjugate to v: it is not a symmetric.

Theorem

Let $\mathcal{U} \subset \mathbb{C}$ be open and $f : \mathcal{U} \to \mathbb{C}$. Set $\tilde{\mathcal{U}} := \{(x, y) \in \mathbb{R}^2 : x + iy \in \mathcal{U}\}$. Write f(x + iy) = u(x, y) + iv(x, y). If *f* is holomorphic/analytic on \mathcal{U} then *v* is harmonic conjugate to *u* on $\tilde{\mathcal{U}}$. Particularly *u* and *v* are harmonic functions on $\tilde{\mathcal{U}}$.

Theorem

Let $\mathscr{U} \subset \mathbb{C}$ be open and $f : \mathscr{U} \to \mathbb{C}$. Set $\widetilde{\mathscr{U}} := \{(x, y) \in \mathbb{R}^2 : x + iy \in \mathscr{U}\}$. Write f(x + iy) = u(x, y) + iv(x, y). If f is holomorphic/analytic on \mathscr{U} then v is harmonic conjugate to u on $\widetilde{\mathscr{U}}$. Particularly u and v are harmonic functions on $\widetilde{\mathscr{U}}$.

Proof. We will see later that if *f* is holomorphic then *u* and *v* are \mathscr{C}^2 . Then

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) - \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} \right) = 0$$

where the second equality comes from the Cauchy–Riemann equations and the last one from Clairaut's theorem.

Theorem

Let $\mathscr{U} \subset \mathbb{C}$ be open and $f : \mathscr{U} \to \mathbb{C}$. Set $\widetilde{\mathscr{U}} := \{(x, y) \in \mathbb{R}^2 : x + iy \in \mathscr{U}\}$. Write f(x + iy) = u(x, y) + iv(x, y). If f is holomorphic/analytic on \mathscr{U} then v is harmonic conjugate to u on $\widetilde{\mathscr{U}}$. Particularly u and v are harmonic functions on $\widetilde{\mathscr{U}}$.

Proof. We will see later that if *f* is holomorphic then *u* and *v* are \mathscr{C}^2 . Then

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y}\right) - \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x}\right) = 0$$

where the second equality comes from the Cauchy–Riemann equations and the last one from Clairaut's theorem.

Hence the real and imaginary parts of a holomorphic/analytic/ \mathbb{C} -differentiable function are harmonic conjugate functions. When \mathscr{U} is moreover assumed to be simply connected, then we have the following converse: if *u* is harmonic on $\widetilde{\mathscr{U}}$ then *u* is the real part of a function holomorphic \mathscr{U} (see Slide 17).

Actually, harmonic functions on \mathbb{R}^2 and holomorphic functions on \mathbb{C} share many similar properties so that we may see harmonic functions as the real analogs of holomorphic functions.

A natural question is: assuming that f = u + iv is holomorphic/analytic/ \mathbb{C} -differentiable, up to what extent does *u* determine *f*? Or equivalently, up to what extent does *u* determine *v*?

Theorem

Let $\mathscr{U} \subset \mathbb{R}^2$ be a domain (i.e. \mathscr{U} is open and **connected**) and $u, v_1, v_2 : \mathscr{U} \to \mathbb{R}$ be harmonic functions.

If v_1 and v_2 are harmonic conjugates to u then v_1 and v_2 differ by a constant, i.e. $v_1 - v_2 = C \in \mathbb{R}$.

Proof. Indeed, $\partial_x(v_1 - v_2) = \partial_x v_1 - \partial_x v_2 = -\partial_y u + \partial_y u = 0$ and similarly $\partial_y(v_1 - v_2) = 0$. Hence $v_1 - v_2$ is constant since \mathcal{U} is connected.

Another natural question is: does a harmonic function always admit a harmonic conjugate? Or, equivalently, is a harmonic function always the real part of a holomorphic function?

In general, without additional assumptions, the answer is NO:

Example

Let $u : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ be defined by $u(x, y) = \log(x^2 + y^2)$. Assume by contradiction that u admits a harmonic conjugate v on $\mathbb{R}^2 \setminus \{(0,0)\}$. And f(x + iy) = u(x, y) + iv(x, y) is holomorphic and $f'(x + iy) = \frac{2x}{x^2 + y^2} - i\frac{2y}{x^2 + y^2} = \frac{2}{x + iy}$. Then $\int_{S^1} f'(z) dz = \int_{S^1} \frac{1}{z} dz = 4\pi i$. But by Green's theorem: $\int_{S^1} f'(z) dz = i \iint_{D_1(0)} 0 = 0$. Contradiction.

Nonetheless, when the assumptions of Poincaré lemma³ are satisfied, it is possible to use it in order to construct a harmonic conjugate.

Theorem

Let $\mathscr{U} \subset \mathbb{R}^2$ be open and star-shaped⁴. Let $u : \mathscr{U} \to \mathbb{R}$ be a harmonic function. Then there exists $v : \mathscr{U} \to \mathbb{R}$ a harmonic conjugate to u.

Proof. Note that the vector field $\mathbf{F} = \left(-\frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right)$ satisfies $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$ since *u* is harmonic. Hence, by Poincaré lemma, there exists $v : \mathcal{U} \to \mathbb{R}$ C^2 such that $\mathbf{F} = \nabla v$, i.e. $\left(-\frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right) = \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)$. Hence *v* is harmonic conjugate to *u*.

³See for instance Theorem 5 of http://www.math.toronto.edu/campesat/ens/1920/poincare.pdf ⁴Actually, we may weaken this assumption and assume that \mathscr{U} is open and simply-connected, i.e. that \mathscr{U} has no hole. A hole of $S \subset \mathbb{C}$ is a bounded connected component of $\mathbb{C} \setminus S$.

Nonetheless, when the assumptions of Poincaré lemma³ are satisfied, it is possible to use it in order to construct a harmonic conjugate.

Theorem

Let $\mathscr{U} \subset \mathbb{R}^2$ be open and star-shaped⁴. Let $u : \mathscr{U} \to \mathbb{R}$ be a harmonic function. Then there exists $v : \mathscr{U} \to \mathbb{R}$ a harmonic conjugate to u.

Proof. Note that the vector field $\mathbf{F} = \left(-\frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right)$ satisfies $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$ since *u* is harmonic. Hence, by Poincaré lemma, there exists $v : \mathcal{U} \to \mathbb{R} \ C^2$ such that $\mathbf{F} = \nabla v$, i.e. $\left(-\frac{\partial u}{\partial y}, \frac{\partial u}{\partial x}\right) = \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right)$. Hence *v* is harmonic conjugate to *u*.

Corollary

A harmonic function on $\mathscr{U} \subset \mathbb{R}^2$ open and star-shaped⁴ is the real part of a holomorphic function.

³See for instance Theorem 5 of http://www.math.toronto.edu/campesat/ens/1920/poincare.pdf ⁴Actually, we may weaken this assumption and assume that \mathcal{U} is open and simply-connected, i.e. that \mathcal{U} has no hole. A hole of $S \subset \mathbb{C}$ is a bounded connected component of $\mathbb{C} \setminus S$.

A first example of the *rigidity* of holomorphic functions

Theorem

Let $\mathscr{U} \subset \mathbb{C}$ be a **domain** (i.e. open and path-connected) and f = u + iv be holomorphic on \mathscr{U} . If either u, or v, or $u^2 + v^2$ is constant on \mathscr{U} then f is also constant on \mathscr{U} .

This theorem tells us that if the range of a holomorphic function defined on a **domain** lies on a horizontal line, or on a vertical line, or on a circle, then this function is actually constant.

A first example of the *rigidity* of holomorphic functions

Theorem

Let $\mathscr{U} \subset \mathbb{C}$ be a **domain** (i.e. open and path-connected) and f = u + iv be holomorphic on \mathscr{U} . If either u, or v, or $u^2 + v^2$ is constant on \mathscr{U} then f is also constant on \mathscr{U} .

Proof.

• Assume that *u* is constant (similar proof for *v*).

Then $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$. By the Cauchy–Riemann equations we also have that $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$. Since $\tilde{\mathcal{U}}$ is connected, we get that v is constant. Therefore f = u + iv is constant.

A first example of the *rigidity* of holomorphic functions

Theorem

Let $\mathscr{U} \subset \mathbb{C}$ be a **domain** (i.e. open and path-connected) and f = u + iv be holomorphic on \mathscr{U} . If either u, or v, or $u^2 + v^2$ is constant on \mathscr{U} then f is also constant on \mathscr{U} .

Proof.

• Assume that *u* is constant (similar proof for *v*). Then $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0$. By the Cauchy–Riemann equations we also have that $\frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} = 0$. Since $\tilde{\mathcal{U}}$ is connected, we get that *v* is constant. Therefore f = u + iv is constant.

• Assume that $|f|^2 = u^2 + v^2 = c$ is constant. If c = 0 then f = 0 so we may assume that c > 0. From $c = |f|^2 = f\overline{f}$ we get that $\overline{f} = \frac{c}{f}$ is holomorphic since f doesn't vanish. Hence $\Re(f) = \frac{f+\overline{f}}{2}$ is holomorphic with constant imaginary part equal to 0. Then, by the previous point, $\Re(f)$ is constant. Finally, since the real part of f is constant, so is f (still by the previous point).

A few words about simple connectedness

Definition: hole

A hole of $S \subset \mathbb{C}$ is a bounded connected component of $\mathbb{C} \setminus S$.

Definition: simple connectedness

We say that $S \subset \mathbb{C}$ is **simply connected** if it is path-connected and has no hole.

Figure: A simply connected set

Figure: A set NOT simply connected

Figure: A set NOT simply connected

Figure: A set NOT simply connected

