## University of Toronto – MAT334H1-F – LEC0101 Complex Variables

# 10 - Consequences of Cauchy's integral formula

Jean-Baptiste Campesato

October 16<sup>th</sup>, 2020 to October 21<sup>st</sup>, 2020

#### Contents

| 1 | Holomorphic functions are analytic              | 1 |
|---|-------------------------------------------------|---|
| 2 | Continuation of analytic functions              | 3 |
| 3 | Order of a zero                                 | 4 |
| 4 | Morera's theorem                                | 4 |
| 5 | Characterizations of holomorphicity/analyticity | 5 |
| 6 | Liouville's theorem                             | 5 |
| 7 | Analytic logarithm                              | 6 |
| 8 | Multiplication of complex power series          | 6 |

### **1** Holomorphic functions are analytic

**Theorem 1.** Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$  be holomorphic/analytic/ $\mathbb{C}$ -differentiable. Then f can be **locally** expressed as a power series in a neighborhood of any point of U.

*More precisely, if*  $\overline{D_r}(z_0) \subset U$  *then* 

$$\forall z \in D_r(z_0), \ f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$

where

$$a_n = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} \mathrm{d}w$$

and  $\gamma : [0,1] \to \mathbb{C}$  is defined by  $\gamma(t) = z_0 + re^{2i\pi t}$  and the radius of convergence of this power series is greater than or equal to r.

Proof. By Cauchy's integral formula

$$f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z} dw$$
  
=  $\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \frac{1}{1 - \frac{z - z_0}{w - z_0}} dw$   
=  $\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w - z_0} \sum_{n=0}^{+\infty} \left(\frac{z - z_0}{w - z_0}\right)^n dw$  since  $|z - z_0| < |w - z_0| = n$   
=  $\sum_{n=0}^{+\infty} \left(\frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw\right) (z - z_0)^n$ 

We need to justify the last equality (i.e. the permutation  $\int -\sum$ ).

Let  $\varepsilon > 0$ . There exists *N* such that if  $k \ge N$  then the remainder satisfies  $\left|\sum_{n=k}^{+\infty} \left(\frac{z-z_0}{w-z_0}\right)^n\right| \le \varepsilon$ , so that 1 k ( ) ( ) | | c c  $+\infty$  ( $\sim n$ 

$$\left| f(z) - \sum_{n=0}^{\infty} \left( \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w \right) (z-z_0)^n \right| \le \left| \frac{1}{2i\pi} \int_{\gamma} \frac{f(w)}{w-z_0} \sum_{n=k}^{+\infty} \left( \frac{z-z_0}{w-z_0} \right)^n \mathrm{d}w \right|$$
$$\le \frac{\max_{|w-z_0|=r} |f|}{2\pi} \frac{|w-z_0|=r}{r} \varepsilon \operatorname{Length}(\gamma)$$
$$\le \varepsilon \max_{|w-z_0|=r} |f|$$

**Corollary 2.** Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$  be a function. Then f is holomorphic/analytic/ $\mathbb{C}$ -differentiable if and only if f can be **locally** expressed as a power series in a neighborhood of any point of U.

*Proof.* 
$$\Rightarrow$$
: by Theorem 1.  
 $\Leftarrow$ : if  $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$  in  $D_r(z_0)$  then  $f$  is holomorphic on  $D_r(z_0)$  from last week lecture.

**Corollary 3.** A holomorphic/analytic/ $\mathbb{C}$ -differentiable function is infinitely many times  $\mathbb{C}$ -differentiable.

**Remark 4.** The previous results are false for  $\mathbb{R}$ -differentiability.

• Let 
$$f : \mathbb{R} \to \mathbb{R}$$
 be defined by  $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{otherwise} \end{cases}$   
Then  $f$  is  $\mathbb{R}$ -differentiable but not  $C^1$ 

I nen J is  $\mathbb{R}$ -differentiable but not  $C^{1}$ .

• Let  $g : \mathbb{R} \to \mathbb{R}$  be defined by  $g(x) = \begin{cases} e^{-\frac{1}{x^2}} & \text{if } x \neq 0\\ 0 & \text{otherwise} \end{cases}$ 

Then *g* is  $\mathbb{R}$ -differentiable, even  $\mathcal{C}^{\infty}$ , but not analytic at 0, i.e. it can't be expressed as a power series around 0: Indeed  $\forall n \in \mathbb{N}_{>0}$ ,  $g^{(n)}(0) = 0$ , so if g were equal to its Taylor series around 0 then it would be constant equal to 0 but g is non-zero in any neighborhood of 0.

• By a theorem of Borel<sup>\*</sup>, given a real sequence  $(a_n)_{n \in \mathbb{N}_{\geq 0}}$ , there exists a  $C^{\infty}$  function defined in a neighborhood of 0 in  $\mathbb{R}$  such that  $\forall n \in \mathbb{N}_{>0}$ ,  $f^{(n)}(0) = a_n$ .

Otherwise stated, any real power series is the Taylor expansion of a  $C^{\infty}$  function.

If we take  $a_n = (n!)^2$  then we obtain a power series whose radius of convergence is R = 0, hence a function with such a Taylor expansion can't be analytic.

#### 2 Continuation of analytic functions

**Theorem 5.** Let  $U \subset \mathbb{C}$  be a domain and  $f : U \to \mathbb{C}$  be a holomorphic/analytic function. If there exists  $z_0 \in U$  such that  $\forall n \in \mathbb{N}_{>0}$ ,  $f^{(n)}(z_0) = 0$  then  $f \equiv 0$  on U.

*Proof.* Let  $z \in U$ . Since U is path connected, there exists a curve  $\gamma : [a, b] \to \mathbb{C}$  with  $\gamma(a) = z_0$  and  $\gamma(b) = z$ . Since U is open, for every  $w \in \gamma([a, b])$  there exists  $r_w > 0$  such that  $D_{r_w}(w) \subset U$ . Since  $\gamma([a, b])$  is compact we may assume that it is covered by finitely many of these disks  $D_{r_1}(w_1), \ldots, D_{r_k}(w_k)$ .



By Theorem 1, if there exists  $v \in D_{r_i}(w_i)$  such that  $\forall n \in \mathbb{N}_{\geq 0}$ ,  $f^{(n)}(v) = 0$  then  $f \equiv 0$  on  $D_{r_i}(w_i)$ . Two consecutive disks intersect (since they cover  $\gamma$ ), so we conclude using the previous remark disk by disk from  $z_0$  to z.

**Remark 6.** If you attend MAT327, another proof consists in showing that  $\{z \in U : \forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(z) = 0\}$  is open, closed, and non-empty, hence equals to *U* by connectedness.

**Corollary 7.** Let  $U \subset \mathbb{C}$  be a *domain* and  $f, g : U \to \mathbb{C}$  be holomorphic/analytic functions. *If f and g coincide in the neighborhood of a point,* 

i.e. 
$$\exists z_0 \in U, \exists r > 0, \forall z \in D_r(z_0) \cap U, f(z) = g(z),$$

then they coincide on U,

*i.e.* 
$$\forall z \in U, f(z) = g(z).$$

*Proof.* Then  $\forall n \in \mathbb{N}_{\geq 0}$ ,  $(f - g)^{(n)}(z_0) = 0$  (since  $f - g \equiv 0$  on  $D_r(z_0) \cap U$ ). Hence  $f - g \equiv 0$  on U by the previous theorem.

**Remark 8.** The previous results are false for  $\mathbb{R}$ -differentiability. Define  $f : \mathbb{R} \to \mathbb{R}$  by

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

then *f* is  $\mathbb{R}$ -differentiable (even  $C^{\infty}$ ). And

- $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(0) = 0$  but  $f \not\equiv 0$ .
- $\forall x \in (-\infty, 0), f(x) = 0$  but  $f \not\equiv 0$ .

<sup>\*</sup> It generalizes to multivariable functions.

A common way to construct an analytic function consists in defining it in a "small" domain and then to extend it to an analytic function with a bigger domain.

By the above result, this analytic continuation, if it exists, is unique.

That's a very powerful tool: knowing a function on a "small" domain determines the function everywhere else \* . *Holomorphic/analytic functions are very rigid*!

 $\triangle$  The maximal domain may not be  $\mathbb{C}$ : for instance, if we try to extend Log, we won't be able to do a full turn around the origin since we won't recover the same values (it increases by  $2i\pi$ ).

**Example 9.** Let  $f : D_1(0) \to \mathbb{C}$  be defined by  $f(z) = \sum_{n=0}^{+\infty} z^n$ .

Then *f* coincides with  $\frac{1}{1-z}$  on  $D_1(0)$ . Hence we may extend *f* with  $F : \mathbb{C} \setminus \{1\} \to \mathbb{C}$  defined by  $F(z) = \frac{1}{1-z}$ .

#### 3 Order of a zero

**Definition 10.** Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$  be holomorphic/analytic. Let  $z_0 \in U$  be such that  $f(z_0) = 0$ . We define the **order of vanishing of** f **at**  $z_0$  by  $m_f(z_0) := \min \{n \in \mathbb{N} : f^{(n)}(z_0) \neq 0\}$ .

**Remark 11.** Note that  $m_f(z_0) > 0$  since  $f(z_0) = f^{(0)}(z_0) = 0$ .

**Proposition 12.** Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$  be holomorphic/analytic. Let  $z_0 \in U$  be such that  $f(z_0) = 0$ .

Denote the power series expansion of f at  $z_0$  by  $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$ . Then  $m_f(z_0) = \min \{n \in \mathbb{N} : a_n \neq 0\}$ .

*Proof.* 
$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

**Proposition 13.** Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$  be holomorphic/analytic. Then  $z_0$  is a zero of order  $n \in \mathbb{N}_{>0}$  of f if and only if there exists  $g : U \to \mathbb{C}$  holomorphic such that  $f(z) = (z - z_0)^n g(z)$  and  $g(z_0) \neq 0$ .

### 4 Morera's theorem

**Theorem 14** (Morera's theorem). Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$  be continuous. If for every (full) triangle *T* lying in *U* we have  $\int_{\partial T} f = 0$  then *f* is holomorphic/analytic on *U*.

*Proof.* Let  $z_0 \in U$  and r > 0 be such that  $D_r(z_0) \subset U$ . We define  $F : D_r(z_0) \to \mathbb{C}$  by  $F(z) = \int_{[z_0, z]} f$ . Let  $z, h \in \mathbb{C}$  be such that  $z, z + h \in D_r(z_0)$  then, considering the triangle whose vertices are  $z_0, z$  and z + h, we obtain  $\int_{[z_0, z]} f + \int_{[z, z+h]} f + \int_{[z+h, z_0]} f = 0$ , i.e.  $F(z+h) - F(z) = \int_{[z, z+h]} f$ . z + h



<sup>\*</sup> And we will even weaken the assumptions later this term: it is enough to know the function on a set with a limit point.

Then

Hence *F* is holomorphic on  $D_r(z_0)$  and F' = f. Furthermore, *f* is holomorphic on  $D_r(z_0)$  (and hence at  $z_0$ ) as the complex derivative of a holomorphic function.

#### 5 Characterizations of holomorphicity/analyticity

**Theorem 15.** Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$ . Then the following are equivalent:

- 1. *f* is holomorphic/analytic/ $\mathbb{C}$ -differentiable, i.e.  $\forall z_0 \in U$ ,  $\lim_{h \to 0} \frac{f(z_0 + h) f(z_0)}{h}$  exists.
- 2.  $\tilde{f} : \tilde{U} \to \mathbb{R}^2$  is  $\mathbb{R}$ -differentiable and satisfies the Cauchy–Riemann equations on  $\tilde{U}$ .
- 3. *f* may be written as a power series  $f(z) = \sum_{n=0}^{+\infty} a_n (z z_0)^n$  on a neighborhood of every  $z_0 \in U$ .

4. *f* is continuous and for every (full) triangle *T* lying in *U* we have  $\int_{\partial T} f = 0$ .

- 5. *f* is continuous and for every simple closed curve  $\gamma$  on *U* whose inside is also included in *U*, we have  $\int_{U}^{U} f = 0$ .
- 6. *f* admits local primitives/antiderivatives: for every  $z_0 \in U$  there exists  $F : D_r(z_0) \cap U \to \mathbb{C}$  holomorphic for some r > 0 such that F' = f on  $D_r(z_0) \cap U$ .

**Remark 16.** When *U* is simply-connected, we may drop the assumption that the inside of the triangle/curve is included in *U* in (4) and (5). Furthermore we may also replace "local primitives/antiderivatives" by "a primitive/antiderivative" in (6) i.e. there exists  $F : U \to \mathbb{C}$  holomorphic s.t. F' = f.

#### 6 Liouville's theorem

**Definition 17.** We say that a function  $f : \mathbb{C} \to \mathbb{C}$  is **entire** if it is holomorphic (everywhere) on  $\mathbb{C}$ .

Theorem 18 (Liouville's theorem). A bounded entire function is constant.

**Lemma 19** (Cauchy's inequalities). Let  $U \subset \mathbb{C}$  be open and  $f : U \to \mathbb{C}$  be holomorphic. Let r > 0. If  $D_r(z_0) \subset U$  then

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|$$

Proof.

$$\left|\frac{f^{(n)}(z_0)}{n!}\right| = \left|\frac{1}{2i\pi} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} \mathrm{d}w\right| \le \frac{\max_{|z-z_0|=r} |f(z)|}{r^{n+1}} \frac{\mathrm{Length}\left(|z-z_0|=r\right)}{2\pi} = \frac{\max_{|z-z_0|=r} |f(z)|}{r^n}$$

For the first equality: we know that the *n*-th coefficient of the power expansion of *f* at  $z_0$  is  $a_n = \frac{f^{(n)}(z_0)}{n!}$ and by Theorem 1 that it is also equal to  $a_n = \frac{1}{2i\pi} \int_{|z-z_0|=r} \frac{f(w)}{(w-z_0)^{n+1}} dw.$ 

*Proof of Liouville's theorem.* Assume that there exists M > 0 such that  $\forall z \in \mathbb{C}, |f(z)| \leq M$ . Let  $z \in \mathbb{C}$ . For r > 0, by Cauchy's inequality with n = 1, we have  $|f'(z)| \leq \frac{M}{r} \xrightarrow{r \to +\infty} 0$ . Hence,  $\forall z \in \mathbb{C}$ , f'(z) = 0. Therefore *f* is constant on  $\mathbb{C}$ .

Theorem 20 (d'Alembert–Gauss theorem or the Fundamental Theorem of Algebra). A non-constant polynomial with coefficients in  $\mathbb{C}$  admits a root/zero in  $\mathbb{C}$ .

*Proof.* Assume that *P* is a complex polynomial with no root in  $\mathbb{C}$ . Then  $Q = \frac{1}{P}$  is a entire function and Q is bounded since  $\lim_{z \to +\infty} Q = 0$ . Therefore, by Liouville's theorem, *Q* is constant, and so is *P*.

#### Analytic logarithm 7

**Theorem 21.** Let  $U \subset \mathbb{C}$  be a simply connected domain and  $f : U \to \mathbb{C}$  a holomorphic/analytic function which *doesn't vanish, i.e.*  $\forall z \in U, f(z) \neq 0$ . Then there exists  $g : U \to \mathbb{C}$  holomorphic/analytic such that  $e^g = f$ .

*Proof.* Since *f* doesn't vanish,  $\frac{f'}{f}$  is holomorphic on *U*. Then, since *U* is simply connected,  $\frac{f'}{f}$  admits a complex primitive/antiderivative, i.e. there exists  $\tilde{g} : U \to \mathbb{C}$ holomorphic/analytic such that  $\tilde{g}' = \frac{f'}{f}$ . Then  $(fe^{-\tilde{g}})' = (f' - \tilde{g}'f)e^{-\tilde{g}} = 0$  and therefore  $fe^{-\tilde{g}} = K$  is constant since U is connected. Since  $K \neq 0$ , there exists  $w \in \mathbb{C}$  such that  $e^w = K$ . Then, for  $g = \tilde{g} + w$ , we have  $e^g = f$ .

**Remark 22.** Such a function g is not unique! For instance  $g + 2i\pi$  is another suitable function.

#### Multiplication of complex power series 8

We are going to prove the following theorem, but using results related to analytic functions.

**Theorem 23.** Let  $S_A(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$  and  $S_B(z) = \sum_{n=0}^{+\infty} b_n (z - z_0)^n$  be two power series of radii  $R_A$  and  $R_B$ . We define  $S_{AB}(z) \coloneqq \sum_{n=0}^{+\infty} \left( \sum_{k=0}^{n} a_k b_{n-k} \right) (z-z_0)^n$  and denote its radius of convergence by  $R_{AB}$ . Then

1.  $R_{AB} \ge \min(R_A, R_B)$ .

2. If 
$$|z - z_0| < \min(R_A, R_B)$$
 then  $S_{AB}(z) = S_A(z)S_B(z)$ ,  
i.e.  $\sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) (z - z_0)^n = \left(\sum_{n=0}^{+\infty} a_n (z - z_0)^n\right) \left(\sum_{n=0}^{+\infty} b_n (z - z_0)^n\right)$ .

*Proof.* We know that  $S_A$  and  $S_B$  are holomorphic on  $z \in \mathbb{C}$  such that  $|z - z_0| < \min(R_A, R_B)$ . Then  $f(z) = S_A(z)S_B(z)$  is holomorphic on  $|z - z_0| < \min(R_A, R_B)$ , so it can be written as a power series  $f(z) = \sum_{n=0}^{+\infty} c_n (z-z_0)^n \text{ on } |z-z_0| < \min(R_A, R_B) \text{ (particularly its radius of convergence is at least } \min(R_A, R_B)\text{)}.$ Then

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{n!} \sum_{k=0}^n \frac{n!}{(n-k)!k!} S_A^{(n-k)}(z_0) S_B^{(k)}(z_0)$$
 by Leibniz rule  
$$= \sum_{k=0}^n \frac{S_A^{(n-k)}(z_0)}{(n-k)!} \frac{S_B^{(k)}(z_0)}{k!}$$
$$= \sum_{k=0}^n a_{n-k} b_k = \sum_{k=0}^n a_k b_{n-k}$$