10 - Consequences of Cauchy's integral formula

Jean-Baptiste Campesato

October $16^{\text {th }}, 2020$ to October $21^{\text {st }}, 2020$

Contents

1 Holomorphic functions are analytic
2 Continuation of analytic functions 3
3 Order of a zero 4

4 Morera's theorem 4

5 Characterizations of holomorphicity/analyticity 5
6 Liouville's theorem 5

7 Analytic logarithm 6
8 Multiplication of complex power series $\quad 6$

1 Holomorphic functions are analytic

Theorem 1. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic/ \mathbb{C}-differentiable.
Then f can be locally expressed as a power series in a neighborhood of any point of U.
More precisely, if $\overline{D_{r}}\left(z_{0}\right) \subset U$ then

$$
\forall z \in D_{r}\left(z_{0}\right), f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}
$$

where

$$
a_{n}=\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w
$$

and $\gamma:[0,1] \rightarrow \mathbb{C}$ is defined by $\gamma(t)=z_{0}+r e^{2 i \pi t}$ and the radius of convergence of this power series is greater than or equal to r.

Proof. By Cauchy's integral formula

$$
\begin{array}{rlr}
f(z) & =\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{w-z} \mathrm{~d} w \\
& =\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{w-z_{0}} \frac{1}{1-\frac{z-z_{0}}{w-z_{0}}} \mathrm{~d} w \\
& =\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{w-z_{0}} \sum_{n=0}^{+\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \mathrm{~d} w \quad \text { since }\left|z-z_{0}\right|<\left|w-z_{0}\right|=r \\
& =\sum_{n=0}^{+\infty}\left(\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w\right)\left(z-z_{0}\right)^{n}
\end{array}
$$

We need to justify the last equality (i.e. the permutation $\int-\Sigma$).
Let $\varepsilon>0$. There exists N such that if $k \geq N$ then the remainder satisfies $\left|\sum_{n=k}^{+\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n}\right| \leq \varepsilon$, so that

$$
\begin{aligned}
\left|f(z)-\sum_{n=0}^{k}\left(\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w\right)\left(z-z_{0}\right)^{n}\right| & \leq\left|\frac{1}{2 i \pi} \int_{\gamma} \frac{f(w)}{w-z_{0}} \sum_{n=k}^{+\infty}\left(\frac{z-z_{0}}{w-z_{0}}\right)^{n} \mathrm{~d} w\right| \\
& \leq \frac{1}{2 \pi} \frac{\max _{0}|=r|}{r}|f| \\
& \leq \varepsilon \max _{\left|w-z_{0}\right|=r}|f|
\end{aligned}
$$

Corollary 2. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be a function.
Then f is holomorphic/analytic/ \mathbb{C}-differentiable if and only if f can be locally expressed as a power series in a neighborhood of any point of U.

Proof. \Rightarrow : by Theorem 1.
$\Leftarrow:$ if $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ in $D_{r}\left(z_{0}\right)$ then f is holomorphic on $D_{r}\left(z_{0}\right)$ from last week lecture.
Corollary 3. A holomorphic/analytic/C-differentiable function is infinitely many times \mathbb{C}-differentiable.
Remark 4. The previous results are false for \mathbb{R}-differentiability.

- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\left\{\begin{array}{cl}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{array}\right.$

Then f is \mathbb{R}-differentiable but $\operatorname{not} \mathcal{C}^{1}$.

- Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)=\left\{\begin{array}{cl}e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{array}\right.$

Then g is \mathbb{R}-differentiable, even C^{∞}, but not analytic at 0 ,
i.e. it can't be expressed as a power series around 0 :

Indeed $\forall n \in \mathbb{N}_{\geq 0}, g^{(n)}(0)=0$, so if g were equal to its Taylor series around 0 then it would be constant equal to 0 but g is non-zero in any neighborhood of 0 .

- By a theorem of Borel ${ }^{\star}$, given a real sequence $\left(a_{n}\right)_{n \in \mathbb{N}_{\geq 0^{\prime}}}$ there exists a C^{∞} function defined in a neighborhood of 0 in \mathbb{R} such that $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(0)=a_{n}$.
Otherwise stated, any real power series is the Taylor expansion of a C^{∞} function.
If we take $a_{n}=(n!)^{2}$ then we obtain a power series whose radius of convergence is $R=0$, hence a function with such a Taylor expansion can't be analytic.

2 Continuation of analytic functions

Theorem 5. Let $U \subset \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a holomorphic/analytic function.
If there exists $z_{0} \in U$ such that $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}\left(z_{0}\right)=0$ then $f \equiv 0$ on U.
Proof. Let $z \in U$. Since U is path connected, there exists a curve $\gamma:[a, b] \rightarrow \mathbb{C}$ with $\gamma(a)=z_{0}$ and $\gamma(b)=z$. Since U is open, for every $w \in \gamma([a, b])$ there exists $r_{w}>0$ such that $D_{r_{w}}(w) \subset U$. Since $\gamma([a, b])$ is compact we may assume that it is covered by finitely many of these disks $D_{r_{1}}\left(w_{1}\right), \ldots, D_{r_{k}}\left(w_{k}\right)$.

By Theorem 1, if there exists $v \in D_{r_{i}}\left(w_{i}\right)$ such that $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(v)=0$ then $f \equiv 0$ on $D_{r_{i}}\left(w_{i}\right)$.
Two consecutive disks intersect (since they cover γ), so we conclude using the previous remark disk by disk from z_{0} to z.

Remark 6. If you attend MAT327, another proof consists in showing that $\left\{z \in U: \forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(z)=0\right\}$ is open, closed, and non-empty, hence equals to U by connectedness.

Corollary 7. Let $U \subset \mathbb{C}$ be a domain and $f, g: U \rightarrow \mathbb{C}$ be holomorphic/analytic functions.
If f and g coincide in the neighborhood of a point,

$$
\text { i.e. } \exists z_{0} \in U, \exists r>0, \forall z \in D_{r}\left(z_{0}\right) \cap U, f(z)=g(z) \text {, }
$$

then they coincide on U,

$$
\text { i.e. } \forall z \in U, f(z)=g(z) \text {. }
$$

Proof. Then $\forall n \in \mathbb{N}_{\geq 0},(f-g)^{(n)}\left(z_{0}\right)=0$ (since $f-g \equiv 0$ on $\left.D_{r}\left(z_{0}\right) \cap U\right)$. Hence $f-g \equiv 0$ on U by the previous theorem.

Remark 8. The previous results are false for \mathbb{R}-differentiability. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{cl}
e^{-\frac{1}{x}} & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

then f is \mathbb{R}-differentiable (even \mathcal{C}^{∞}). And

- $\forall n \in \mathbb{N}_{\geq 0}, f^{(n)}(0)=0$ but $f \not \equiv 0$.
- $\forall x \in(-\infty, 0), f(x)=0$ but $f \not \equiv 0$.

[^0]A common way to construct an analytic function consists in defining it in a "small" domain and then to extend it to an analytic function with a bigger domain.
By the above result, this analytic continuation, if it exists, is unique.
That's a very powerful tool: knowing a function on a "small" domain determines the function everywhere else *. Holomorphic/analytic functions are very rigid!
§ The maximal domain may not be \mathbb{C} : for instance, if we try to extend Log, we won't be able to do a full turn around the origin since we won't recover the same values (it increases by $2 i \pi$).

Example 9. Let $f: D_{1}(0) \rightarrow \mathbb{C}$ be defined by $f(z)=\sum_{n=0}^{+\infty} z^{n}$.
Then f coincides with $\frac{1}{1-z}$ on $D_{1}(0)$.
Hence we may extend f with $F: \mathbb{C} \backslash\{1\} \rightarrow \mathbb{C}$ defined by $F(z)=\frac{1}{1-z}$.

3 Order of a zero

Definition 10. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic.
Let $z_{0} \in U$ be such that $f\left(z_{0}\right)=0$. We define the order of vanishing of f at z_{0} by $m_{f}\left(z_{0}\right):=\min \left\{n \in \mathbb{N}: f^{(n)}\left(z_{0}\right) \neq 0\right\}$
Remark 11. Note that $m_{f}\left(z_{0}\right)>0$ since $f\left(z_{0}\right)=f^{(0)}\left(z_{0}\right)=0$.
Proposition 12. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic. Let $z_{0} \in U$ be such that $f\left(z_{0}\right)=0$.
Denote the power series expansion of f at z_{0} by $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$. Then $m_{f}\left(z_{0}\right)=\min \left\{n \in \mathbb{N}: a_{n} \neq 0\right\}$.
Proof. $a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$
Proposition 13. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic/analytic.
Then z_{0} is a zero of order $n \in \mathbb{N}_{>0}$ of f if and only if there exists $g: U \rightarrow \mathbb{C}$ holomorphic such that $f(z)=\left(z-z_{0}\right)^{n} g(z)$ and $g\left(z_{0}\right) \neq 0$.

4 Morera's theorem

Theorem 14 (Morera's theorem). Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be continuous.
If for every (full) triangle T lying in U we have $\int_{\partial T} f=0$ then f is holomorphic/analytic on U.
Proof. Let $z_{0} \in U$ and $r>0$ be such that $D_{r}\left(z_{0}\right) \subset U$.
We define $F: D_{r}\left(z_{0}\right) \rightarrow \mathbb{C}$ by $F(z)=\int_{\left[z_{0}, z\right]} f$.
Let $z, h \in \mathbb{C}$ be such that $z, z+h \in D_{r}\left(z_{0}\right)$ then, considering the triangle whose vertices are z_{0}, z and $z+h$, we obtain $\int_{\left[z_{0}, z\right]} f+\int_{[z, z+h]} f+\int_{\left[z+h, z_{0}\right]} f=0$, i.e. $F(z+h)-F(z)=\int_{[z, z+h]} f$.

[^1]Then

$$
\begin{aligned}
\left|\frac{F(z+h)-F(z)}{h}-f(z)\right| & =\left|\frac{\left(\int_{[z, z+h]} f\right)-h f(z)}{h}\right| \\
& \left.=\frac{1}{|h|} \right\rvert\, \int_{[z, z+h]}(f(w)-f(z) \mathrm{d} w \mid \\
& \leq \frac{\sup _{w \in[z, z+h]}|f(w)-f(z)|}{|h|} \operatorname{Length}([z, z+h]) \\
& =\sup _{w \in[z, z+h]}|f(w)-f(z)| \underset{h \rightarrow 0}{ } 0
\end{aligned}
$$

Hence F is holomorphic on $D_{r}\left(z_{0}\right)$ and $F^{\prime}=f$. Furthermore, f is holomorphic on $D_{r}\left(z_{0}\right)$ (and hence at $\left.z_{0}\right)$ as the complex derivative of a holomorphic function.

5 Characterizations of holomorphicity/analyticity

Theorem 15. Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$. Then the following are equivalent:

1. f is holomorphic/analytic/ \mathbb{C}-differentiable, i.e. $\forall z_{0} \in U, \lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}$ exists.
2. $\tilde{f}: \tilde{U} \rightarrow \mathbb{R}^{2}$ is \mathbb{R}-differentiable and satisfies the Cauchy-Riemann equations on \tilde{U}.
3. f may be written as a power series $f(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ on a neighborhood of every $z_{0} \in U$.
4. f is continuous and for every (full) triangle T lying in U we have $\int_{\partial T} f=0$.
5. f is continuous and for every simple closed curve γ on U whose inside is also included in U, we have $\int_{\gamma} f=0$.
6. f admits local primitives/antiderivatives: for every $z_{0} \in U$ there exists $F: D_{r}\left(z_{0}\right) \cap U \rightarrow \mathbb{C}$ holomorphic for some $r>0$ such that $F^{\prime}=f$ on $D_{r}\left(z_{0}\right) \cap U$.

Remark 16. When U is simply-connected, we may drop the assumption that the inside of the triangle/curve is included in U in (4) and (5). Furthermore we may also replace "local primitives/antiderivatives" by "a primitive/antiderivative" in (6) i.e. there exists $F: U \rightarrow \mathbb{C}$ holomorphic s.t. $F^{\prime}=f$.

6 Liouville's theorem

Definition 17. We say that a function $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire if it is holomorphic (everywhere) on \mathbb{C}.
Theorem 18 (Liouville's theorem). A bounded entire function is constant.
Lemma 19 (Cauchy's inequalities). Let $U \subset \mathbb{C}$ be open and $f: U \rightarrow \mathbb{C}$ be holomorphic.
Let $r>0$. If $D_{r}\left(z_{0}\right) \subset U$ then

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{r^{n}} \max _{\left|z-z_{0}\right|=r}|f(z)|
$$

Proof.

$$
\left|\frac{f^{(n)}\left(z_{0}\right)}{n!}\right|=\left|\frac{1}{2 i \pi} \int_{\left|z-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w\right| \leq \frac{\max _{\left|z-z_{0}\right|=r}|f(z)|}{r^{n+1}} \frac{\text { Length }\left(\left|z-z_{0}\right|=r\right)}{2 \pi}=\frac{\max _{\left|z-z_{0}\right|=r}|f(z)|}{r^{n}}
$$

For the first equality: we know that the n-th coefficient of the power expansion of f at z_{0} is $a_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!}$ and by Theorem 1 that it is also equal to $a_{n}=\frac{1}{2 i \pi} \int_{\left|z-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{n+1}} \mathrm{~d} w$.

Proof of Liouville's theorem. Assume that there exists $M>0$ such that $\forall z \in \mathbb{C},|f(z)| \leq M$.
Let $z \in \mathbb{C}$. For $r>0$, by Cauchy's inequality with $n=1$, we have $\left|f^{\prime}(z)\right| \leq \frac{M}{r} \xrightarrow[r \rightarrow+\infty]{ } 0$.
Hence, $\forall z \in \mathbb{C}, f^{\prime}(z)=0$. Therefore f is constant on \mathbb{C}.
Theorem 20 (d'Alembert-Gauss theorem or the Fundamental Theorem of Algebra).
A non-constant polynomial with coefficients in \mathbb{C} admits a root/zero in \mathbb{C}.
Proof. Assume that P is a complex polynomial with no root in \mathbb{C}.
Then $Q=\frac{1}{P}$ is a entire function and Q is bounded since $\lim _{z \rightarrow+\infty} Q=0$.
Therefore, by Liouville's theorem, Q is constant, and so is P.

7 Analytic logarithm

Theorem 21. Let $U \subset \mathbb{C}$ be a simply connected domain and $f: U \rightarrow \mathbb{C}$ a holomorphic/analytic function which doesn't vanish, i.e. $\forall z \in U, f(z) \neq 0$.
Then there exists $g: U \rightarrow \mathbb{C}$ holomorphic/analytic such that $e^{g}=f$.
Proof. Since f doesn't vanish, $\frac{f^{\prime}}{f}$ is holomorphic on U.
Then, since U is simply connected, $\frac{f^{\prime}}{f}$ admits a complex primitive/antiderivative, i.e. there exists $\tilde{g}: U \rightarrow \mathbb{C}$ holomorphic/analytic such that $\tilde{g}^{\prime}=\frac{f^{\prime}}{f}$.
Then $\left(f e^{-\tilde{g}}\right)^{\prime}=\left(f^{\prime}-\tilde{g}^{\prime} f\right) e^{-\tilde{g}}=0$ and therefore $f e^{-\tilde{g}}=K$ is constant since U is connected.
Since $K \neq 0$, there exists $w \in \mathbb{C}$ such that $e^{w}=K$.
Then, for $g=\tilde{g}+w$, we have $e^{g}=f$.
Remark 22. Such a function g is not unique! For instance $g+2 i \pi$ is another suitable function.

8 Multiplication of complex power series

We are going to prove the following theorem, but using results related to analytic functions.
Theorem 23. Let $S_{A}(z)=\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}$ and $S_{B}(z)=\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}$ be two power series of radii R_{A} and R_{B}.
We define $S_{A B}(z):=\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n}$ and denote its radius of convergence by $R_{A B}$.
Then

1. $R_{A B} \geq \min \left(R_{A}, R_{B}\right)$.
2. If $\left|z-z_{0}\right|<\min \left(R_{A}, R_{B}\right)$ then $S_{A B}(z)=S_{A}(z) S_{B}(z)$,
i.e. $\sum_{n=0}^{+\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right)\left(z-z_{0}\right)^{n}=\left(\sum_{n=0}^{+\infty} a_{n}\left(z-z_{0}\right)^{n}\right)\left(\sum_{n=0}^{+\infty} b_{n}\left(z-z_{0}\right)^{n}\right)$.

Proof. We know that S_{A} and S_{B} are holomorphic on $z \in \mathbb{C}$ such that $\left|z-z_{0}\right|<\min \left(R_{A}, R_{B}\right)$.
Then $f(z)=S_{A}(z) S_{B}(z)$ is holomorphic on $\left|z-z_{0}\right|<\min \left(R_{A}, R_{B}\right)$, so it can be written as a power series
$f(z)=\sum_{n=0}^{+\infty} c_{n}\left(z-z_{0}\right)^{n}$ on $\left|z-z_{0}\right|<\min \left(R_{A}, R_{B}\right)$ (particularly its radius of convergence is at least $\left.\min \left(R_{A}, R_{B}\right)\right)$. Then

$$
\begin{aligned}
c_{n}=\frac{f^{(n)}\left(z_{0}\right)}{n!} & =\frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} S_{A}^{(n-k)}\left(z_{0}\right) S_{B}^{(k)}\left(z_{0}\right) \text { by Leibniz rule } \\
& =\sum_{k=0}^{n} \frac{S_{A}^{(n-k)}\left(z_{0}\right)}{(n-k)!} \frac{S_{B}^{(k)}\left(z_{0}\right)}{k!} \\
& =\sum_{k=0}^{n} a_{n-k} b_{k}=\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

[^0]: * It generalizes to multivariable functions.

[^1]: * And we will even weaken the assumptions later this term: it is enough to know the function on a set with a limit point.

