MAT334H1-F - LEC0101
 Complex Variables
 http://uoft.me/MAT334-LEC0101

Line integrals

- A (complex) curve is a continuous function $\gamma:[a, b] \rightarrow \mathbb{C}$ where $a<b$. We say that $\gamma(a)$ is the start-point of γ and that $\gamma(b)$ is its end-point.
Careful: it is quite common to designate by "curve" either the function γ or its range $\gamma([a, b])$.
- We say that a curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is simple if it doesn't admit double points (i.e. self-intersections), except maybe $\gamma(a)=\gamma(b)$, formally

$$
\left(a \leq t_{1}<t_{2} \leq b \text { and } \gamma\left(t_{1}\right)=\gamma\left(t_{2}\right)\right) \Longrightarrow\left(t_{1}=a \text { and } t_{2}=b\right)
$$

- We say that a curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is closed if $\gamma(a)=\gamma(b)$.

Closed, simple.

Not closed, not simple.

Curves - 3

Jordan curve theorem - /̧ordã/

If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a simple closed curve then $\mathbb{C} \backslash \gamma([a, b])$ consists of two disjoints open connected sets, one bounded (the inside) and one unbounded (the outside).

Outside

This result seems obvious, nonetheless it is quite difficult to prove (note that we only assume that γ is continuous, so the curve can be quite nasty, e.g. Koch snowflake).

Curves - 4

- We say that a curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is smooth if γ is \mathscr{C}^{1}.

Here γ is a function of a real variable, so by \mathscr{C}^{1}, I mean that $\mathfrak{R}(\gamma)$ and $\mathfrak{F}(\gamma)$ are \mathscr{C}^{1} as real functions.

- We say that a curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is piecewise-smooth if there exist $t_{0}, \ldots, t_{n} \in[a, b]$ such that $a=t_{0}<t_{1}<\cdots<t_{n}=b$ and γ is \mathscr{C}^{1} on $\left(t_{k}, t_{k+1}\right)$ for $k=0, \ldots, n-1$.

Figure: A piecewise-smooth curve.

Curves - 5

Definition: concatenation/sum

Given two curves $\gamma_{1}:\left[a_{1}, b_{1}\right] \rightarrow \mathbb{C}$ and $\gamma_{2}:\left[a_{2}, b_{2}\right] \rightarrow \mathbb{C}$ such that $\gamma_{1}\left(b_{1}\right)=\gamma_{2}\left(a_{2}\right)$, we define the concatenation (or sum) of γ_{1} and γ_{2} by $\left(\gamma_{1}+\gamma_{2}\right):\left[a_{1}, b_{1}+b_{2}-a_{2}\right] \rightarrow \mathbb{C}$ where

$$
\left(\gamma_{1}+\gamma_{2}\right)(t):=\left\{\begin{array}{cl}
\gamma_{1}(t) & \text { if } t \in\left[a_{1}, b_{1}\right] \\
\gamma_{2}\left(t+a_{2}-b_{1}\right) & \text { if } t \in\left[b_{1}, b_{1}+b_{2}-a_{2}\right]
\end{array}\right.
$$

It is obviously a curve, i.e. it is continuous.

Curves - 6

Proposition

If γ_{1} and γ_{2} are piecewise-smooth then so is $\left(\gamma_{1}+\gamma_{2}\right)$.

CAREFUL

It is possible for γ_{1} and γ_{2} to be smooth but for $\left(\gamma_{1}+\gamma_{2}\right)$ not to be smooth, but only piecewise-smooth, since it may not be smooth at the gluing point.

Curves - 7

Curves are naturally oriented by the usual orientation of $[a, b]: \gamma$ goes from $\gamma(a)$ to $\gamma(b)$.

Definition: reversed curve

For a curve $\gamma:[a, b] \rightarrow \mathbb{C}$ we define $(-\gamma):[a, b] \rightarrow \mathbb{C}$ by $(-\gamma)(t):=\gamma(a+b-t)$.
It is the same curve but with reversed orientation: it is traversed from $\gamma(b)$ to $\gamma(a)$.

Curves - 8

Definition: positive orientation (closed simple curves)

We say that a simple closed curve γ is positively oriented if γ keeps its inside on its left.

Figure: A positively oriented simple closed curve

Figure: A simple closed curve which is NOT positively oriented

Curves - 9

Examples

- $\gamma:[0,1] \rightarrow \mathbb{C}, \gamma(t)=(1-t) z_{0}+t z_{1}$.

- $\gamma:[0,1] \rightarrow \mathbb{C}, \gamma(t)=e^{i \pi t}$.

Curves - 10

Example

Pick $\varepsilon \in(0,1)$ and set $\gamma=\gamma_{1}+\gamma_{2}+\gamma_{3}+\gamma_{4}$ where

- $\gamma_{1}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{1}(t)=e^{i t}$.
- $\gamma_{2}:[-1,-\varepsilon] \rightarrow \mathbb{C}, \gamma_{2}(t)=t$.
- $\gamma_{3}:[0, \pi] \rightarrow \mathbb{C}, \gamma_{3}(t)=\varepsilon e^{i(\pi-t)}$.
- $\gamma_{4}:[\varepsilon, 1] \rightarrow \mathbb{C}, \gamma_{4}(t)=t$.

Integrals

Definition

For $f:[a, b] \rightarrow \mathbb{C}$ continuous we set

$$
\int_{a}^{b} f(t) \mathrm{d} t:=\int_{a}^{b} \mathfrak{R}(f(t)) \mathrm{d} t+i \int_{a}^{b} \mathfrak{F}(f(t)) \mathrm{d} t
$$

Propositions

For $f:[a, b] \rightarrow \mathbb{C}$ continuous,

$$
\begin{aligned}
& \mathfrak{R}\left(\int_{a}^{b} f(t) \mathrm{d} t\right)=\int_{a}^{b} \mathfrak{R}(f(t)) \mathrm{d} t \\
& \mathfrak{F}\left(\int_{a}^{b} f(t) \mathrm{d} t\right)=\int_{a}^{b} \mathfrak{F}(f(t)) \mathrm{d} t
\end{aligned}
$$

Line integrals - 1

Definition: line integral

Let $S \subset \mathbb{C}$ and $f: S \rightarrow \mathbb{C}$ be continuous. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise-smooth curve such that $\gamma([a, b]) \subset S$. Pick a subdivision $a=t_{0}<t_{1}<\cdots<t_{n}=b$ of $[a, b]$ such that γ is C^{1} on $\left(t_{k}, t_{k+1}\right)$ then the line integral of f along γ is defined by

$$
\int_{\gamma} f(z) \mathrm{d} z:=\sum_{k=0}^{k-1} \int_{t_{k}}^{t_{k+1}} f(\gamma(t)) \gamma^{\prime}(t) \mathrm{d} t
$$

It doesn't depend on the choice of the subdivision: any subdivision as above gives the same value for $\int_{\gamma} f$.

If γ is smooth, we can simply write

$$
\int_{\gamma} f(z) \mathrm{d} z=\int_{a}^{b} f(\gamma(t)) \gamma^{\prime}(t) \mathrm{d} t
$$

Line integrals - 2

Proposition

$$
\begin{aligned}
& \text { - } \int_{-r} f=-\int_{r} f \\
& \text { - } \int_{\gamma_{1}+\gamma_{2}} f=\int_{\gamma_{1}} f+\int_{\gamma_{2}} f \\
& \text { - } \int_{r} \alpha f+\beta g=\alpha \int_{r} f+\beta \int_{r} g, \quad \alpha, \beta \in \mathbb{C}
\end{aligned}
$$

Homework

Prove the above properties.

Line integrals - 3

Theorem: reparametrization

Let $\gamma_{1}:\left[a_{1}, b_{1}\right] \rightarrow \mathbb{C}$ and $\gamma_{2}:\left[a_{2}, b_{2}\right] \rightarrow \mathbb{C}$ be two curves.
Assume that $\gamma_{1}=\gamma_{2} \circ \varphi$ where $\varphi:\left[a_{1}, b_{1}\right] \rightarrow\left[a_{2}, b_{2}\right]$ is a \mathscr{C}^{1}-diffeomorphism, then

- If φ is increasing then $\int_{\gamma_{1}} f=\int_{\gamma_{2}} f$, and we say that φ preserves the orientation.
- If φ is decreasing then $\int_{r_{1}} f=-\int_{\gamma_{2}} f$, and we say that φ reverses the orientation.

Line integrals - 4

Definition: length (or arclength) of a curve

The (arc)length of a piecewise smooth ${ }^{1}$ curve $\gamma:[a, b] \rightarrow \mathbb{C}$ is length $(\gamma):=\sum_{k=0}^{n-1} \int_{t_{k}}^{t_{k+1}}\left|\gamma^{\prime}(t)\right| \mathrm{d} t$.

Proposition

If $\gamma:[a, b] \rightarrow \mathbb{C}$ is a smooth curve then length $(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| \mathrm{d} t$.

Proposition

Let $S \subset \mathbb{C}, f: S \rightarrow \mathbb{C}$ continuous. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a piecewise-smooth curve such that $\gamma([a, b]) \subset S$ then

$$
\left|\int_{\gamma} f(z) \mathrm{d} z\right| \leq\left(\max _{\gamma([a, b])}|f|\right) \text { length }(\gamma)
$$

The max is achieved since $\gamma([a, b])$ is compact and $|f|$ continuous.

[^0]
The real Green's theorem (from multivariable calculus) - 1

Green's theorem (real version)

Let $S \subset \mathbb{R}^{2}$ be a regular region with a piecewise smooth boundary ∂S which is assumed to be positively oriented.
Let $\mathbf{F}: U \rightarrow \mathbb{R}^{2}$ be a \mathscr{C}^{1}-vector field where $U \subset \mathbb{R}^{2}$ is open and $S \subset U$.
Then

$$
\int_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{x}=\iint_{S}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

or using the other notation for the line integral of a vector field

$$
\int_{\partial S} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{S}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

I suggest you to review the details of Green's theorem from your multivariable calculus course. See for instance:
http://www.math.toronto.edu/campesat/ens/1920/0310-notes.pdf

The real Green's theorem (from multivariable calculus) - 2

- S regular region means that S is bounded and that $\bar{S}=S$, or equivalently that S is bounded and that $\forall u \in \partial S, \forall r>0, D_{r}(u) \cap \stackrel{\circ}{S} \neq \varnothing$.
- ∂S positively oriented means that each piece of ∂S is parametrized by a closed simple curve such that the interior S is on its left.

- If $\partial S=\gamma_{1} \cup \gamma_{2} \cup \cdots \cup \gamma_{\ell}$ then $\int_{\partial S}=\int_{\gamma_{1}}+\cdots+\int_{\gamma_{\ell}}$.

The complex Green's theorem - version 1

Green's theorem (complex version) - 1

Let $S \subset \mathbb{C}$ be a regular region with a piecewise smooth boundary ∂S which is assumed to be positively oriented.
Let $U \subset \mathbb{C}$ open such that $S \subset U$.
Let $f: U \rightarrow \mathbb{C}$ be such that $(x, y) \mapsto(\Re(f), \mathfrak{F}(f))$ is \mathscr{C}^{1} in the real sense (i.e. as a real multivariable function).
Then,

$$
\int_{\partial S} f(z) \mathrm{d} z=i \iint_{S}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

where

$$
\frac{\partial f}{\partial x}:=\frac{\partial \Re(f)}{\partial x}+i \frac{\partial \Im(f)}{\partial x}
$$

and

$$
\frac{\partial f}{\partial y}:=\frac{\partial \Re(f)}{\partial y}+i \frac{\partial \Im(f)}{\partial y}
$$

Homework: check it!

The complex Green's theorem - version 2

Green's theorem (complex version) - 2

Let $S \subset \mathbb{C}$ be a regular region with a piecewise smooth boundary ∂S which is assumed to be positively oriented.
Let $U \subset \mathbb{C}$ open such that $S \subset U$.
Let $f: U \rightarrow \mathbb{C}$ be such that $(x, y) \mapsto(\Re(f), \mathfrak{J}(f))$ is \mathscr{C}^{1} in the real sense (i.e. as a real multivariable function).
Then,

$$
\int_{\partial S} f(z) \mathrm{d} z=2 i \iint_{S} \frac{\partial f}{\partial \bar{z}} \mathrm{~d} x \mathrm{~d} y
$$

where

$$
\frac{\partial f}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}+i \frac{\partial f}{\partial y}\right)
$$

and

$$
\frac{\partial f}{\partial z}:=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)
$$

Extra: Koch snowflake, a continuous nowhere differentiable simple closed curve

$$
\Delta
$$

$$
\sum
$$

[^0]: ${ }^{1}$ A continuous curve may not be rectifiable, e.g. Koch snowflake.

