MAT334H1-F-LEC0101 *Complex Variables* http://uoft.me/MAT334-LEC0101

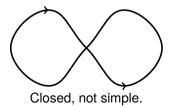
September 28th, 2020 and September 30th, 2020

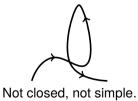
A (complex) curve is a continuous function γ : [a, b] → C where a < b. We say that γ(a) is the start-point of γ and that γ(b) is its end-point.
 Careful: it is quite common to designate by "curve" either the function γ or its range γ([a, b]).

We say that a curve γ : [a, b] → C is simple if it doesn't admit double points (i.e. self-intersections), except maybe γ(a) = γ(b), formally

$$\left(a \le t_1 < t_2 \le b \text{ and } \gamma(t_1) = \gamma(t_2)\right) \implies \left(t_1 = a \text{ and } t_2 = b\right)$$

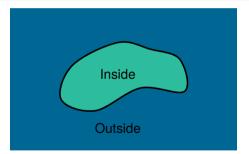
• We say that a curve $\gamma : [a, b] \to \mathbb{C}$ is **closed** if $\gamma(a) = \gamma(b)$.





Jordan curve theorem - /ʒɔrdã/

If $\gamma : [a, b] \to \mathbb{C}$ is a simple closed curve then $\mathbb{C} \setminus \gamma ([a, b])$ consists of two disjoints open connected sets, one bounded (*the inside*) and one unbounded (*the outside*).



This result seems *obvious*, nonetheless it is quite difficult to prove (note that we only assume that γ is continuous, so the curve can be quite nasty, e.g. Koch snowflake).

• We say that a curve $\gamma : [a, b] \to \mathbb{C}$ is **smooth** if γ is \mathscr{C}^1 .

Here γ is a function of a real variable, so by \mathscr{C}^1 , I mean that $\Re(\gamma)$ and $\Im(\gamma)$ are \mathscr{C}^1 as real functions.

• We say that a curve $\gamma : [a, b] \to \mathbb{C}$ is **piecewise-smooth** if there exist $t_0, \dots, t_n \in [a, b]$ such that $a = t_0 < t_1 < \dots < t_n = b$ and γ is \mathscr{C}^1 on (t_k, t_{k+1}) for $k = 0, \dots, n-1$.

Figure: A piecewise-smooth curve.

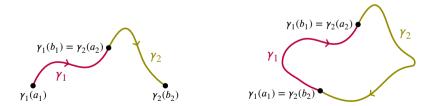
Curves - 5

Definition: concatenation/sum

Given two curves $\gamma_1 : [a_1, b_1] \to \mathbb{C}$ and $\gamma_2 : [a_2, b_2] \to \mathbb{C}$ such that $\gamma_1(b_1) = \gamma_2(a_2)$, we define the **concatenation** (or **sum**) of γ_1 and γ_2 by $(\gamma_1 + \gamma_2) : [a_1, b_1 + b_2 - a_2] \to \mathbb{C}$ where

$$(\gamma_1 + \gamma_2)(t) := \begin{cases} \gamma_1(t) & \text{if } t \in [a_1, b_1] \\ \gamma_2(t + a_2 - b_1) & \text{if } t \in [b_1, b_1 + b_2 - a_2] \end{cases}$$

It is obviously a curve, i.e. it is continuous.

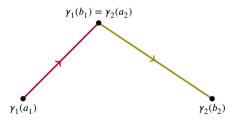


Proposition

If γ_1 and γ_2 are piecewise-smooth then so is $(\gamma_1 + \gamma_2)$.

CAREFUL

It is possible for γ_1 and γ_2 to be smooth but for $(\gamma_1 + \gamma_2)$ not to be smooth, but only piecewise-smooth, since it may not be smooth at the *gluing point*.



Curves are naturally oriented by the usual orientation of [a, b]: γ goes from $\gamma(a)$ to $\gamma(b)$.

Definition: reversed curve

For a curve γ : $[a, b] \to \mathbb{C}$ we define $(-\gamma)$: $[a, b] \to \mathbb{C}$ by $(-\gamma)(t) \coloneqq \gamma(a + b - t)$.

It is the same curve but with reversed orientation: it is traversed from $\gamma(b)$ to $\gamma(a)$.

Definition: positive orientation (closed simple curves)

We say that a simple closed curve γ is **positively oriented** if γ keeps its inside on its left.

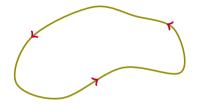
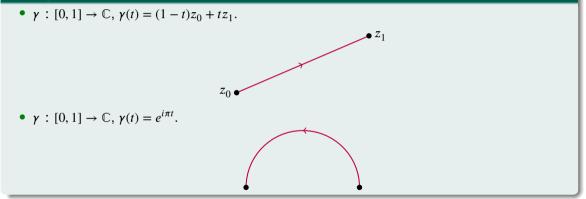




Figure: A positively oriented simple closed curve

Figure: A simple closed curve which is NOT positively oriented

Examples

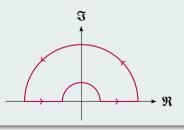


Curves – 10

Example

Pick $\varepsilon \in (0, 1)$ and set $\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ where

- γ_1 : $[0,\pi] \to \mathbb{C}, \gamma_1(t) = e^{it}$.
- γ_2 : $[-1, -\varepsilon] \to \mathbb{C}, \gamma_2(t) = t$.
- γ_3 : $[0,\pi] \to \mathbb{C}, \gamma_3(t) = \varepsilon e^{i(\pi-t)}.$
- γ_4 : $[\varepsilon, 1] \to \mathbb{C}, \gamma_4(t) = t$.



Integrals

Definition

For $f : [a, b] \to \mathbb{C}$ continuous we set

$$\int_{a}^{b} f(t) \mathrm{d}t \coloneqq \int_{a}^{b} \Re(f(t)) \mathrm{d}t + i \int_{a}^{b} \Im(f(t)) \mathrm{d}t$$

Propositions

For $f : [a, b] \to \mathbb{C}$ continuous,

$$\Re\left(\int_{a}^{b} f(t)dt\right) = \int_{a}^{b} \Re(f(t))dt$$
$$\Im\left(\int_{a}^{b} f(t)dt\right) = \int_{a}^{b} \Im(f(t))dt$$

Line integrals – 1

Definition: line integral

Let $S \subset \mathbb{C}$ and $f : S \to \mathbb{C}$ be continuous. Let $\gamma : [a, b] \to \mathbb{C}$ be a piecewise-smooth curve such that $\gamma([a, b]) \subset S$. Pick a subdivision $a = t_0 < t_1 < \cdots < t_n = b$ of [a, b] such that γ is C^1 on (t_k, t_{k+1}) then the **line integral of** f **along** γ is defined by

$$\int_{\gamma} f(z) \mathrm{d}z \coloneqq \sum_{k=0}^{k-1} \int_{t_k}^{t_{k+1}} f(\gamma(t)) \gamma'(t) \mathrm{d}t$$

It doesn't depend on the choice of the subdivision: any subdivision as above gives the same value for $\int_{Y} f$.

If γ is smooth, we can simply write

$$\int_{\gamma} f(z) \mathrm{d}z = \int_{a}^{b} f(\gamma(t)) \gamma'(t) \mathrm{d}t$$

Line integrals – 2

Proposition

•
$$\int_{-\gamma} f = -\int_{\gamma} f$$

•
$$\int_{\gamma_1 + \gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$$

•
$$\int_{\gamma} \alpha f + \beta g = \alpha \int_{\gamma} f + \beta \int_{\gamma} g, \quad \alpha, \beta \in \mathbb{C}$$

Homework

Prove the above properties.

Theorem: reparametrization

Let $\gamma_1 : [a_1, b_1] \to \mathbb{C}$ and $\gamma_2 : [a_2, b_2] \to \mathbb{C}$ be two curves. Assume that $\gamma_1 = \gamma_2 \circ \varphi$ where $\varphi : [a_1, b_1] \to [a_2, b_2]$ is a \mathscr{C}^1 -diffeomorphism, then

Line integrals – 4

Definition: length (or arclength) of a curve

The (arc)length of a piecewise smooth¹ curve $\gamma : [a, b] \to \mathbb{C}$ is length $(\gamma) \coloneqq \sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} |\gamma'(t)| dt$.

Proposition

f
$$\gamma$$
 : $[a, b] \to \mathbb{C}$ is a smooth curve then length $(\gamma) = \int_a^b |\gamma'(t)| dt$.

Proposition

Let $S \subset \mathbb{C}$, $f : S \to \mathbb{C}$ continuous. Let $\gamma : [a, b] \to \mathbb{C}$ be a piecewise-smooth curve such that $\gamma([a, b]) \subset S$ then

$$\left| \int_{\gamma} f(z) dz \right| \le \left(\max_{\gamma([a,b])} |f| \right) \text{length}(\gamma)$$

The max is achieved since $\gamma([a, b])$ is compact and |f| continuous.

¹A continuous curve may not be rectifiable, e.g. Koch snowflake.

Green's theorem (real version)

Let $S \subset \mathbb{R}^2$ be a regular region with a piecewise smooth boundary ∂S which is assumed to be positively oriented.

Let $\mathbf{F} : U \to \mathbb{R}^2$ be a \mathscr{C}^1 -vector field where $U \subset \mathbb{R}^2$ is open and $S \subset U$. Then

$$\int_{\partial S} \mathbf{F} \cdot d\mathbf{x} = \iint_{S} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy$$

or using the other notation for the line integral of a vector field

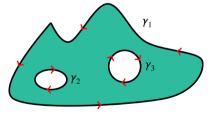
$$\int_{\partial S} P dx + Q dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

I suggest you to review the details of Green's theorem from your multivariable calculus course. See for instance:

http://www.math.toronto.edu/campesat/ens/1920/0310-notes.pdf

The real Green's theorem (from multivariable calculus) – 2

- *S* regular region means that *S* is bounded and that *S* = *S*, or equivalently that *S* is bounded and that ∀*u* ∈ ∂*S*, ∀*r* > 0, *D_r(u)* ∩ *S* ≠ Ø.
- *∂S* positively oriented means that each piece of *∂S* is parametrized by a closed simple curve such that the interior *Ŝ* is on its left.



• If
$$\partial S = \gamma_1 \cup \gamma_2 \cup \cdots \cup \gamma_\ell$$
 then $\int_{\partial S} = \int_{\gamma_1} + \cdots + \int_{\gamma_\ell}$.

The complex Green's theorem – version 1

Green's theorem (complex version) - 1

Let $S \subset \mathbb{C}$ be a regular region with a piecewise smooth boundary ∂S which is assumed to be positively oriented.

Let $U \subset \mathbb{C}$ open such that $S \subset U$.

Let $f : U \to \mathbb{C}$ be such that $(x, y) \mapsto (\Re(f), \Im(f))$ is \mathscr{C}^1 in the real sense (i.e. as a real multivariable function).

Then,

$$\int_{\partial S} f(z) dz = i \iint_{S} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) dx dy$$

where

and

$$\frac{\partial f}{\partial x} \coloneqq \frac{\partial \Re(f)}{\partial x} + i \frac{\partial \Im(f)}{\partial x}$$

$$\frac{\partial f}{\partial y} \coloneqq \frac{\partial \Re(f)}{\partial y} + i \frac{\partial \Im(f)}{\partial y}$$

Homework: check it!

Green's theorem (complex version) - 2

Let $S \subset \mathbb{C}$ be a regular region with a piecewise smooth boundary ∂S which is assumed to be positively oriented.

Let $U \subset \mathbb{C}$ open such that $S \subset U$.

Let $f : U \to \mathbb{C}$ be such that $(x, y) \mapsto (\mathfrak{R}(f), \mathfrak{I}(f))$ is \mathscr{C}^1 in the real sense (i.e. as a real multivariable function).

Then,

$$\int_{\partial S} f(z) dz = 2i \iint_{S} \frac{\partial f}{\partial \overline{z}} dx dy$$

where

$$\frac{\partial f}{\partial \overline{z}} \coloneqq \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$$

 $\frac{\partial f}{\partial z} \coloneqq \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$

and

Extra: Koch snowflake, a continuous nowhere differentiable simple closed curve

