MAT334H1-F - LEC0101

Complex Variables

UsUAL COMPLEX FUNCTIONS - 2

September $25^{\text {th }}, 2020$

Complex power functions - 1

Similarly to the real case, for $w \in \mathbb{C}$ and $z \in \mathbb{C} \backslash\{0\}$ we want to set $z^{w}:=e^{w \log z}$.
But then it is only defined up to a factor $e^{2 i n \pi w}, n \in \mathbb{Z}$, since \log is well defined modulo $2 i \pi$.

$$
z^{w}:=e^{w \log z}=\left\{e^{w \log z} e^{2 i n \pi w}: n \in \mathbb{Z}\right\}
$$

Example

For instance $\sqrt{z}=z^{\frac{1}{2}}=\left\{e^{\frac{1}{2} \log z} e^{i n \pi}: n \in \mathbb{Z}\right\}=\left\{ \pm e^{\frac{1}{2} \log z}\right\}$. Indeed, the square root is well-defined only up to a sign.

However there is no indeterminacy when $w \in \mathbb{Z}$ since $e^{2 i \pi n w}=1$ when $n w \in \mathbb{Z}$.

The power functions - 2

Beware

The identity $\left(z_{1} z_{2}\right)^{w}=z_{1}^{w} z_{2}^{w}$ is only true modulo a factor $e^{2 i \pi w n}, n \in \mathbb{Z}$ (i.e. as sets/multivalued functions).

The power functions - 2

Beware

The identity $\left(z_{1} z_{2}\right)^{w}=z_{1}^{w} z_{2}^{w}$ is only true modulo a factor $e^{2 i \pi w n}, n \in \mathbb{Z}$ (i.e. as sets/multivalued functions).

And...As if that wasn't enough...

The power functions - 2

Beware

The identity $\left(z_{1} z_{2}\right)^{w}=z_{1}^{w} z_{2}^{w}$ is only true modulo a factor $e^{2 i \pi w n}, n \in \mathbb{Z}$ (i.e. as sets/multivalued functions).

And...As if that wasn't enough...

BEWARE

The identity $z^{w_{1}+w_{2}}=z^{w_{1}} z^{w_{2}}$ is generally false even as multivalued functions:

- $z^{w_{1}+w_{2}}$ is well-defined up to a factor $e^{2 i \pi n\left(w_{1}+w_{2}\right)}, n \in \mathbb{Z}$.
- $z^{w_{1}} z^{w_{2}}$ is well-defined up to a factor $e^{2 i \pi\left(n w_{1}+k w_{2}\right)}, n, k \in \mathbb{Z}$.

So $z^{w_{1}+w_{2}} \subset z^{w_{1}} z^{w_{2}}$ (as multivalued functions).

The complex cosine and sine - 1

Definitions

We define cos: $\mathbb{C} \rightarrow \mathbb{C}$ and $\sin : \mathbb{C} \rightarrow \mathbb{C}$ respectively by

$$
\cos (z):=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin (z):=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Proposition

- $\forall z \in \mathbb{C}, \cos ^{2} z+\sin ^{2} z=1$
- $\forall z, w \in \mathbb{C}, \sin (z+w)=\sin z \cos w+\cos z \sin w$
- $\forall z, w \in \mathbb{C}, \cos (z+w)=\cos z \cos w-\sin z \sin w$
- $\forall z \in \mathbb{C}, \sin (-z)=-\sin (z)$
- $\forall z \in \mathbb{C}, \cos (-z)=\cos (z)$
- $\forall z \in \mathbb{C}, \sin (z+2 \pi)=\sin (z)$
- $\forall z \in \mathbb{C}, \cos (z+2 \pi)=\cos (z)$

Homework: prove some of them.

The complex cosine and sine - 2

Proposition

The functions cos: $\mathbb{C} \rightarrow \mathbb{C}$ and $\sin : \mathbb{C} \rightarrow \mathbb{C}$ are surjective.

Proof.

Let $w \in \mathbb{C}$, we look for $z \in \mathbb{C}$ such that $\cos (z)=w$, or equivalently $e^{i z}+e^{-i z}=2 w$.
Set $u=e^{i z}$ then the above equation becomes $u+u^{-1}=2 w$ or equivalently $u^{2}-2 w u+1=0$.
Take such a u (which is non-zero) then, since the range of \exp is $\mathbb{C} \backslash\{0\}$, there exists $z \in \mathbb{C}$ such that $u=e^{i z}$.

The complex cosine and sine - 2

Proposition

The functions cos: $\mathbb{C} \rightarrow \mathbb{C}$ and $\sin : \mathbb{C} \rightarrow \mathbb{C}$ are surjective.

Proof.

Let $w \in \mathbb{C}$, we look for $z \in \mathbb{C}$ such that $\cos (z)=w$, or equivalently $e^{i z}+e^{-i z}=2 w$.
Set $u=e^{i z}$ then the above equation becomes $u+u^{-1}=2 w$ or equivalently $u^{2}-2 w u+1=0$.
Take such a u (which is non-zero) then, since the range of \exp is $\mathbb{C} \backslash\{0\}$, there exists $z \in \mathbb{C}$ such that $u=e^{i z}$.

Homework

What is wrong with this proof?
Let $z \in \mathbb{C}$, then $|\cos (z)|=\left|\frac{e^{i z}+e^{-i z}}{2}\right| \leq\left|\frac{e^{i z}}{2}\right|+\left|\frac{e^{-i z}}{2}\right|=\frac{\left|e^{i z}\right|}{2}+\frac{\left|e^{-i z}\right|}{2}=\frac{1}{2}+\frac{1}{2}=1$.
Hence $\forall z \in \mathbb{C},|\cos z| \leq 1$.
This property is obviously false according to the above proposition.

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by \cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by \cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by \cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by \cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 3

The horizontal line $\mathfrak{J}(z)=c$ is mapped by \cos to $\left\{\cos (x)\left(\frac{e^{c}+e^{-c}}{2}\right)+i \sin (x)\left(\frac{e^{-c}-e^{c}}{2}\right): x \in \mathbb{R}\right\}$ which is an ellipse (possibly flat for $c=0$).

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4

The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 4
The vertical line $\mathfrak{R}(z)=c$ is mapped by \cos to $\left\{\cos (c)\left(\frac{e^{y}+e^{-y}}{2}\right)+i \sin (c)\left(\frac{e^{-y}-e^{y}}{2}\right): y \in \mathbb{R}\right\}$ which is a branch of hyperbola.

The complex cosine and sine - 5

Jean-Baptiste Campesato

The complex cosine and sine - 6

Proposition

- $\cos z=0 \Leftrightarrow \exists n \in \mathbb{Z}, z=\frac{\pi}{2}+\pi n$
- $\sin z=0 \Leftrightarrow \exists n \in \mathbb{Z}, z=\pi n$

Proof.

$$
\begin{aligned}
\cos z=0 & \Leftrightarrow e^{i z}+e^{-i z}=0 & \sin z=0 & \Leftrightarrow e^{i z}-e^{-i z}=0 \\
& \Leftrightarrow e^{2 i z}=-1 & & \Leftrightarrow e^{2 i z}=1 \\
& \Leftrightarrow \exists n \in \mathbb{Z}, 2 i z=i \pi+2 i \pi n & & \Leftrightarrow \exists n \in \mathbb{Z}, 2 i z=2 i \pi n \\
& \Leftrightarrow \exists n \in \mathbb{Z}, z=\frac{\pi}{2}+\pi n & & \Leftrightarrow \exists n \in \mathbb{Z}, z=\pi n
\end{aligned}
$$

Other complex trigonometric functions

Definition: the complex tangent function
We define $\tan : \mathbb{C} \backslash\left\{\frac{\pi}{2}+\pi n: n \in \mathbb{Z}\right\} \rightarrow \mathbb{C}$ by

$$
\tan z:=\frac{\sin z}{\cos z}
$$

Definition: the complex cotangent function
We define cot : $\mathbb{C} \backslash\{\pi n: n \in \mathbb{Z}\} \rightarrow \mathbb{C}$ by

$$
\cot z:=\frac{\cos z}{\sin z}
$$

Inverse trigonometric functions - 1

We want to find the inverse of cos.
(cos is not injective so we will get a multivalued function as for \log).

$$
\cos (w)=z \Leftrightarrow\left(e^{i w}\right)^{2}-2 z e^{i w}+1=0
$$

Then

$$
v^{2}-2 z v+1=0 \Leftrightarrow v=z+\sqrt{z^{2}-1}
$$

Here $\sqrt{ }$. is already multivalued: it is only well defined up to its sign.
Hence

$$
\begin{aligned}
e^{i w}=z+\sqrt{z^{2}-1} & \Leftrightarrow i w=\log \left(z+\sqrt{z^{2}-1}\right) \\
& \Leftrightarrow w=-i \log \left(z+\sqrt{z^{2}-1}\right)
\end{aligned}
$$

We may repeat the same thing for arcsin and arctan.

Inverse trigonometric functions - 2

$$
\begin{aligned}
& \arccos (z)=-i \log \left(z+\sqrt{z^{2}-1}\right) \\
& \arcsin (z)=-i \log \left(i z+\sqrt{1-z^{2}}\right) \\
& \arctan (z)=\frac{i}{2} \log \left(\frac{1-i z}{1+i z}\right), z \neq \pm i
\end{aligned}
$$

Beware

They are multivalued functions defined on \mathbb{C}.

Beware

By the way, the range of \tan is $\mathbb{C} \backslash\{ \pm i\}$.

Inverse trigonometric functions - 3

We define the principal branches of arccos, arcsin and arctan by ${ }^{1}$:

$$
\begin{array}{rlll}
\text { Arccos : } \begin{array}{ccc}
\mathbb{C} \backslash((-\infty,-1] \cup[1,+\infty)) & \rightarrow & \{z \in \mathbb{C}: 0<\mathfrak{R}(z)<\pi\} \\
z & \mapsto & -i \log \left(z+\sqrt{z^{2}-1}\right)
\end{array} \\
\text { Arcsin : } \mathbb{C} \backslash((-\infty,-1] \cup[1,+\infty)) & \rightarrow & \left\{z \in \mathbb{C}:-\frac{\pi}{2}<\mathfrak{R}(z)<\frac{\pi}{2}\right\} \\
z & \mapsto & -i \log \left(i z+\sqrt{1-z^{2}}\right) \\
\text { Arctan : } \quad \mathbb{C} \backslash((-i \infty,-i] \cup[i,+i \infty)) & \rightarrow\left\{\begin{aligned}
&\left.z \in \mathbb{C}:-\frac{\pi}{2}<\mathfrak{R}(z)<\frac{\pi}{2}\right\} \\
& z \mapsto
\end{aligned}\right. \\
& & \frac{i}{2} \log \left(\frac{1-i z}{1+i z}\right)
\end{array}
$$

${ }^{1}$ We take the square root whose real part is non-negative.

Inverse trigonometric functions - 4

Inverse trigonometric functions - 5

$$
\begin{gathered}
\arccos (z)=\{ \pm \operatorname{Arccos}(z)+2 \pi n: n \in \mathbb{Z}\} \\
\arcsin (z)=\left\{(-1)^{n} \operatorname{Arcsin}(z)+\pi n: n \in \mathbb{Z}\right\} \\
\arctan (z)=\{\operatorname{Arctan}(z)+\pi n: n \in \mathbb{Z}\}
\end{gathered}
$$

The complex hyperbolic functions

Definitions

We define cosh : $\mathbb{C} \rightarrow \mathbb{C}$ and sinh : $\mathbb{C} \rightarrow \mathbb{C}$ respectively by

$$
\cosh (z):=\frac{e^{z}+e^{-z}}{2} \quad \text { and } \quad \sinh (z):=\frac{e^{z}-e^{-z}}{2}
$$

Proposition

- $\forall z \in \mathbb{C}, \cos (z)=\cosh (i z) \quad \bullet \forall z \in \mathbb{C}, \sin (z)=-i \sinh (i z)$

The above proposition allows us to derive hyperbolic identities from the trigonometric ones.

Homework

- $\forall z \in \mathbb{C}, \cosh ^{2}(z)-\sinh ^{2}(z)=1$
- $\forall z, w \in \mathbb{C}, \cosh (z+w)=\cosh z \cosh w+\sinh z \sinh w$
- $\forall z, w \in \mathbb{C}, \sinh (z+w)=\sinh z \cosh w+\cosh z \sinh w$
- $\forall x, y \in \mathbb{R}, \cos (x+i y)=\cos x \cosh y-i \sin x \sinh y$
- $\forall x, y \in \mathbb{R}, \sin (x+i y)=\sin x \cosh y+i \cos x \sinh y$

