MAT334H1-F - LEC0101

Complex Variables

UsUAL COMPLEX FUNCTIONS - 1

September $23^{\text {rd }}$, 2020

The complex exponential function - 1

Definition: the complex exponential function

For $z=x+i y \in \mathbb{C}$, we set $e^{z}:=e^{x} e^{i y}$, it defines the complex exponential function

$$
\exp : \begin{array}{lll}
\mathbb{C} & \rightarrow & \mathbb{C} \\
z & \mapsto & e^{z}
\end{array}
$$

Here $x, y \in \mathbb{R}$, so e^{x} is the usual real exponential and $e^{i y}:=\cos (y)+i \sin (y)$ as defined last week.

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 2

The horizontal line $\mathfrak{\Im}(z)=c$ is mapped by the complex exponential to the open semiline $\left\{e^{x+i c}: x \in \mathbb{R}\right\}=\left\{\rho e^{i c}: \rho>0\right\}$:

The complex exponential function - 3

The vertical line $\mathfrak{R}(z)=c$ is mapped by the complex exponential to the circle $\left\{e^{c+i y}: y \in \mathbb{R}\right\}=\mathscr{C}\left(0, e^{c}\right)$:

The complex exponential function - 3

The vertical line $\mathfrak{R}(z)=c$ is mapped by the complex exponential to the circle $\left\{e^{c+i y}: y \in \mathbb{R}\right\}=\mathscr{C}\left(0, e^{c}\right)$:

The complex exponential function - 3

The vertical line $\mathfrak{R}(z)=c$ is mapped by the complex exponential to the circle $\left\{e^{c+i y}: y \in \mathbb{R}\right\}=\mathscr{C}\left(0, e^{c}\right)$:

The complex exponential function - 3

The vertical line $\mathfrak{R}(z)=c$ is mapped by the complex exponential to the circle $\left\{e^{c+i y}: y \in \mathbb{R}\right\}=\mathscr{C}\left(0, e^{c}\right)$:

The complex exponential function - 3

The vertical line $\mathfrak{R}(z)=c$ is mapped by the complex exponential to the circle $\left\{e^{c+i y}: y \in \mathbb{R}\right\}=\mathscr{C}\left(0, e^{c}\right)$:

The complex exponential function - 3

The vertical line $\mathfrak{R}(z)=c$ is mapped by the complex exponential to the circle $\left\{e^{c+i y}: y \in \mathbb{R}\right\}=\mathscr{C}\left(0, e^{c}\right)$:

The complex exponential function - 3

The vertical line $\mathfrak{R}(z)=c$ is mapped by the complex exponential to the circle $\left\{e^{c+i y}: y \in \mathbb{R}\right\}=\mathscr{C}\left(0, e^{c}\right)$:

The complex exponential function - 4

The complex exponential function - 5

Proposition

- $\mathfrak{R}\left(e^{z}\right)=e^{\mathfrak{R}(z)} \cos (\mathfrak{S}(z))$
- $\mathfrak{F}\left(e^{z}\right)=e^{\mathfrak{R}(z)} \sin (\mathfrak{J}(z))$
- $\left|e^{z}\right|=e^{\Re(z)}$
- $e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$
- \exp is $2 i \pi$-periodic: $e^{z+2 i \pi}=e^{z}$
- Range $(\exp)=\mathbb{C} \backslash\{0\}$
- $e^{z}=1 \Leftrightarrow \exists n \in \mathbb{Z}, z=2 i \pi n$

The complex logarithm function(s) - 1

We want to define the complex logarithm as the inverse of the complex exponential, but it is not possible since the complex exponential is not injective (it is $2 i \pi$-periodic).
Indeed, for $z \in \mathbb{C} \backslash\{0\}$, we have

$$
e^{w}=z \Leftrightarrow w \equiv \log |z|+i \arg (z) \quad \bmod 2 i \pi
$$

So the function we obtain is multivalued since it is well-defined only up to $2 i \pi$:

$$
\begin{aligned}
\log (z) & :=\log |z|+i \operatorname{Arg}(z)+2 i \pi \mathbb{Z} \\
& =\{\log |z|+i \operatorname{Arg}(z)+2 i \pi n: n \in \mathbb{Z}\}
\end{aligned}
$$

Below is the "graph" of the imaginary part of the multivalued logarithm $\log (z):=\log |z|+i \operatorname{Arg}(z)+2 i \pi \mathbb{Z}$.

The distance between two consecutive branches is 2π, it corresponds to the various values over one $z \in \mathbb{C} \backslash\{0\}$.

The complex logarithm function(s) - 2

Then to make \exp one-to-one, we need to shrink its domain to a imaginary band of height 2π.
For $\alpha \in \mathbb{R}$, we set $\tilde{B}_{\alpha}:=\{z \in \mathbb{C}: \alpha \leq \mathfrak{J}(z)<\alpha+2 \pi\}$.
Then $\exp _{\mid \tilde{B}_{\alpha}}: \tilde{B}_{\alpha} \rightarrow \mathbb{C} \backslash\{0\}$ is a bijection and its inverse $\tilde{\varphi}_{\alpha}: \mathbb{C} \backslash\{0\} \rightarrow \tilde{B}_{\alpha}$ is well-defined.
Below is the graph of the imaginary part of such a φ_{α} :

The complex logarithm function(s) - 2

Then to make \exp one-to-one, we need to shrink its domain to a imaginary band of height 2π.
For $\alpha \in \mathbb{R}$, we set $\tilde{B}_{\alpha}:=\{z \in \mathbb{C}: \alpha \leq \mathfrak{J}(z)<\alpha+2 \pi\}$.
Then $\exp _{\mid \tilde{B}_{\alpha}}: \tilde{B}_{\alpha} \rightarrow \mathbb{C} \backslash\{0\}$ is a bijection and its inverse $\tilde{\varphi}_{\alpha}: \mathbb{C} \backslash\{0\} \rightarrow \tilde{B}_{\alpha}$ is well-defined.
Below is the graph of the imaginary part of such a φ_{α} :

But, as we can see on the graph, it is not continuous: for $\varepsilon>0$ small enough,

$$
\varphi_{\alpha}\left(e^{i(\alpha-\varepsilon)}\right)=\varphi_{\alpha}\left(e^{i(\alpha-\varepsilon+2 \pi)}\right)=i(\alpha-\varepsilon+2 \pi) \in \tilde{B}_{\alpha} .
$$

Hence

$$
\lim _{\varepsilon \rightarrow 0^{+}} \varphi_{\alpha}\left(e^{i(\alpha-\varepsilon)}\right)=i(\alpha+2 \pi) \neq i \alpha=\varphi_{\alpha}\left(e^{i \alpha}\right) .
$$

The complex logarithm function(s) - 3

In order to get a continuous function, we need to shrink again the domain of exp.
For $\alpha \in \mathbb{R}$, we set $B_{\alpha}:=\{z \in \mathbb{C}: \alpha<\mathfrak{J}(z)<\alpha+2 \pi\}$ then $\exp _{\mid B_{\alpha}}: B_{\alpha} \rightarrow \mathbb{C} \backslash\left\{\rho e^{i \alpha}: \rho \geq 0\right\}$ is a bijection. Note that we need to remove a closed semiline in the range!

The inverse $\log _{\alpha}: \mathbb{C} \backslash\left\{\rho e^{i \alpha}: \rho \geq 0\right\} \rightarrow B_{\alpha}$ is continuous, it is the complex logarithm branch corresponding to the cut α. Note that $\log _{\alpha}(z)=\log |z|+i \operatorname{Arg}_{\alpha}(z)$ where $\operatorname{Arg}_{\alpha}(z) \in(\alpha, \alpha+2 \pi)$.

The complex logarithm function(s) - 4

When α is not given, you may assume that $\alpha=-\pi$ (that's just a common convention), it is the principal branch of the complex logarithm:

$$
\begin{gathered}
\log : \mathbb{C} \backslash \mathbb{R}_{\leq 0} \rightarrow\{z \in \mathbb{C}:-\pi<\mathfrak{J}(z)<\pi\} \\
\log (z)=\log |z|+i \operatorname{Arg}(z), \quad \text { where } \operatorname{Arg}(z) \in(-\pi, \pi)
\end{gathered}
$$

The complex logarithm function(s) - 5

The notation is really ambiguous and depends on authors...
In the textbook:

- \log is multivalued/set-valued: it is defined for $z \in \mathbb{C} \backslash\{0\}$ but is only well-defined modulo $2 i \pi$.
- Log : $\mathbb{C} \backslash \mathbb{R}_{\leq 0} \rightarrow\{z \in \mathbb{C}:-\pi<\mathfrak{J}(z)<\pi\}$ is the principal branch of the complex logarithm, $\log (z)=\log |z|+i \operatorname{Arg}(z)$ where $\operatorname{Arg}(z) \in(-\pi, \pi)$.

Note that

$$
\forall z \in \mathbb{C} \backslash \mathbb{R}_{\leq 0}, \log (z)=\log (z)+2 i \pi \mathbb{Z}=\{\log (z)+2 i \pi n: n \in \mathbb{Z}\}
$$

The complex logarithm function(s) - 6

Proposition

- $\log \left(z_{1} z_{2}\right) \equiv \log \left(z_{1}\right)+\log \left(z_{2}\right) \bmod 2 i \pi$
- $\log \left(\frac{z_{1}}{z_{2}}\right) \equiv \log \left(z_{1}\right)-\log \left(z_{2}\right) \bmod 2 i \pi$

Here we have equalities as sets/multivalued functions/modulo $2 i \pi$.

BEWARE

For a given branch of the complex logarithm, in general $\log _{\alpha}\left(z_{1} z_{2}\right) \neq \log _{\alpha}\left(z_{1}\right)+\log _{\alpha}\left(z_{2}\right)$.
In the following example, I work with the principal branch of the complex logarithm ($\alpha=-\pi$) then: Let $z_{1}=z_{2}=e^{2 i \frac{\pi}{3}}$ then

$$
\log \left(z_{1} z_{2}\right)=\log \left(e^{4 i \frac{\pi}{3}}\right)=\log \left(e^{-2 i \frac{\pi}{3}}\right)=-2 i \frac{\pi}{3} \neq 4 i \frac{\pi}{3}=2 i \frac{\pi}{3}+2 i \frac{\pi}{3}=\log \left(z_{1}\right)+\log \left(z_{2}\right)
$$

