

FUNCTIONS, SEQUENCES AND SERIES

September 21st, 2020

Definition (informal): function

A *function* (or *map*) is the data of two sets *A* and *B* together with a "process" that associates to each $x \in A$ a unique $f(x) \in B$:

$$f: \left\{ \begin{array}{ccc} A & \to & B \\ x & \mapsto & f(x) \end{array} \right.$$

Here: *f* is the name of the function, *A* is the *domain*, and *B* is the *codomain*.

Beware

The domain and codomain are part of the definition of a function: sin : $\mathbb{R} \to \mathbb{R}$ and sin : $[-\pi, \pi] \to \mathbb{R}$ are not the same function.

A function is not simply a "formula".

Nonetheless, if you have a question like "what's the domain of $f(z) = \frac{1}{1+z}$?", it is implied that you are asked to give the greatest domain such that this formula makes sense (here: $\mathbb{C} \setminus \{-1\}$).

- The *image of* $E \subset A$ by f is $f(E) \coloneqq \{f(x) : x \in E\} \subset B$.
- The *image of f* (or *range of* f) is $\text{Range}(f) \coloneqq f(A)$.
- The *preimage of* $F \subset B$ by f is $f^{-1}(F) \coloneqq \{x \in A : f(x) \in F\}$.
- The *graph of* f is the set $\Gamma_f := \{(x, y) \in A \times B : y = f(x)\}.$

The graph of a function $f : \mathbb{C} \to \mathbb{C}$ is quite difficult to visualize: it is a 2-dimensional object lying in a 4-dimensional space. Instead, it can be useful to visualize separately the graphs of the real and imaginary parts. Or to study how the function transforms some subsets.

Functions: generalities – 3

We fix a function $f : A \rightarrow B$.

• We say that *f* is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A, f(x_1) = f(x_2) \implies x_1 = x_2$

- We say that *f* is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A, f(x_1) = f(x_2) \implies x_1 = x_2$
- We say that *f* is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$

- We say that *f* is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A$, $x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A$, $f(x_1) = f(x_2) \implies x_1 = x_2$
- We say that *f* is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$
- We say that *f* is *bijective* if it is injective and surjective, i.e. $\forall y \in B, \exists ! x \in A, y = f(x)$

Figure: Bijective

- We say that *f* is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A, f(x_1) = f(x_2) \implies x_1 = x_2$
- We say that *f* is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$
- We say that *f* is *bijective* if it is injective and surjective, i.e. $\forall y \in B, \exists ! x \in A, y = f(x)$

Proposition

 $f : A \to B$ is bijective if and only if there exists $g : B \to A$ such that $\begin{cases} \forall x \in A, g(f(x)) = x \\ \forall y \in B, f(g(y)) = y \end{cases}$. Then *g* is unique, it is called the *inverse of f* and denoted by $f^{-1} : B \to A$.

- We say that *f* is *injective* (or *one-to-one*) if $\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$ or equivalently by taking the contrapositive $\forall x_1, x_2 \in A, f(x_1) = f(x_2) \implies x_1 = x_2$
- We say that *f* is *surjective* (or *onto*) if $\forall y \in B, \exists x \in A, y = f(x)$
- We say that *f* is *bijective* if it is injective and surjective, i.e. $\forall y \in B, \exists ! x \in A, y = f(x)$

Definition: limit point

Let $S \subset \mathbb{C}$. We say that $z_0 \in \mathbb{C}$ is a *limit point of S* if

$$\forall \delta > 0, \ \exists z \in S, \ 0 < |z - z_0| < \delta$$

or equivalently

 $\forall \delta > 0, \left(D_{\delta}(z_0) \cap S \right) \setminus \{ z_0 \} \neq \emptyset$

Definition: limit point

Let $S \subset \mathbb{C}$. We say that $z_0 \in \mathbb{C}$ is a *limit point of* S if

```
\forall \delta > 0, \ \exists z \in S, \ 0 < |z - z_0| < \delta
```

or equivalently

```
\forall \delta > 0, \left( D_{\delta}(z_0) \cap S \right) \setminus \{ z_0 \} \neq \emptyset
```

Theorem

 z_0 is a limit point of *S* if and only if $z_0 \in \overline{S \setminus \{z_0\}}$.

Definition: limit point

Let $S \subset \mathbb{C}$. We say that $z_0 \in \mathbb{C}$ is a *limit point of* S if

```
\forall \delta > 0, \ \exists z \in S, \ 0 < |z - z_0| < \delta
```

or equivalently

 $\forall \delta > 0, \left(D_{\delta}(z_0) \cap S \right) \setminus \{ z_0 \} \neq \emptyset$

Theorem

 z_0 is a limit point of *S* if and only if $z_0 \in \overline{S \setminus \{z_0\}}$.

Definition: limit at z_0

Let $S \subset \mathbb{C}$, $f : S \to \mathbb{C}$, z_0 be a limit point of S and $\ell \in \mathbb{C}$. We say that f **tends to** ℓ **as** z **tends to** z_0 , denoted by $\lim_{z \to z_0} f(z) = \ell$, if $\forall \varepsilon > 0, \exists \delta > 0, \forall z \in S, 0 < |z - z_0| < \delta \implies |f(z) - \ell| < \varepsilon$.

Definition: limit at ∞

Let $S \subset \mathbb{C}$ be unbounded, $f : S \to \mathbb{C}$ and $\ell \in \mathbb{C}$. We say that f **tends to** ℓ **as** z **tends to** ∞ , denoted by $\lim_{z \to \infty} f(z) = \ell$, if

$$\forall \varepsilon > 0, \ \exists M > 0, \ \forall z \in S, \ |z| > M \implies |f(z) - \ell| < \varepsilon$$

Examples

$$\lim_{z \to \infty} \frac{1}{z} = 0$$
$$\lim_{z \to 0} \frac{z}{\overline{z}} \text{ DNE}$$
$$\lim_{z \to \infty} \frac{z}{\overline{z}} \text{ DNE}$$

Proposition (here $z_0 \in \mathbb{C} \sqcup \{\infty\}$)

$$\lim_{z \to z_0} f(z) = L \Leftrightarrow \begin{cases} \lim_{z \to z_0} \Re(f) = \Re(L) \\ \lim_{z \to z_0} \Im(f) = \Im(L) \end{cases}$$

Proposition

Assume that $\lim_{z \to z_0} f(z) = L$, $\lim_{z \to z_0} g(z) = M$, $\alpha, \beta \in \mathbb{C}$ (here $z_0 \in \mathbb{C} \sqcup \{\infty\}$). Then

- $\lim_{z \to z_0} (\alpha f + \beta g) = \alpha L + \beta M$
- $\lim_{z \to z_0} fg = LM$
- $\lim_{z \to z_0} \overline{f} = \overline{L}$
- $\lim_{z \to z_0} |f| = |L|$
- If $M \neq 0$, $\lim_{z \to z_0} \frac{f}{g} = \frac{L}{M}$

Definition

Let $S \subset \mathbb{C}$, $f : S \to \mathbb{C}$ and $z_0 \in S$. We say that f **is continuous at** z_0 if $\forall \varepsilon > 0, \exists \delta > 0, \forall z \in S, |z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$. We say that f is **continuous** if f is continuous at every $z_0 \in S$.

Definition

Let $S \subset \mathbb{C}$, $f : S \to \mathbb{C}$ and $z_0 \in S$. We say that f **is continuous at** z_0 if $\forall \varepsilon > 0, \exists \delta > 0, \forall z \in S, |z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$. We say that f is **continuous** if f is continuous at every $z_0 \in S$.

If $z_0 \in S$ is a limit point then f is continuous at z_0 if and only if $\lim_{z \to z_0} f(z) = f(z_0)$

Definition

Let $S \subset \mathbb{C}$, $f : S \to \mathbb{C}$ and $z_0 \in S$. We say that f **is continuous at** z_0 if $\forall \varepsilon > 0, \exists \delta > 0, \forall z \in S, |z - z_0| < \delta \implies |f(z) - f(z_0)| < \varepsilon$. We say that f is **continuous** if f is continuous at every $z_0 \in S$.

If $z_0 \in S$ is a limit point then f is continuous at z_0 if and only if $\lim_{z \to z_0} f(z) = f(z_0)$

Theorem

Let $S \subset \mathbb{C}$, $f : S \to \mathbb{C}$. The following are equivalent:

1 f is continuous,

2
$$\forall \mathscr{U} \subset \mathbb{C}$$
 open, $\exists \mathscr{V} \subset \mathbb{C}$ open, $f^{-1}(\mathscr{U}) = \mathscr{V} \cap S$,

3 $\forall \mathscr{C} \subset \mathbb{C}$ closed, $\exists \mathscr{D} \subset \mathbb{C}$ closed, $f^{-1}(\mathscr{C}) = \mathscr{D} \cap S$.

Proposition

f is continuous at z_0 if and only if $\Re(f)$ and $\Im(f)$ are.

Proposition

- If f and g are continuous at z_0 , so are:
 - $\alpha f + \beta g$ (here $\alpha, \beta \in \mathbb{C}$)
 - fg
 - \overline{f}
 - |f|

Definition

We say that a sequence of complex numbers $(z_k)_{k \in \mathbb{N}}$ tends to $\ell \in \mathbb{C}$ as *n* tends to $+\infty$, denoted by $\lim_{k \to +\infty} z_k = \ell$, if

$$\forall \varepsilon > 0, \ \exists K \in \mathbb{N}, \ \forall k \in \mathbb{N}, \ k \ge K \implies |z_k - \ell| < \varepsilon$$

Proposition

$$\lim_{k \to +\infty} z_k = \ell \Leftrightarrow \lim_{k \to +\infty} |z_k - \ell| = 0$$

Proposition

$$\lim_{k \to +\infty} z_k = \ell \Leftrightarrow \begin{cases} \lim_{k \to +\infty} \Re(z_k) = \Re(\ell) \\ \lim_{k \to +\infty} \Im(z_k) = \Im(\ell) \end{cases}$$

Proposition

Assume that $\lim_{k \to +\infty} z_k = L$ and $\lim_{k \to +\infty} w_k = M$ then

- $\lim_{k \to +\infty} (z_k + w_k) = L + M$
- $\lim_{k \to +\infty} z_k w_k = LM$
- $\lim_{k \to +\infty} \frac{z_k}{w_k} = \frac{L}{M}$ (assuming $M \neq 0$)
- $\lim_{k \to +\infty} \overline{z_k} = \overline{L}$
- $\lim_{k \to +\infty} |z_k| = |L|$

Series – 1

Definitions

Given a sequence $(z_k)_{k \in \mathbb{N}}$:

• We define the *n*-th partial sum associated to $(z_k)_{k\in\mathbb{N}}$ by $S_n = \sum_{k=1}^{\infty} z_k$,

Convergence doesn't depend on the starting index: $\sum_{k=0}^{+\infty} z_k$ is convergent $\Leftrightarrow \sum_{k=k_0}^{+\infty} z_k$ is convergent. But the value of the series DOES depend on the starting index.

Series – 2

Proposition

If
$$\sum_{k=0}^{+\infty} z_k$$
 is convergent then $\lim_{k \to +\infty} z_k = 0$.

• The contrapositive can be very useful: if $\lim_{k \to +\infty} z_k \neq 0$ then $\sum_{k=0}^{+\infty} z_k$ is divergent.

• The converse is false:
$$\sum_{k=1}^{+\infty} \frac{1}{k}$$
 is divergent.

Homework: geometric series

Study the series $\sum_{k=k_0}^{+\infty} z^k$.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Sep 21, 2020

Series – 3

Definition: absolute convergence

Theorem

If
$$\sum_{k=0}^{+\infty} z_k$$
 is *absolutely convergent* then $\sum_{k=0}^{+\infty} z_k$ is *convergent*.

Beware

The converse is false: $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$ is convergent but not absolutely convergent.

Series - 4

Theorem: d'Alembert's ratio test

We consider a series
$$\sum_{k=0}^{+\infty} z_k$$
. We assume that $\ell := \lim_{k \to +\infty} \left| \frac{z_{k+1}}{z_k} \right|$ exists, then
• If $\ell < 1$ then $\sum_{k=0}^{+\infty} z_k$ is absolutely convergent.
• If $\ell > 1$ then $\sum_{k=0}^{+\infty} z_k$ is divergent.
We can't conclude when $\ell = 1$:

we can't conclude when $\ell = 1$: • $\sum_{k=0}^{+\infty} 1$ is divergent. • $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k^2}$ is absolutely convergent. • $\sum_{k=1}^{+\infty} \frac{(-1)^k}{k}$ is convergent but not absolutely convergent.