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Functions: generalities – 1

Definition (informal): function
A function (or map) is the data of two sets 𝐴 and 𝐵 together with a ”process” that associates to
each 𝑥 ∈ 𝐴 a unique 𝑓(𝑥) ∈ 𝐵:

𝑓 ∶ {
𝐴 → 𝐵
𝑥 ↦ 𝑓(𝑥)

Here: 𝑓 is the name of the function, 𝐴 is the domain, and 𝐵 is the codomain.

Beware
The domain and codomain are part of the definition of a function:
sin ∶ ℝ → ℝ and sin ∶ [−𝜋, 𝜋] → ℝ are not the same function.

A function is not simply a ”formula”.
Nonetheless, if you have a question like ”what’s the domain of 𝑓(𝑧) = 1

1+𝑧 ?”, it is implied that you
are asked to give the greatest domain such that this formula makes sense (here: ℂ ⧵ {−1}).
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Functions: generalities – 2

We fix a function 𝑓 ∶ 𝐴 → 𝐵.

• The image of 𝐸 ⊂ 𝐴 by 𝑓 is 𝑓(𝐸) ≔ {𝑓(𝑥) ∶ 𝑥 ∈ 𝐸} ⊂ 𝐵.

• The image of f (or range of 𝑓 ) is Range(𝑓 ) ≔ 𝑓(𝐴).

• The preimage of 𝐹 ⊂ 𝐵 by 𝑓 is 𝑓 −1(𝐹 ) ≔ {𝑥 ∈ 𝐴 ∶ 𝑓(𝑥) ∈ 𝐹 }.

• The graph of 𝑓 is the set Γ𝑓 ≔ {(𝑥, 𝑦) ∈ 𝐴 × 𝐵 ∶ 𝑦 = 𝑓(𝑥)}.

The graph of a function 𝑓 ∶ ℂ → ℂ is quite difficult to visualize: it is a 2-dimensional object lying
in a 4-dimensional space.
Instead, it can be useful to visualize separately the graphs of the real and imaginary parts. Or to
study how the function transforms some subsets.
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Functions: generalities – 3
We fix a function 𝑓 ∶ 𝐴 → 𝐵.

• We say that 𝑓 is injective (or one-to-one) if ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑥1 ≠ 𝑥2 ⟹ 𝑓(𝑥1) ≠ 𝑓(𝑥2)
or equivalently by taking the contrapositive ∀𝑥1, 𝑥2 ∈ 𝐴, 𝑓(𝑥1) = 𝑓(𝑥2) ⟹ 𝑥1 = 𝑥2

• We say that 𝑓 is surjective (or onto) if ∀𝑦 ∈ 𝐵, ∃𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)

• We say that 𝑓 is bijective if it is injective and surjective, i.e. ∀𝑦 ∈ 𝐵, ∃!𝑥 ∈ 𝐴, 𝑦 = 𝑓(𝑥)

Figure: Injective
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Proposition

𝑓 ∶ 𝐴 → 𝐵 is bijective if and only if there exists 𝑔 ∶ 𝐵 → 𝐴 such that {
∀𝑥 ∈ 𝐴, 𝑔(𝑓(𝑥)) = 𝑥
∀𝑦 ∈ 𝐵, 𝑓(𝑔(𝑦)) = 𝑦 .

Then 𝑔 is unique, it is called the inverse of 𝑓 and denoted by 𝑓 −1 ∶ 𝐵 → 𝐴.
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Limits of complex functions – 1
Definition: limit point
Let 𝑆 ⊂ ℂ. We say that 𝑧0 ∈ ℂ is a limit point of 𝑆 if

∀𝛿 > 0, ∃𝑧 ∈ 𝑆, 0 < |𝑧 − 𝑧0| < 𝛿

or equivalently
∀𝛿 > 0, (𝐷𝛿 (𝑧0) ∩ 𝑆) ⧵ {𝑧0} ≠ ∅

Theorem
𝑧0 is a limit point of 𝑆 if and only if 𝑧0 ∈ 𝑆 ⧵ {𝑧0}.

Definition: limit at 𝑧0
Let 𝑆 ⊂ ℂ, 𝑓 ∶ 𝑆 → ℂ, 𝑧0 be a limit point of 𝑆 and ℓ ∈ ℂ.
We say that 𝑓 tends to ℓ as 𝑧 tends to 𝑧0, denoted by lim

𝑧→𝑧0
𝑓(𝑧) = ℓ, if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑧 ∈ 𝑆, 0 < |𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓(𝑧) − ℓ| < 𝜀.
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Limits of complex functions – 2

Definition: limit at ∞
Let 𝑆 ⊂ ℂ be unbounded, 𝑓 ∶ 𝑆 → ℂ and ℓ ∈ ℂ. We say that 𝑓 tends to ℓ as 𝑧 tends to ∞,
denoted by lim

𝑧→∞
𝑓(𝑧) = ℓ, if

∀𝜀 > 0, ∃𝑀 > 0, ∀𝑧 ∈ 𝑆, |𝑧| > 𝑀 ⟹ |𝑓(𝑧) − ℓ| < 𝜀

Examples

lim
𝑧→∞

1
𝑧 = 0

lim
𝑧→0

𝑧
𝑧

DNE

lim
𝑧→∞

𝑧
𝑧

DNE
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Limits of complex functions – 3
Proposition (here 𝑧0 ∈ ℂ ⊔ {∞})

lim
𝑧→𝑧0

𝑓(𝑧) = 𝐿 ⇔
⎧⎪
⎨
⎪⎩

lim
𝑧→𝑧0

ℜ(𝑓) = ℜ(𝐿)
lim
𝑧→𝑧0

ℑ(𝑓) = ℑ(𝐿)

Proposition
Assume that lim

𝑧→𝑧0
𝑓(𝑧) = 𝐿, lim

𝑧→𝑧0
𝑔(𝑧) = 𝑀 , 𝛼, 𝛽 ∈ ℂ (here 𝑧0 ∈ ℂ ⊔ {∞}). Then

• lim
𝑧→𝑧0

(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐿 + 𝛽𝑀

• lim
𝑧→𝑧0

𝑓𝑔 = 𝐿𝑀

• lim
𝑧→𝑧0

𝑓 = 𝐿

• lim
𝑧→𝑧0

|𝑓 | = |𝐿|

• If 𝑀 ≠ 0, lim
𝑧→𝑧0

𝑓
𝑔 = 𝐿

𝑀
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Continuity – 1

Definition
Let 𝑆 ⊂ ℂ, 𝑓 ∶ 𝑆 → ℂ and 𝑧0 ∈ 𝑆.
We say that 𝑓 is continuous at 𝑧0 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑧 ∈ 𝑆, |𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓(𝑧) − 𝑓(𝑧0)| < 𝜀.
We say that 𝑓 is continuous if 𝑓 is continuous at every 𝑧0 ∈ 𝑆.

If 𝑧0 ∈ 𝑆 is a limit point then 𝑓 is continuous at 𝑧0 if and only if lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0)

Theorem
Let 𝑆 ⊂ ℂ, 𝑓 ∶ 𝑆 → ℂ. The following are equivalent:

1 𝑓 is continuous,
2 ∀𝒰 ⊂ ℂ open, ∃𝒱 ⊂ ℂ open, 𝑓 −1(𝒰) = 𝒱 ∩ 𝑆,
3 ∀𝒞 ⊂ ℂ closed, ∃𝒟 ⊂ ℂ closed, 𝑓 −1(𝒞 ) = 𝒟 ∩ 𝑆.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Sep 21, 2020 8 / 15



Continuity – 1

Definition
Let 𝑆 ⊂ ℂ, 𝑓 ∶ 𝑆 → ℂ and 𝑧0 ∈ 𝑆.
We say that 𝑓 is continuous at 𝑧0 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑧 ∈ 𝑆, |𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓(𝑧) − 𝑓(𝑧0)| < 𝜀.
We say that 𝑓 is continuous if 𝑓 is continuous at every 𝑧0 ∈ 𝑆.

If 𝑧0 ∈ 𝑆 is a limit point then 𝑓 is continuous at 𝑧0 if and only if lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0)

Theorem
Let 𝑆 ⊂ ℂ, 𝑓 ∶ 𝑆 → ℂ. The following are equivalent:

1 𝑓 is continuous,
2 ∀𝒰 ⊂ ℂ open, ∃𝒱 ⊂ ℂ open, 𝑓 −1(𝒰) = 𝒱 ∩ 𝑆,
3 ∀𝒞 ⊂ ℂ closed, ∃𝒟 ⊂ ℂ closed, 𝑓 −1(𝒞 ) = 𝒟 ∩ 𝑆.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Sep 21, 2020 8 / 15



Continuity – 1

Definition
Let 𝑆 ⊂ ℂ, 𝑓 ∶ 𝑆 → ℂ and 𝑧0 ∈ 𝑆.
We say that 𝑓 is continuous at 𝑧0 if

∀𝜀 > 0, ∃𝛿 > 0, ∀𝑧 ∈ 𝑆, |𝑧 − 𝑧0| < 𝛿 ⟹ |𝑓(𝑧) − 𝑓(𝑧0)| < 𝜀.
We say that 𝑓 is continuous if 𝑓 is continuous at every 𝑧0 ∈ 𝑆.

If 𝑧0 ∈ 𝑆 is a limit point then 𝑓 is continuous at 𝑧0 if and only if lim
𝑧→𝑧0

𝑓(𝑧) = 𝑓(𝑧0)

Theorem
Let 𝑆 ⊂ ℂ, 𝑓 ∶ 𝑆 → ℂ. The following are equivalent:

1 𝑓 is continuous,
2 ∀𝒰 ⊂ ℂ open, ∃𝒱 ⊂ ℂ open, 𝑓 −1(𝒰) = 𝒱 ∩ 𝑆,
3 ∀𝒞 ⊂ ℂ closed, ∃𝒟 ⊂ ℂ closed, 𝑓 −1(𝒞 ) = 𝒟 ∩ 𝑆.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Sep 21, 2020 8 / 15



Continuity – 2

Proposition
𝑓 is continuous at 𝑧0 if and only if ℜ(𝑓) and ℑ(𝑓) are.

Proposition
If 𝑓 and 𝑔 are continuous at 𝑧0, so are:

• 𝛼𝑓 + 𝛽𝑔 (here 𝛼, 𝛽 ∈ ℂ)

• 𝑓𝑔

• 𝑓

• |𝑓|

• 𝑓
𝑔 (assuming that 𝑔(𝑧0) ≠ 0).
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Sequences – 1

Definition
We say that a sequence of complex numbers (𝑧𝑘)𝑘∈ℕ tends to ℓ ∈ ℂ as 𝑛 tends to +∞, denoted
by lim

𝑘→+∞
𝑧𝑘 = ℓ, if

∀𝜀 > 0, ∃𝐾 ∈ ℕ, ∀𝑘 ∈ ℕ, 𝑘 ≥ 𝐾 ⟹ |𝑧𝑘 − ℓ| < 𝜀

Proposition
lim

𝑘→+∞
𝑧𝑘 = ℓ ⇔ lim

𝑘→+∞
|𝑧𝑘 − ℓ| = 0

Proposition

lim
𝑘→+∞

𝑧𝑘 = ℓ ⇔
⎧⎪
⎨
⎪⎩

lim
𝑘→+∞

ℜ(𝑧𝑘) = ℜ(ℓ)
lim

𝑘→+∞
ℑ(𝑧𝑘) = ℑ(ℓ)
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Sequences – 2

Proposition
Assume that lim

𝑘→+∞
𝑧𝑘 = 𝐿 and lim

𝑘→+∞
𝑤𝑘 = 𝑀 then

• lim
𝑘→+∞

(𝑧𝑘 + 𝑤𝑘) = 𝐿 + 𝑀

• lim
𝑘→+∞

𝑧𝑘𝑤𝑘 = 𝐿𝑀

• lim
𝑘→+∞

𝑧𝑘
𝑤𝑘

= 𝐿
𝑀 (assuming 𝑀 ≠ 0)

• lim
𝑘→+∞

𝑧𝑘 = 𝐿

• lim
𝑘→+∞

|𝑧𝑘| = |𝐿|
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Series – 1
Definitions
Given a sequence (𝑧𝑘)𝑘∈ℕ:

• We define the 𝑛-th partial sum associated to (𝑧𝑘)𝑘∈ℕ by 𝑆𝑛 =
𝑛

∑
𝑘=0

𝑧𝑘,

• We say that the series
+∞

∑
𝑘=0

𝑧𝑘 is convergent if lim
𝑛→+∞

𝑆𝑛 exists then we set
+∞

∑
𝑘=0

𝑧𝑘 ≔ lim
𝑛→+∞

𝑛

∑
𝑘=0

𝑧𝑘,

• Otherwise, we say that the series
+∞

∑
𝑘=0

𝑧𝑘 is divergent.

Convergence doesn’t depend on the starting index:
+∞

∑
𝑘=0

𝑧𝑘 is convergent ⇔
+∞

∑
𝑘=𝑘0

𝑧𝑘 is convergent.

But the value of the series DOES depend on the starting index.
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Series – 2
Proposition

If
+∞

∑
𝑘=0

𝑧𝑘 is convergent then lim
𝑘→+∞

𝑧𝑘 = 0.

• The contrapositive can be very useful: if lim
𝑘→+∞

𝑧𝑘 ≠ 0 then
+∞

∑
𝑘=0

𝑧𝑘 is divergent.

• The converse is false:
+∞

∑
𝑘=1

1
𝑘 is divergent.

Homework: geometric series

Study the series
+∞

∑
𝑘=𝑘0

𝑧𝑘.
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Series – 3

Definition: absolute convergence

We say that the series
+∞

∑
𝑘=0

𝑧𝑘 is absolutely convergent if
+∞

∑
𝑘=0

|𝑧𝑘| is convergent.

Theorem

If
+∞

∑
𝑘=0

𝑧𝑘 is absolutely convergent then
+∞

∑
𝑘=0

𝑧𝑘 is convergent.

Beware

The converse is false:
+∞

∑
𝑘=1

(−1)𝑘

𝑘 is convergent but not absolutely convergent.
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Series – 4
Theorem: d’Alembert’s ratio test

We consider a series
+∞

∑
𝑘=0

𝑧𝑘. We assume that ℓ ≔ lim
𝑘→+∞ |

𝑧𝑘+1
𝑧𝑘 | exists, then

• If ℓ < 1 then
+∞

∑
𝑘=0

𝑧𝑘 is absolutely convergent.

• If ℓ > 1 then
+∞

∑
𝑘=0

𝑧𝑘 is divergent.

We can’t conclude when ℓ = 1:

•
+∞

∑
𝑘=0

1 is divergent. •
+∞

∑
𝑘=1

(−1)𝑘

𝑘2 is absolutely convergent.

•
+∞

∑
𝑘=1

(−1)𝑘

𝑘 is convergent but not absolutely convergent.
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