MAT334H1-F – LEC0101 Complex Variables

TOPOLOGY OF THE COMPLEX PLANE

September 18th, 2020

Today's topic: topology of ℂ

After having tried to convince you that a line is a circle, today I will divide by 0...

LEC0101 website: http://uoft.me/MAT334-LEC0101

How to practice for MAT334:

- Immediate practice questions from the slides.
- "Problems_to_..." from Quercus.
- Tutorial problems.

Make sure that you have read the Outline/Syllabus and *readme* pages posted on Quercus, they contain valuable information such as: *Each Quiz is drawn from the problems for a week (or weeks) in the Quiz description.* (Problems_to_...).

Beware if you look online for *inversion*: it can mean the complex inversion $z \mapsto z^{-1}$ (we use this one) but also the geometric inversion, which in terms of complex numbers is given by $z \mapsto \overline{z^{-1}}$, do NOT confuse them!

Open disk

The open disk centered at $z_0 \in \mathbb{C}$ and of radius $r \in \mathbb{R}_{>0}$ is $D_r(z_0) \coloneqq \{z \in \mathbb{C} : |z - z_0| < r\}$. (You may also see the name *r*-vicinity of z_0 .)

Closed disk

The closed disk centered at $z_0 \in \mathbb{C}$ and of radius $r \in \mathbb{R}_{>0}$ is $\overline{D_r}(z_0) \coloneqq \{z \in \mathbb{C} : |z - z_0| \le r\}$.

Neighborhood

We say that $S \subset \mathbb{C}$ is a *neighborhood* of $z_0 \in \mathbb{C}$ if there exists $\varepsilon \in \mathbb{R}_{>0}$ such that $D_{\varepsilon}(z_0) \subset S$.

Bounded sets

We say that $S \subset \mathbb{C}$ is *bounded* if there exists $r \in \mathbb{R}_{>0}$ such that $S \subset D_r(0)$.

$a \in S$ $b \in S$ $c \notin S$ $d \notin S$

$a \in S$ $b \in S$ $c \notin S$ $d \notin S$

Definition: interior

The *interior* of $S \subset \mathbb{C}$ is $\mathring{S} \coloneqq \{z \in \mathbb{C} : \exists \varepsilon > 0, D_{\varepsilon}(z) \subset S\}$ (also denoted S^{int}).

$a \in S$	$b \in S$	$c \notin S$	$d \notin S$
$a \in \mathring{S}$	$b \notin \mathring{S}$	$c \notin \mathring{S}$	$d \notin \mathring{S}$

Definition: interior

The *interior* of $S \subset \mathbb{C}$ is $\mathring{S} \coloneqq \{z \in \mathbb{C} : \exists \varepsilon > 0, D_{\varepsilon}(z) \subset S\}$ (also denoted S^{int}).

$a \in S$	$b \in S$	$c \notin S$	$d \notin S$
$a \in \mathring{S}$	$b \notin \mathring{S}$	$c \notin \mathring{S}$	$d \notin \mathring{S}$

Definition: interior

The *interior* of $S \subset \mathbb{C}$ is $\mathring{S} \coloneqq \{z \in \mathbb{C} : \exists \varepsilon > 0, D_{\varepsilon}(z) \subset S\}$ (also denoted S^{int}).

Definition: closure

The *closure* of $S \subset \mathbb{C}$ is $\overline{S} := \{z \in \mathbb{C} : \forall \varepsilon > 0, D_{\varepsilon}(z) \cap S \neq \emptyset\}.$

$a \in S$	$b \in S$	$c \notin S$	$d \notin S$
$a \in \mathring{S}$	$b \notin \mathring{S}$	$c \notin \mathring{S}$	$d \notin \mathring{S}$
$a \in \overline{S}$	$b \in \overline{S}$	$c \in \overline{S}$	$d \notin \overline{S}$

Definition: interior

The *interior* of $S \subset \mathbb{C}$ is $\mathring{S} \coloneqq \{z \in \mathbb{C} : \exists \varepsilon > 0, D_{\varepsilon}(z) \subset S\}$ (also denoted S^{int}).

Definition: closure

The *closure* of $S \subset \mathbb{C}$ is $\overline{S} := \{z \in \mathbb{C} : \forall \varepsilon > 0, D_{\varepsilon}(z) \cap S \neq \emptyset\}.$

$a \in S$	$b \in S$	$c \notin S$	$d \notin S$
$a \in \mathring{S}$	$b \notin \mathring{S}$	$c \notin \mathring{S}$	$d \notin \mathring{S}$
$a \in \overline{S}$	$b \in \overline{S}$	$c \in \overline{S}$	$d \notin \overline{S}$

Definition: interior

The *interior* of $S \subset \mathbb{C}$ is $\mathring{S} \coloneqq \{z \in \mathbb{C} : \exists \varepsilon > 0, D_{\varepsilon}(z) \subset S\}$ (also denoted S^{int}).

Definition: closure

The *closure* of $S \subset \mathbb{C}$ is $\overline{S} := \{z \in \mathbb{C} : \forall \varepsilon > 0, D_{\varepsilon}(z) \cap S \neq \emptyset\}.$

Definition: boundary

The boundary of $S \subset \mathbb{C}$ is $\partial S \coloneqq \overline{S} \setminus \mathring{S}$.

$a \in S$	$b \in S$	$c \notin S$	$d \notin S$
$a \in \mathring{S}$	$b \notin \mathring{S}$	$c \notin \mathring{S}$	$d \notin \mathring{S}$
$a \in \overline{S}$	$b \in \overline{S}$	$c \in \overline{S}$	$d \notin \overline{S}$
$a \notin \partial S$	$b \in \partial S$	$c \in \partial S$	$d \notin \partial S$

Definition: interior

The *interior* of $S \subset \mathbb{C}$ is $\mathring{S} \coloneqq \{z \in \mathbb{C} : \exists \varepsilon > 0, D_{\varepsilon}(z) \subset S\}$ (also denoted S^{int}).

Definition: closure

The *closure* of $S \subset \mathbb{C}$ is $\overline{S} := \{ z \in \mathbb{C} : \forall \varepsilon > 0, D_{\varepsilon}(z) \cap S \neq \emptyset \}.$

Definition: boundary

The boundary of $S \subset \mathbb{C}$ is $\partial S \coloneqq \overline{S} \setminus \mathring{S}$.

$a \in S$	$b \in S$	$c \notin S$	$d \notin S$
$a \in \mathring{S}$	$b \notin \mathring{S}$	$c \notin \mathring{S}$	$d \notin \mathring{S}$
$a \in \overline{S}$	$b \in \overline{S}$	$c \in \overline{S}$	$d \notin \overline{S}$
$a \notin \partial S$	$b \in \partial S$	$c \in \partial S$	$d \notin \partial S$

Properties
$\bigcirc \overline{S} = S \cup \partial S$

Definition: Open sets

We say that $S \subset \mathbb{C}$ is open if $\mathring{S} = S$.

Definition: Closed sets

We say that $S \subset \mathbb{C}$ is *closed* if $\overline{S} = S$.

Definition: Open sets

We say that $S \subset \mathbb{C}$ is open if $\mathring{S} = S$.

Definition: Closed sets

We say that $S \subset \mathbb{C}$ is *closed* if $\overline{S} = S$.

Examples

- $\{z \in \mathbb{C} : |z| < 1\}$ is open not closed.
- $\{z \in \mathbb{C} : |z| \le 1\}$ is closed not open.
- C is both open and closed.
- $\{z \in \mathbb{C} : \Re(z) = 0, \Im(z) > 0\}$ is neither open nor closed.

Definition: Open sets

We say that $S \subset \mathbb{C}$ is open if $\mathring{S} = S$.

Definition: Closed sets

We say that $S \subset \mathbb{C}$ is *closed* if $\overline{S} = S$.

Properties

- **1** *S* is open if and only if $S \cap \partial S = \emptyset$
- 2 *S* is open if and only if it is a neighborhood of each of its elements, i.e. $\forall z \in S, \exists \varepsilon > 0, D_{\varepsilon}(z) \subset S$
- **3** S is closed if and only if $\partial S \subset S$
- **4** S is closed if and only if S^c is open
- Open sets are stable by unions and finite intersections.
- 6 Closed sets are stable by intersections and finite unions.

Definition: Open sets

We say that $S \subset \mathbb{C}$ is open if $\mathring{S} = S$.

Definition: Closed sets

```
We say that S \subset \mathbb{C} is closed if \overline{S} = S.
```

Homework

Are the following sets open? closed?

$$\{ z \in \mathbb{C} : \Re(z) \ge 0 \}$$

```
2 {z \in \mathbb{C} : \Re(z) > 0}
```

3Ø

```
\{z \in \mathbb{C} : |z| = 1\}
```

Definition: Path-connectedness

A subset $S \subset \mathbb{C}$ is *path-connected* if for any $z_0, z_1 \in S$ there exists $\gamma : [0, 1] \to \mathbb{C}$ continuous such that **1** $\forall t \in [0, 1], \gamma(t) \in S$ **2** $\gamma(0) = z_0$ **3** $\gamma(1) = z_1$.

Intuitively, it means that *S* is made of only one piece.

Definition: Path-connectedness

A subset $S \subset \mathbb{C}$ is *path-connected* if for any $z_0, z_1 \in S$ there exists $\gamma : [0, 1] \to \mathbb{C}$ continuous such that **1** $\forall t \in [0, 1], \gamma(t) \in S$ **2** $\gamma(0) = z_0$ **3** $\gamma(1) = z_1$.

Theorem

An **open** subset $S \subset \mathbb{C}$ is path-connected if and only if for any $z_0, z_1 \in S$ there exists a polygonal curve from z_0 to z_1 which is included in S,

i.e. there exists w_0, \ldots, w_k such that $[w_i, w_{i+1}] \subset S$, $w_0 = z_0$ and $w_k = z_1$.

Definition: Path-connectedness

A subset $S \subset \mathbb{C}$ is *path-connected* if for any $z_0, z_1 \in S$ there exists $\gamma : [0, 1] \to \mathbb{C}$ continuous such that **1** $\forall t \in [0, 1], \gamma(t) \in S$ **2** $\gamma(0) = z_0$ **3** $\gamma(1) = z_1$.

Theorem

An **open** subset $S \subset \mathbb{C}$ is path-connected if and only if for any $z_0, z_1 \in S$ there exists a polygonal curve from z_0 to z_1 which is included in S,

i.e. there exists w_0, \ldots, w_k such that $[w_i, w_{i+1}] \subset S$, $w_0 = z_0$ and $w_k = z_1$.

Beware

The openness assumption is very important in the previous theorem. Indeed, the following set is path-connected but two point on it can't be joined by a polygonal curve staying in the curve.

Definition: Connectedness

We say that an **open** subset $S \subset \mathbb{C}$ is *connected* if it is path-connected.

Remark

We defined connectedness only for open sets: there exists a more general notion of connectedness but it coincides with path-connectedness for open sets.

Definition: Domain

We say that a subset $D \subset \mathbb{C}$ is a *domain* if it is open and connected.

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is *convex* if $\forall z_0, z_1 \in S$, $\forall t \in [0, 1]$, $(1 - t)z_0 + tz_1 \in S$.

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is *convex* if $\forall z_0, z_1 \in S$, $\forall t \in [0, 1]$, $(1 - t)z_0 + tz_1 \in S$.

Definition: Star-shaped sets

We say that $S \subset \mathbb{C}$ is *star-shaped* if $\exists w \in S, \forall z \in S, \forall t \in [0, 1], (1 - t)w + tz \in S$.

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is *convex* if $\forall z_0, z_1 \in S$, $\forall t \in [0, 1]$, $(1 - t)z_0 + tz_1 \in S$.

Definition: Star-shaped sets

We say that $S \subset \mathbb{C}$ is *star-shaped* if $\exists w \in S, \forall z \in S, \forall t \in [0, 1], (1 - t)w + tz \in S$.

Proposition

Convex and non-empty \implies star-shaped \implies path-connected.

Beware: \emptyset is convex but not star-shaped.

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is *convex* if $\forall z_0, z_1 \in S$, $\forall t \in [0, 1]$, $(1 - t)z_0 + tz_1 \in S$.

Definition: Star-shaped sets

We say that $S \subset \mathbb{C}$ is *star-shaped* if $\exists w \in S, \forall z \in S, \forall t \in [0, 1], (1 - t)w + tz \in S$.

Proposition

Convex and non-empty \implies star-shaped \implies path-connected.

#

 \Leftarrow

We set $S^2 := \{(r, s, t) \in \mathbb{R}^3 : r^2 + s^2 + t^2 = 1\}$ and N = (0, 0, 1) (the *north pole* of S^2). We identify \mathbb{C} with the equatorial plane $P = \{t = 0\}$. We define the stereographic projection with respect to N:

$$\varphi: \left\{ \begin{array}{cc} S^2 \setminus \{N\} & \to & P \\ M & \mapsto & (NM) \cap P \end{array} \right.$$

We set $S^2 := \{(r, s, t) \in \mathbb{R}^3 : r^2 + s^2 + t^2 = 1\}$ and N = (0, 0, 1) (the *north pole* of S^2). We identify \mathbb{C} with the equatorial plane $P = \{t = 0\}$. We define the stereographic projection with respect to N:

$$\varphi: \left\{ \begin{array}{ccc} S^2 \setminus \{N\} & \to & P \\ M & \mapsto & (NM) \cap P \end{array} \right.$$

Theorem

 φ is a bijection.

We set $S^2 := \{(r, s, t) \in \mathbb{R}^3 : r^2 + s^2 + t^2 = 1\}$ and N = (0, 0, 1) (the *north pole* of S^2). We identify \mathbb{C} with the equatorial plane $P = \{t = 0\}$. We define the stereographic projection with respect to N:

$$\varphi: \left\{ \begin{array}{ccc} S^2 \setminus \{N\} & \to & P \\ M & \mapsto & (NM) \cap P \end{array} \right.$$

Theorem

 φ is a bijection.

It allows to identify \mathbb{C} with $S^2 \setminus \{N\}$ and then to see N as *the point at infinity*, i.e. to identify S^2 with $\widehat{\mathbb{C}} = \mathbb{C} \sqcup \{\infty\}$.

There are several models for $\hat{\mathbb{C}}$, this one is called the **Riemann sphere**.

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^c \coloneqq \mathbb{C} \setminus V$ is bounded.

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^c := \mathbb{C} \setminus V$ is bounded.

Proposition

 $V \subset \mathbb{C}$ is a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0}$, $\{z \in \mathbb{C} : |z| > R\} \subset V$.

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^c := \mathbb{C} \setminus V$ is bounded.

Proposition

 $V \subset \mathbb{C}$ is a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0}, \{z \in \mathbb{C} : |z| > R\} \subset V$.

Remember that a set is open if and only if it is a neighborhood of each of its points. Hence, we defined a topology on $\widehat{\mathbb{C}}$. It makes $\varphi : S^2 \to \widehat{\mathbb{C}}$ a homeomorphism.

Definition: Open sets of $\widehat{\mathbb{C}}$

A subset $S \subset \widehat{\mathbb{C}}$ is open if

- $S \subset \mathbb{C}$ is open or
- $S = \{\infty\} \cup U$ where $U = K^c \subset \mathbb{C}$ is the complement of a compact $K \subset \mathbb{C}$ (closed and bounded).

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^c := \mathbb{C} \setminus V$ is bounded.

Proposition

 $V \subset \mathbb{C}$ is a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0}, \{z \in \mathbb{C} : |z| > R\} \subset V$.

Remember that a set is open if and only if it is a neighborhood of each of its points. Hence, we defined a topology on $\widehat{\mathbb{C}}$. It makes $\varphi : S^2 \to \widehat{\mathbb{C}}$ a homeomorphism.

Definition: Open sets of $\widehat{\mathbb{C}}$

A subset $S \subset \widehat{\mathbb{C}}$ is open if

- $S \subset \mathbb{C}$ is open or
- $S = \{\infty\} \cup U$ where $U = K^c \subset \mathbb{C}$ is the complement of a compact $K \subset \mathbb{C}$ (closed and bounded).

The Riemann sphere is a special case of a general topological construction called the **one-point** compactification or the Alexandrov compactification.

We may extend the inversion^{*a*} to $\widehat{\mathbb{C}}$ by inv :

$$: \begin{cases} \widehat{\mathbb{C}} \to \widehat{\mathbb{C}} \\ z \mapsto z^{-1} & \text{if } z \in \mathbb{C} \setminus \{0\} \\ 0 \mapsto \infty \\ \infty \mapsto 0 \end{cases}$$

^aActually, it is possible to define division by 0, what is **not** possible is to define a multiplicative inverse of 0.

Remember from last time the generalized circle (or line-circle) equation

$$a\overline{z}z - \overline{\eta}z - \eta\overline{z} + k = 0 \tag{1}$$

where $a, k \in \mathbb{R}$ and $\eta \in \mathbb{C}$ satisfy $|\eta|^2 - ak > 0$.

Set $w = z^{-1}$ (so that we swap 0 and ∞ in $\widehat{\mathbb{C}}$). Then (1) becomes

$$k\overline{w}w - \overline{\alpha}w - \alpha\overline{w} + a = 0$$

where $\alpha = \overline{\eta}$.

Not part of MAT334, just a gift <u>#</u>: another example of one-point/Alexandrov compactification

The drawing on the left is probably my favourite real algebraic set (Whitney umbrella) and the one on the right is its one-point/Alexandrov compactification.