Topology of the complex plane

September $18^{\text {th }}, 2020$

Today's topic: topology of \mathbb{C}

After having tried to convince you that a line is a circle, today I will divide by $0 . .$.

LEC0101 website: http://uoft.me/MAT334-LEC0101

How to practice for MAT334:

- Immediate practice questions from the slides.
- "Problems_to_.." from Quercus.
- Tutorial problems.

Make sure that you have read the Outline/Syllabus and readme pages posted on Quercus, they contain valuable information such as:
Each Quiz is drawn from the problems for a week (or weeks) in the Quiz description. (Problems_to_...).

Beware if you look online for inversion: it can mean the complex inversion $z \mapsto z^{-1}$ (we use this one) but also the geometric inversion, which in terms of complex numbers is given by $z \mapsto \overline{z^{-1}}$, do NOT confuse them!

Disks, neighborhoods and bounded sets

Open disk

The open disk centered at $z_{0} \in \mathbb{C}$ and of radius $r \in \mathbb{R}_{>0}$ is $D_{r}\left(z_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$. (You may also see the name r-vicinity of z_{0}.)

Closed disk

The closed disk centered at $z_{0} \in \mathbb{C}$ and of radius $r \in \mathbb{R}_{>0}$ is $\overline{D_{r}}\left(z_{0}\right):=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq r\right\}$.

Neighborhood

We say that $S \subset \mathbb{C}$ is a neighborhood of $z_{0} \in \mathbb{C}$ if there exists $\varepsilon \in \mathbb{R}_{>0}$ such that $D_{\varepsilon}\left(z_{0}\right) \subset S$.

Bounded sets

We say that $S \subset \mathbb{C}$ is bounded if there exists $r \in \mathbb{R}_{>0}$ such that $S \subset D_{r}(0)$.

Interior, closure and boundary

$$
a \in S \quad b \in S \quad c \notin S \quad d \notin S
$$

Interior, closure and boundary

$$
a \in S \quad b \in S \quad c \notin S \quad d \notin S
$$

Definition: interior

The interior of $S \subset \mathbb{C}$ is $S:=\left\{z \in \mathbb{C}: \exists \varepsilon>0, D_{\varepsilon}(z) \subset S\right\}$ (also denoted $S^{\text {int }}$).

Interior, closure and boundary

$$
\begin{array}{llll}
a \in S & b \in S & c \notin S & d \notin S \\
a \in \dot{S} & b \notin \dot{S} & c \notin \dot{S} & d \notin \dot{S}
\end{array}
$$

Definition: interior

The interior of $S \subset \mathbb{C}$ is $S:=\left\{z \in \mathbb{C}: \exists \varepsilon>0, D_{\varepsilon}(z) \subset S\right\}$ (also denoted $S^{\text {int }}$).

Interior, closure and boundary

$$
\begin{array}{llll}
a \in S & b \in S & c \notin S & d \notin S \\
a \in \grave{S} & b \notin S & c \notin \mathscr{S} & d \notin S
\end{array}
$$

Definition: interior

The interior of $S \subset \mathbb{C}$ is $S:=\left\{z \in \mathbb{C}: \exists \varepsilon>0, D_{\varepsilon}(z) \subset S\right\}$ (also denoted $S^{\text {int }}$).

Definition: closure

The closure of $S \subset \mathbb{C}$ is $\bar{S}:=\left\{z \in \mathbb{C}: \forall \varepsilon>0, D_{\varepsilon}(z) \cap S \neq \varnothing\right\}$.

Interior, closure and boundary

$$
\begin{array}{llll}
a \in S & b \in S & c \notin S & d \notin S \\
a \in \dot{\perp} & b \notin \dot{S} & c \notin \dot{S} & d \notin \dot{S} \\
a \in \bar{S} & b \in \bar{S} & c \in \bar{S} & d \notin \bar{S}
\end{array}
$$

Definition: interior

The interior of $S \subset \mathbb{C}$ is $S:=\left\{z \in \mathbb{C}: \exists \varepsilon>0, D_{\varepsilon}(z) \subset S\right\}$ (also denoted $S^{\text {int }}$).

Definition: closure

The closure of $S \subset \mathbb{C}$ is $\bar{S}:=\left\{z \in \mathbb{C}: \forall \varepsilon>0, D_{\varepsilon}(z) \cap S \neq \varnothing\right\}$.

Interior, closure and boundary

$$
\begin{array}{llll}
a \in S & b \in S & c \notin S & d \notin S \\
a \in \dot{\circ} & b \notin \dot{S} & c \notin \dot{S} & d \notin \dot{S} \\
a \in \bar{S} & b \in \bar{S} & c \in \bar{S} & d \notin \bar{S}
\end{array}
$$

Definition: interior

The interior of $S \subset \mathbb{C}$ is $S:=\left\{z \in \mathbb{C}: \exists \varepsilon>0, D_{\varepsilon}(z) \subset S\right\}$ (also denoted $S^{\text {int }}$).

Definition: closure

The closure of $S \subset \mathbb{C}$ is $\bar{S}:=\left\{z \in \mathbb{C}: \forall \varepsilon>0, D_{\varepsilon}(z) \cap S \neq \varnothing\right\}$.

Definition: boundary

The boundary of $S \subset \mathbb{C}$ is $\partial S:=\bar{S} \backslash \stackrel{\circ}{S}$.

Interior, closure and boundary

$$
\begin{array}{llll}
a \in S & b \in S & c \notin S & d \notin S \\
a \in \dot{S} & b \notin \dot{S} & c \notin \dot{S} & d \notin \dot{S} \\
a \in \bar{S} & b \in \bar{S} & c \in \bar{S} & d \notin \bar{S} \\
a \notin \partial S & b \in \partial S & c \in \partial S & d \notin \partial S
\end{array}
$$

Definition: interior

The interior of $S \subset \mathbb{C}$ is $S:=\left\{z \in \mathbb{C}: \exists \varepsilon>0, D_{\varepsilon}(z) \subset S\right\}$ (also denoted $S^{\text {int }}$).

Definition: closure

The closure of $S \subset \mathbb{C}$ is $\bar{S}:=\left\{z \in \mathbb{C}: \forall \varepsilon>0, D_{\varepsilon}(z) \cap S \neq \varnothing\right\}$.

Definition: boundary

The boundary of $S \subset \mathbb{C}$ is $\partial S:=\bar{S} \backslash \stackrel{\circ}{S}$.

Interior, closure and boundary

$$
\begin{array}{llll}
a \in S & b \in S & c \notin S & d \notin S \\
a \in \dot{S} & b \notin \dot{S} & c \notin \dot{S} & d \notin \dot{S} \\
a \in \bar{S} & b \in \bar{S} & c \in \bar{S} & d \notin \bar{S} \\
a \notin \partial S & b \in \partial S & c \in \partial S & d \notin \partial S
\end{array}
$$

Properties
(1) $\stackrel{\circ}{S} \subset S \subset \bar{S}$
(2) $\bar{S}=S \cup \partial S$
(3) $\dot{S}^{\circ} \cap \partial S=\varnothing$
(4) $\partial S=\left\{z \in \mathbb{C}: \forall \varepsilon>0, D_{\varepsilon}(z) \cap S \neq \varnothing\right.$ and $\left.D_{\varepsilon}(z) \cap S^{c} \neq \varnothing\right\}$
(5) $\partial\left(S^{c}\right)=\partial S$

Open and closed sets

Definition: Open sets
 We say that $S \subset \mathbb{C}$ is open if $\stackrel{S}{=} S$.
 Definition: Closed sets
 We say that $S \subset \mathbb{C}$ is closed if $\bar{S}=S$.

Open and closed sets

Definition: Open sets

We say that $S \subset \mathbb{C}$ is open if $\stackrel{S}{S}=S$.

Definition: Closed sets

We say that $S \subset \mathbb{C}$ is closed if $\bar{S}=S$.

Examples

- $\{z \in \mathbb{C}:|z|<1\}$ is open not closed.
- $\{z \in \mathbb{C}:|z| \leq 1\}$ is closed not open.
- \mathbb{C} is both open and closed.
- $\{z \in \mathbb{C}: \mathfrak{R}(z)=0, \mathfrak{J}(z)>0\}$ is neither open nor closed.

Open and closed sets

Definition: Open sets
We say that $S \subset \mathbb{C}$ is open if $S=S$.

Definition: Closed sets

We say that $S \subset \mathbb{C}$ is closed if $\bar{S}=S$.

Properties

(1) S is open if and only if $S \cap \partial S=\varnothing$
(2) S is open if and only if it is a neighborhood of each of its elements,

$$
\text { i.e. } \forall z \in S, \exists \varepsilon>0, D_{\varepsilon}(z) \subset S
$$

(3) S is closed if and only if $\partial S \subset S$
(4) S is closed if and only if S^{c} is open
(5) Open sets are stable by unions and finite intersections.
(6) Closed sets are stable by intersections and finite unions.

Open and closed sets

Definition: Open sets
We say that $S \subset \mathbb{C}$ is open if $S=S$.

Definition: Closed sets

We say that $S \subset \mathbb{C}$ is closed if $\bar{S}=S$.

Homework

Are the following sets open? closed?
(1) $\{z \in \mathbb{C}: \mathfrak{R}(z) \geq 0\}$
(2) $\{z \in \mathbb{C}: \Re(z)>0\}$
(3) \varnothing
(4) $\{z \in \mathbb{C}:|z|=1\}$

Connectedness - 1

Definition: Path-connectedness

A subset $S \subset \mathbb{C}$ is path-connected if for any $z_{0}, z_{1} \in S$ there exists $\gamma:[0,1] \rightarrow \mathbb{C}$ continuous such that (1) $\forall t \in[0,1], \gamma(t) \in S$ (2) $\gamma(0)=z_{0}{ }^{3} \quad \gamma(1)=z_{1}$.

Intuitively, it means that S is made of only one piece.

Connectedness - 1

Definition: Path-connectedness

A subset $S \subset \mathbb{C}$ is path-connected if for any $z_{0}, z_{1} \in S$ there exists $\gamma:[0,1] \rightarrow \mathbb{C}$ continuous such that (1) $\forall t \in[0,1], \gamma(t) \in S$ (2) $\gamma(0)=z_{0}{ }^{3} \quad \gamma(1)=z_{1}$.

Theorem

An open subset $S \subset \mathbb{C}$ is path-connected if and only if for any $z_{0}, z_{1} \in S$ there exists a polygonal curve from z_{0} to z_{1} which is included in S,
i.e. there exists w_{0}, \ldots, w_{k} such that $\left[w_{i}, w_{i+1}\right] \subset S, w_{0}=z_{0}$ and $w_{k}=z_{1}$.

Connectedness - 1

Definition: Path-connectedness

A subset $S \subset \mathbb{C}$ is path-connected if for any $z_{0}, z_{1} \in S$ there exists $\gamma:[0,1] \rightarrow \mathbb{C}$ continuous such that (1) $\forall t \in[0,1], \gamma(t) \in S$ (2) $\gamma(0)=z_{0}{ }^{3} \quad \gamma(1)=z_{1}$.

Theorem

An open subset $S \subset \mathbb{C}$ is path-connected if and only if for any $z_{0}, z_{1} \in S$ there exists a polygonal curve from z_{0} to z_{1} which is included in S,
i.e. there exists w_{0}, \ldots, w_{k} such that $\left[w_{i}, w_{i+1}\right] \subset S, w_{0}=z_{0}$ and $w_{k}=z_{1}$.

Beware

The openness assumption is very important in the previous theorem.
Indeed, the following set is path-connected but two point on it can't be joined by a polygonal curve staying in the curve.

Connectedness - 2

Definition: Connectedness

We say that an open subset $S \subset \mathbb{C}$ is connected if it is path-connected.

Remark

We defined connectedness only for open sets: there exists a more general notion of connectedness but it coincides with path-connectedness for open sets.

Definition: Domain

We say that a subset $D \subset \mathbb{C}$ is a domain if it is open and connected.

Convex sets and star-shaped sets

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is convex if $\forall z_{0}, z_{1} \in S, \forall t \in[0,1],(1-t) z_{0}+t z_{1} \in S$.

(a) Convex set

(b) Non-convex set

Convex sets and star-shaped sets

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is convex if $\forall z_{0}, z_{1} \in S, \forall t \in[0,1],(1-t) z_{0}+t z_{1} \in S$.

Definition: Star-shaped sets

We say that $S \subset \mathbb{C}$ is star-shaped if $\exists w \in S, \forall z \in S, \forall t \in[0,1],(1-t) w+t z \in S$.

Convex sets and star-shaped sets

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is convex if $\forall z_{0}, z_{1} \in S, \forall t \in[0,1],(1-t) z_{0}+t z_{1} \in S$.
Definition: Star-shaped sets
We say that $S \subset \mathbb{C}$ is star-shaped if $\exists w \in S, \forall z \in S, \forall t \in[0,1],(1-t) w+t z \in S$.

Proposition

Convex and non-empty \Longrightarrow star-shaped \Longrightarrow path-connected.

Beware: \varnothing is convex but not star-shaped.

Convex sets and star-shaped sets

Definition: Convex sets

We say that $S \subset \mathbb{C}$ is convex if $\forall z_{0}, z_{1} \in S, \forall t \in[0,1],(1-t) z_{0}+t z_{1} \in S$.

Definition: Star-shaped sets

We say that $S \subset \mathbb{C}$ is star-shaped if $\exists w \in S, \forall z \in S, \forall t \in[0,1],(1-t) w+t z \in S$.

Proposition

Convex and non-empty \Longrightarrow star-shaped \Longrightarrow path-connected. \rightleftharpoons \Leftarrow

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-1$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$
and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-1$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$
and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

Theorem

φ is a bijection.

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-1$

We set $S^{2}:=\left\{(r, s, t) \in \mathbb{R}^{3}: r^{2}+s^{2}+t^{2}=1\right\}$ and $N=(0,0,1)$ (the north pole of $\left.S^{2}\right)$.
We identify \mathbb{C} with the equatorial plane $P=\{t=0\}$.
We define the stereographic projection with respect to N :

$$
\varphi:\left\{\begin{array}{ccc}
S^{2} \backslash\{N\} & \rightarrow & P \\
M & \mapsto & (N M) \cap P
\end{array}\right.
$$

Theorem

φ is a bijection.

It allows to identify \mathbb{C} with $S^{2} \backslash\{N\}$ and then to see N as the point at infinity, i.e. to identify S^{2} with $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}$.

There are several models for $\widehat{\mathbb{C}}$, this one is called the Riemann sphere.

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-2$
Definition: Neighborhood of the ∞
We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^{c}:=\mathbb{C} \backslash V$ is bounded.

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-2$

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^{c}:=\mathbb{C} \backslash V$ is bounded.

Proposition

$V \subset \mathbb{C}$ is a a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0},\{z \in \mathbb{C}:|z|>R\} \subset V$.

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-2$

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^{c}:=\mathbb{C} \backslash V$ is bounded.

Proposition

$V \subset \mathbb{C}$ is a a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0},\{z \in \mathbb{C}:|z|>R\} \subset V$.
Remember that a set is open if and only if it is a neighborhood of each of its points. Hence, we defined a topology on $\widehat{\mathbb{C}}$. It makes $\varphi: S^{2} \rightarrow \widehat{\mathbb{C}}$ a homeomorphism.
Definition: Open sets of $\widehat{\mathbb{C}}$
A subset $S \subset \widehat{\mathbb{C}}$ is open if

- $S \subset \mathbb{C}$ is open or
- $S=\{\infty\} \cup U$ where $U=K^{c} \subset \mathbb{C}$ is the complement of a compact $K \subset \mathbb{C}$ (closed and bounded).

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-2$

Definition: Neighborhood of the ∞

We say that $V \subset \mathbb{C}$ is a neighborhood of ∞ if $V^{c}:=\mathbb{C} \backslash V$ is bounded.

Proposition

$V \subset \mathbb{C}$ is a a neighborhood of ∞ if and only if $\exists R \in \mathbb{R}_{>0},\{z \in \mathbb{C}:|z|>R\} \subset V$.
Remember that a set is open if and only if it is a neighborhood of each of its points. Hence, we defined a topology on $\widehat{\mathbb{C}}$. It makes $\varphi: S^{2} \rightarrow \widehat{\mathbb{C}}$ a homeomorphism.

Definition: Open sets of $\widehat{\mathbb{C}}$

A subset $S \subset \widehat{\mathbb{C}}$ is open if

- $S \subset \mathbb{C}$ is open or
- $S=\{\infty\} \cup U$ where $U=K^{c} \subset \mathbb{C}$ is the complement of a compact $K \subset \mathbb{C}$ (closed and bounded).

The Riemann sphere is a special case of a general topological construction called the one-point compactification or the Alexandrov compactification.

The extended complex plane: $\widehat{\mathbb{C}}=\mathbb{C} \sqcup\{\infty\}-3$

We may extend the inversion ${ }^{a}$ to $\widehat{\mathbb{C}}$ by inv : $\left\{\begin{array}{rlll}\widehat{\mathbb{C}} & \rightarrow & \widehat{\mathbb{C}} \\ z & \mapsto & z^{-1} \\ 0 & \mapsto & \infty \\ \infty & \mapsto & 0\end{array}\right.$ if $z \in \mathbb{C} \backslash\{0\}$
${ }^{a}$ Actually, it is possible to define division by 0 , what is not possible is to define a multiplicative inverse of 0 .

Remember from last time the generalized circle (or line-circle) equation

$$
\begin{equation*}
a \bar{z} z-\bar{\eta} z-\eta \bar{z}+k=0 \tag{1}
\end{equation*}
$$

where $a, k \in \mathbb{R}$ and $\eta \in \mathbb{C}$ satisfy $|\eta|^{2}-a k>0$.
Set $w=z^{-1}$ (so that we swap 0 and ∞ in $\widehat{\mathbb{C}}$).
Then (1) becomes

$$
k \bar{w} w-\bar{\alpha} w-\alpha \bar{w}+a=0
$$

where $\alpha=\bar{\eta}$.

Not part of MAT334, just a gift 热:

another example of one-point/Alexandrov compactification

The drawing on the left is probably my favourite real algebraic set (Whitney umbrella) and the one on the right is its one-point/Alexandrov compactification.

