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Today’s topic: topology of ℂ
After having tried to convince you that a line is a circle, today I will divide by 0…

LEC0101 website: http://uoft.me/MAT334-LEC0101

How to practice for MAT334:
• Immediate practice questions from the slides.
• ”Problems_to_…” from Quercus.
• Tutorial problems.

Make sure that you have read the Outline/Syllabus and readme pages posted on Quercus, they
contain valuable information such as:
Each Quiz is drawn from the problems for a week (or weeks) in the Quiz description.
(Problems_to_…).

Beware if you look online for inversion: it can mean the complex inversion 𝑧 ↦ 𝑧−1 (we use this
one) but also the geometric inversion, which in terms of complex numbers is given by 𝑧 ↦ 𝑧−1, do
NOT confuse them!
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Disks, neighborhoods and bounded sets

Open disk
The open disk centered at 𝑧0 ∈ ℂ and of radius 𝑟 ∈ ℝ>0 is 𝐷𝑟(𝑧0) ≔ {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧0| < 𝑟}.
(You may also see the name 𝑟-vicinity of 𝑧0.)

Closed disk
The closed disk centered at 𝑧0 ∈ ℂ and of radius 𝑟 ∈ ℝ>0 is 𝐷𝑟(𝑧0) ≔ {𝑧 ∈ ℂ ∶ |𝑧 − 𝑧0| ≤ 𝑟}.

Neighborhood
We say that 𝑆 ⊂ ℂ is a neighborhood of 𝑧0 ∈ ℂ if there exists 𝜀 ∈ ℝ>0 such that 𝐷𝜀(𝑧0) ⊂ 𝑆.

Bounded sets
We say that 𝑆 ⊂ ℂ is bounded if there exists 𝑟 ∈ ℝ>0 such that 𝑆 ⊂ 𝐷𝑟(0).
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Interior, closure and boundary

𝑎

𝑐 𝑏

𝑑

𝑎 ∈ 𝑆 𝑏 ∈ 𝑆 𝑐 ∉ 𝑆 𝑑 ∉ 𝑆

𝑎 ∈ ̊𝑆 𝑏 ∉ ̊𝑆 𝑐 ∉ ̊𝑆 𝑑 ∉ ̊𝑆
𝑎 ∈ 𝑆 𝑏 ∈ 𝑆 𝑐 ∈ 𝑆 𝑑 ∉ 𝑆
𝑎 ∉ 𝜕𝑆 𝑏 ∈ 𝜕𝑆 𝑐 ∈ 𝜕𝑆 𝑑 ∉ 𝜕𝑆

Definition: interior
The interior of 𝑆 ⊂ ℂ is ̊𝑆 ≔ {𝑧 ∈ ℂ ∶ ∃𝜀 > 0, 𝐷𝜀(𝑧) ⊂ 𝑆} (also denoted 𝑆 int).

Definition: closure
The closure of 𝑆 ⊂ ℂ is 𝑆 ≔ {𝑧 ∈ ℂ ∶ ∀𝜀 > 0, 𝐷𝜀(𝑧) ∩ 𝑆 ≠ ∅}.

Definition: boundary
The boundary of 𝑆 ⊂ ℂ is 𝜕𝑆 ≔ 𝑆 ⧵ ̊𝑆.

Properties
1 ̊𝑆 ⊂ 𝑆 ⊂ 𝑆
2 𝑆 = 𝑆 ∪ 𝜕𝑆
3 ̊𝑆 ∩ 𝜕𝑆 = ∅
4 𝜕𝑆 = {𝑧 ∈ ℂ ∶ ∀𝜀 > 0, 𝐷𝜀(𝑧) ∩ 𝑆 ≠ ∅ and 𝐷𝜀(𝑧) ∩ 𝑆𝑐 ≠ ∅}
5 𝜕 (𝑆𝑐) = 𝜕𝑆
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Open and closed sets
Definition: Open sets
We say that 𝑆 ⊂ ℂ is open if ̊𝑆 = 𝑆.

Definition: Closed sets
We say that 𝑆 ⊂ ℂ is closed if 𝑆 = 𝑆.

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Sep 18, 2020 5 / 11



Open and closed sets
Definition: Open sets
We say that 𝑆 ⊂ ℂ is open if ̊𝑆 = 𝑆.

Definition: Closed sets
We say that 𝑆 ⊂ ℂ is closed if 𝑆 = 𝑆.

Examples
• {𝑧 ∈ ℂ ∶ |𝑧| < 1} is open not closed.
• {𝑧 ∈ ℂ ∶ |𝑧| ≤ 1} is closed not open.
• ℂ is both open and closed.
• {𝑧 ∈ ℂ ∶ ℜ(𝑧) = 0, ℑ(𝑧) > 0} is neither open nor closed.
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Open and closed sets
Definition: Open sets
We say that 𝑆 ⊂ ℂ is open if ̊𝑆 = 𝑆.

Definition: Closed sets
We say that 𝑆 ⊂ ℂ is closed if 𝑆 = 𝑆.

Properties
1 𝑆 is open if and only if 𝑆 ∩ 𝜕𝑆 = ∅
2 𝑆 is open if and only if it is a neighborhood of each of its elements,

i.e. ∀𝑧 ∈ 𝑆, ∃𝜀 > 0, 𝐷𝜀(𝑧) ⊂ 𝑆
3 𝑆 is closed if and only if 𝜕𝑆 ⊂ 𝑆
4 𝑆 is closed if and only if 𝑆𝑐 is open
5 Open sets are stable by unions and finite intersections.
6 Closed sets are stable by intersections and finite unions.
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Open and closed sets
Definition: Open sets
We say that 𝑆 ⊂ ℂ is open if ̊𝑆 = 𝑆.

Definition: Closed sets
We say that 𝑆 ⊂ ℂ is closed if 𝑆 = 𝑆.

Homework
Are the following sets open? closed?

1 {𝑧 ∈ ℂ ∶ ℜ(𝑧) ≥ 0}
2 {𝑧 ∈ ℂ ∶ ℜ(𝑧) > 0}
3 ∅
4 {𝑧 ∈ ℂ ∶ |𝑧| = 1}
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Connectedness – 1

Definition: Path-connectedness
A subset 𝑆 ⊂ ℂ is path-connected if for any 𝑧0, 𝑧1 ∈ 𝑆 there exists 𝛾 ∶ [0, 1] → ℂ continuous such
that 1 ∀𝑡 ∈ [0, 1], 𝛾(𝑡) ∈ 𝑆 2 𝛾(0) = 𝑧0 3 𝛾(1) = 𝑧1.

Theorem
An open subset 𝑆 ⊂ ℂ is path-connected if and only if for any 𝑧0, 𝑧1 ∈ 𝑆 there exists a polygonal
curve from 𝑧0 to 𝑧1 which is included in 𝑆,
i.e. there exists 𝑤0, … , 𝑤𝑘 such that [𝑤𝑖, 𝑤𝑖+1] ⊂ 𝑆, 𝑤0 = 𝑧0 and 𝑤𝑘 = 𝑧1.

𝑧0 𝑧1
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i.e. there exists 𝑤0, … , 𝑤𝑘 such that [𝑤𝑖, 𝑤𝑖+1] ⊂ 𝑆, 𝑤0 = 𝑧0 and 𝑤𝑘 = 𝑧1.

Beware
The openness assumption is very important in the previous theorem.
Indeed, the following set is path-connected but two point on it can’t be joined by a polygonal
curve staying in the curve.
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Connectedness – 2

Definition: Connectedness
We say that an open subset 𝑆 ⊂ ℂ is connected if it is path-connected.

Remark
We defined connectedness only for open sets: there exists a more general notion of
connectedness but it coincides with path-connectedness for open sets.

Definition: Domain
We say that a subset 𝐷 ⊂ ℂ is a domain if it is open and connected.
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Convex sets and star-shaped sets
Definition: Convex sets
We say that 𝑆 ⊂ ℂ is convex if ∀𝑧0, 𝑧1 ∈ 𝑆, ∀𝑡 ∈ [0, 1], (1 − 𝑡)𝑧0 + 𝑡𝑧1 ∈ 𝑆.

(a) Convex set (b) Non-convex set
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Y⟸ Y⟸
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The extended complex plane: ℂ̂ = ℂ ⊔ {∞} – 1
We set 𝑆2 ≔ {(𝑟, 𝑠, 𝑡) ∈ ℝ3 ∶ 𝑟2 + 𝑠2 + 𝑡2 = 1}
and 𝑁 = (0, 0, 1) (the north pole of 𝑆2).
We identify ℂ with the equatorial plane 𝑃 = {𝑡 = 0}.
We define the stereographic projection with respect to 𝑁 :

𝜑 ∶ {
𝑆2 ⧵ {𝑁} → 𝑃

𝑀 ↦ (𝑁𝑀) ∩ 𝑃

Theorem
𝜑 is a bijection.

It allows to identify ℂ with 𝑆2 ⧵ {𝑁} and then to see 𝑁 as the point at infinity, i.e. to identify 𝑆2

with ℂ̂ = ℂ ⊔ {∞}.

There are several models for ℂ̂, this one is called the Riemann sphere.
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The extended complex plane: ℂ̂ = ℂ ⊔ {∞} – 2

Definition: Neighborhood of the ∞
We say that 𝑉 ⊂ ℂ is a neighborhood of ∞ if 𝑉 𝑐 ≔ ℂ ⧵ 𝑉 is bounded.

Proposition
𝑉 ⊂ ℂ is a a neighborhood of ∞ if and only if ∃𝑅 ∈ ℝ>0, {𝑧 ∈ ℂ ∶ |𝑧| > 𝑅} ⊂ 𝑉 .

Remember that a set is open if and only if it is a neighborhood of each of its points. Hence, we
defined a topology on ℂ̂. It makes 𝜑 ∶ 𝑆2 → ℂ̂ a homeomorphism.

Definition: Open sets of ℂ̂
A subset 𝑆 ⊂ ℂ̂ is open if
• 𝑆 ⊂ ℂ is open or
• 𝑆 = {∞} ∪ 𝑈 where 𝑈 = 𝐾𝑐 ⊂ ℂ is the complement of a compact 𝐾 ⊂ ℂ (closed and bounded).

The Riemann sphere is a special case of a general topological construction called the one-point
compactification or the Alexandrov compactification.
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The extended complex plane: ℂ̂ = ℂ ⊔ {∞} – 3

We may extend the inversiona to ℂ̂ by inv ∶
⎧
⎪
⎨
⎪
⎩

ℂ̂ → ℂ̂
𝑧 ↦ 𝑧−1 if 𝑧 ∈ ℂ ⧵ {0}
0 ↦ ∞
∞ ↦ 0

aActually, it is possible to define division by 0, what is not possible is to define a multiplicative inverse of 0.

Remember from last time the generalized circle (or line-circle) equation

𝑎𝑧𝑧 − 𝜂𝑧 − 𝜂𝑧 + 𝑘 = 0 (1)

where 𝑎, 𝑘 ∈ ℝ and 𝜂 ∈ ℂ satisfy |𝜂|2 − 𝑎𝑘 > 0.

Set 𝑤 = 𝑧−1 (so that we swap 0 and ∞ in ℂ̂).
Then (1) becomes

𝑘𝑤𝑤 − 𝛼𝑤 − 𝛼𝑤 + 𝑎 = 0
where 𝛼 = 𝜂.
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Not part of MAT334, just a gift :
another example of one-point/Alexandrov compactification

The drawing on the left is probably my favourite real algebraic set (Whitney umbrella) and the
one on the right is its one-point/Alexandrov compactification.


