Geometry in the complex plane

September $16^{\text {th }}, 2020$

Today's topic: Geometry in the complex plane

 I'll try to convince you that a line is a circle...
How to practice for MAT334:

- Immediate practice questions from the slides.
- "Problems_to_..." from Quercus.
- Tutorial problems.

Remember that practice makes perfect. ${ }^{1}$
Make sure that you have read the Outline/Syllabus and readme pages posted on Quercus, they contain valuable information such as:
Each Quiz is drawn from the problems for a week (or weeks) in the Quiz description. (Problems_to_...).

[^0]
Dot product and norm

Dot product and norm

Dot product

For $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, we have

$$
\mathfrak{R}\left(\overline{z_{1}} z_{2}\right)=\Re\left(z_{1} \overline{z_{2}}\right)=x_{1} x_{2}+y_{1} y_{2}=\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)
$$

Dot product and norm

Dot product

For $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, we have

$$
\mathfrak{R}\left(\overline{z_{1}} z_{2}\right)=\Re\left(z_{1} \overline{z_{2}}\right)=x_{1} x_{2}+y_{1} y_{2}=\left(x_{1}, y_{1}\right) \cdot\left(x_{2}, y_{2}\right)
$$

Norm

For $z=x+i y$, we have $|z|=\sqrt{x^{2}+y^{2}}=\|(x, y)\|$.

Straight lines

Straight lines

Equation of a straight line - 1

Lines admit equations in z of the form

$$
\mathfrak{R}(\bar{w} z)=k
$$

where $w \in \mathbb{C} \backslash\{0\}$ and $k \in \mathbb{R}$.

Straight lines

Equation of a straight line - 1

Lines admit equations in z of the form

$$
\mathfrak{R}(\bar{w} z)=k
$$

where $w \in \mathbb{C} \backslash\{0\}$ and $k \in \mathbb{R}$.
Equation of a straight line - 2
Lines admit equations in z of the form

$$
\bar{w} z+w \bar{z}=r
$$

where $w \in \mathbb{C} \backslash\{0\}$ and $r \in \mathbb{R}$.

Straight lines

Equation of a straight line - 1

Lines admit equations in z of the form

$$
\mathfrak{R}(\bar{w} z)=k
$$

where $w \in \mathbb{C} \backslash\{0\}$ and $k \in \mathbb{R}$.

Equation of a straight line - 2

Lines admit equations in z of the form

$$
\bar{w} z+w \bar{z}=r
$$

where $w \in \mathbb{C} \backslash\{0\}$ and $r \in \mathbb{R}$.

In both cases $\omega=a+i b$ corresponds to the coordinates of a vector (a, b) normal to the line. Note that $r=2 k$ if you pass from one equation to the other one with the same w.

Straight lines

Equation of a straight line - 1

Lines admit equations in z of the form

$$
\mathfrak{R}(\bar{w} z)=k
$$

where $w \in \mathbb{C} \backslash\{0\}$ and $k \in \mathbb{R}$.

Equation of a straight line - 2

Lines admit equations in z of the form

$$
\bar{w} z+w \bar{z}=r
$$

where $w \in \mathbb{C} \backslash\{0\}$ and $r \in \mathbb{R}$.
In both cases $\omega=a+i b$ corresponds to the coordinates of a vector (a, b) normal to the line. Note that $r=2 k$ if you pass from one equation to the other one with the same w.

Homework

Give a complex equation of the line through 1 and i.

Circles

Equation of a circle

The circle centered at $w \in \mathbb{C}$ and of radius $r \in \mathbb{R}_{>0}$ is described by

$$
|z-w|=r
$$

or equivalently

$$
z \bar{z}-\bar{w} z-w \bar{z}=r^{2}-|w|^{2}
$$

Homework

Give a complex equation of the circle centered at $1+2 i$ and passing through i.

Generalized circles (or the circle-line equation)

Circle-line equation

The equation

$$
a \bar{z} z-\bar{\eta} z-\eta \bar{z}+k=0
$$

where $a, k \in \mathbb{R}$ and $\eta \in \mathbb{C}$ satisfy $|\eta|^{2}-a k>0$ describes

- A line if $a=0$,
- A circle if $a \neq 0$.

Conversely, any circle or line admits an equation of this form.
Intuitively, a line is a degenerate circle, see for instance the following family of circles centered at $0+i r$ and radius r when r goes to $+\infty$.

This statement will be made precise next lecture.

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius of Perga (c. 240 BC - c. 190 BC) proposed to define a circle as a set of points M in the plane for which the ratio $M A / M B$ is constant (for A and B two given points).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

w_{1}

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

w_{1}

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$

The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Apollonius' circles

Apollonius' circles associated to $w_{1}, w_{2} \in \mathbb{C}$
The equation $\quad\left|z-w_{1}\right|=\rho\left|z-w_{2}\right| \quad$ where $w_{1}, w_{2} \in \mathbb{C}$ and $\rho \in \mathbb{R}_{>0}$ describes

- A circle if $\rho \neq 1$,
- A line if $\rho=1$ (the bisector of the segment line from w_{1} to w_{2}).

Homework

Study the set of points z such that:
(1) $|z-i|=|z-1|$
(2) $|z-i|=2|z-1|$

Homework

Read pp.18-20.

Transformations: translation

Translation by $w \in \mathbb{C}$

$$
\tau_{w}:\left\{\begin{array}{ccc}
\mathbb{C} & \rightarrow & \mathbb{C} \\
z & \mapsto & z+w
\end{array}\right.
$$

A translation maps lines to lines and circles to circles.

Transformations: rotations

Rotations centered at $z_{0} \in \mathbb{C}$ with angle $\theta \in \mathbb{R}$

$$
R z_{0}, \theta:\left\{\begin{array}{ccc}
\mathbb{C} & \rightarrow & \mathbb{C} \\
z & \mapsto & \left(z-z_{0}\right) e^{i \theta}+z_{0}
\end{array}\right.
$$

A rotation maps lines to lines and circles to circles.

Transformations: scaling

Scaling by $\lambda \in \mathbb{R}_{>0}$

$$
s_{\lambda}:\left\{\begin{array}{lll}
\mathbb{C} & \rightarrow & \mathbb{C} \\
z & \mapsto & \lambda z
\end{array}\right.
$$

A scaling maps lines to lines and circles to circles.

Transformations: inversion².

Inversion

$$
\operatorname{inv}:\left\{\begin{array}{ccc}
\mathbb{C} \backslash\{0\} & \rightarrow & \mathbb{C} \backslash\{0\} \\
z & \mapsto & z^{-1}
\end{array}\right.
$$

$$
\begin{aligned}
& \left|z^{-1}\right|=|z|^{-1} \\
& \arg \left(z^{-1}\right) \equiv-\arg (z) \bmod 2 \pi
\end{aligned}
$$

The inversion maps \{lines, circles\} to \{lines, circles\}
Beware: it may maps a line to a circle and vice-versa.

Transformations: inversion².

Inversion

$$
\operatorname{inv}:\left\{\begin{array}{ccc}
\mathbb{C} \backslash\{0\} & \rightarrow & \mathbb{C} \backslash\{0\} \\
z & \mapsto & z^{-1}
\end{array}\right.
$$

Homework

(1) What's the image of a line passing through the origin?
(2) What's the image of a circle centered at the origin?
(3) What's the image of a circle passing through the origin?
(4) What's the image of a line not passing through the origin?

[^1]
[^0]: ${ }^{1}$ Or in French: C'est en forgeant qu'on devient forgeron.

[^1]: $2_{\text {It shouldn't be confused with the geometric inversion } z \mapsto(\bar{z})^{-1}, ~}^{\text {den }}$

