MAT334H1-F – LEC0101 Complex Variables

The complex plane $\mathbb C$ – continuation

September 14th, 2020

Reviews from last lecture

- Website with the material used in this section: http://uoft.me/MAT334-LEC0101
- Informally, C = {x + iy : x, y ∈ R} where i² = −1 with addition and multiplication which behave as you expect them to.
- \mathbb{C} is a 2-dimension \mathbb{R} -vector space spanned by $\langle 1, i \rangle$.

•
$$\mathbb{C}$$
 is a field and for $z = x + iy \in \mathbb{C} \setminus \{0\}, z^{-1} = \frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$.

• Real part of
$$z = x + iy \in \mathbb{C}$$
: $\Re(z) \coloneqq x$ (or $\operatorname{Re}(z) \coloneqq x$).
Imaginary part of $z = x + iy \in \mathbb{C}$: $\Im(z) \coloneqq y$ (or $\operatorname{Im}(z) \coloneqq y$).

The modulus (or magnitude, or absolute value) of $z = x + iy \in \mathbb{C}$ is defined by

$$|z| \coloneqq \sqrt{x^2 + y^2}$$

The modulus (or magnitude, or absolute value) of $z = x + iy \in \mathbb{C}$ is defined by

$$|z| \coloneqq \sqrt{x^2 + y^2}$$

• $|z| \in \mathbb{R}_{\geq 0}$

The modulus (or magnitude, or absolute value) of $z = x + iy \in \mathbb{C}$ is defined by

$$|z| \coloneqq \sqrt{x^2 + y^2}$$

- $|z| \in \mathbb{R}_{\geq 0}$
- The modulus of x + iy is the Euclidean norm of (x, y), ie |x + iy| = ||(x, y)||, it is the distance to the origin.

The *modulus* (or *magnitude*, or *absolute value*) of $z = x + iy \in \mathbb{C}$ is defined by

$$|z| \coloneqq \sqrt{x^2 + y^2}$$

- $|z| \in \mathbb{R}_{\geq 0}$
- The modulus of x + iy is the Euclidean norm of (x, y), ie |x + iy| = ||(x, y)||, it is the distance to the origin.
- For a real (i.e. $\Im(z) = 0$), it coincides with the usual absolute value: |x + i0| = |x|

Properties of the modulus

- $\forall z \in \mathbb{C}, \ z = 0 \Leftrightarrow |z| = 0$
- $\forall z \in \mathbb{C}, |z|^2 = z\overline{z} \quad \left(\text{or } |z| = \sqrt{z\overline{z}} \right)$
- $\forall z_1, z_2 \in \mathbb{C}, |z_1 + z_2| \le |z_1| + |z_2|$ (Triangle inequality)
- $\forall z_1, z_2 \in \mathbb{C}, ||z_1| |z_2|| \le |z_1 z_2|$ (Reverse triangle inequality)
- $\forall z_1, z_2 \in \mathbb{C}, |z_1 z_2| = |z_1| |z_2|$
- $\forall z_1 \in \mathbb{C}, \forall z_2 \in \mathbb{C} \setminus \{0\}, \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$
- $\forall z \in \mathbb{C}, \forall n \in \mathbb{Z}, |z^n| = |z|^n$
- $\forall z \in \mathbb{C}, |\overline{z}| = |z|$
- $\forall z \in \mathbb{C} \setminus \{0\}, \ \frac{1}{z} = \frac{\overline{z}}{|z|^2}$

In general¹, $|z_1 + z_2| \neq |z_1| + |z_2|$. For example $|1 + i| = \sqrt{2} \neq 2 = |1| + |i|$.

¹There is equality if and only if there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that $z_1 = \lambda z_2$ or $z_2 = \lambda z_1$ (Homework).

Theorem

For $z \in \mathbb{C} \setminus \{0\}$, there exists a unique $\theta \in [0, 2\pi)$ such that $z = |z| (\cos \theta + i \sin \theta)$.

It is called the *principal argument of* z and denoted by Arg(z).

Beware: the argument is only defined for $z \neq 0$.

The choice of the interval $[0, 2\pi)$ is not that important, we could have picked $[-\pi, \pi)$ or any other half-open interval of length 2π . In practice, it is common to pick the interval simplifying the computations.

Polar representation: argument – 1

Theorem

For $z \in \mathbb{C} \setminus \{0\}$, there exists a unique $\theta \in [0, 2\pi)$ such that $z = |z| (\cos \theta + i \sin \theta)$.

It is called the *principal argument of* z and denoted by Arg(z).

Beware – the cap is important!

If we allow $\theta \in \mathbb{R}$, then it is only defined modulo 2π and we say that θ is **an** argument of *z*. Then we use the notation $\arg(z)$ (only defined up to 2π , i.e. $\arg(z) = \theta + 2\pi n$ for some $n \in \mathbb{Z}$).

Polar representation: argument – 1

Theorem

For $z \in \mathbb{C} \setminus \{0\}$, there exists a unique $\theta \in [0, 2\pi)$ such that $z = |z| (\cos \theta + i \sin \theta)$.

It is called the *principal argument of* z and denoted by Arg(z).

Beware – the cap is important!

If we allow $\theta \in \mathbb{R}$, then it is only defined modulo 2π and we say that θ is **an** argument of *z*. Then we use the notation $\arg(z)$ (only defined up to 2π , i.e. $\arg(z) = \theta + 2\pi n$ for some $n \in \mathbb{Z}$).

Polar representation: argument – 2

Properties of the argument

- $\forall z \in \mathbb{C} \setminus \{0\}, \arg(\overline{z}) \equiv -\arg(z) \mod 2\pi$
- $\forall z_1, z_2 \in \mathbb{C} \setminus \{0\}, \arg(z_1 z_2) \equiv \arg(z_1) + \arg(z_2) \mod 2\pi$
- $\forall z_1, z_2 \in \mathbb{C} \setminus \{0\}, \arg\left(\frac{z_1}{z_2}\right) \equiv \arg(z_1) \arg(z_2) \mod 2\pi$
- $\forall z \in \mathbb{C} \setminus \{0\}, \forall n \in \mathbb{Z}, \arg(z^n) \equiv n \arg(z) \mod 2\pi$

Again, the cap and (more especially) the modulo are important

In general $\operatorname{Arg}(z_1z_2) \neq \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2)$. Indeed, for $z_1 = z_2 = -1$, $\operatorname{Arg}(z_1z_2) = \operatorname{Arg}(1) = 0 \neq 2\pi = \operatorname{Arg}(z_1) + \operatorname{Arg}(z_1)$.

Homework

Write in the form x + iy: the complex number of modulus 3 and argument $\frac{\pi}{3}$. Write in polar representation (what are the modulus and argument?): $\frac{\sqrt{6}-i\sqrt{2}}{2}$

Theorem: De Moivre's formula

 $\forall \theta \in \mathbb{R}, \, \forall n \in \mathbb{Z}, \, (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

Homework

Find formulae respectively for cos(3t) and sin(3t) in terms of cos(t) and sin(t).

Exponential representation - 1

Definition

For $\theta \in \mathbb{R}$, we set $e^{i\theta} \coloneqq \cos \theta + i \sin \theta$.

Then we may lighten the notations for the polar representation and De Moivre's formula: $z = |z|e^{i \arg(z)}$ and $(e^{i\theta})^n = e^{in\theta}$

Homework

Prove that $\forall \theta_1, \theta_2 \in \mathbb{R}, e^{i(\theta_1 + \theta_2)} = e^{i\theta_1}e^{i\theta_2}$

Definition

For $x, y \in \mathbb{R}$, we set $e^{x+iy} \coloneqq e^x e^{iy}$.

Homework

Prove that $\forall z_1, z_2 \in \mathbb{C}, e^{z_1+z_2} = e^{z_1}e^{z_2}$.

Proposition: Euler's formulae

$$\Re(e^{i\theta}) = \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $\Im(e^{i\theta}) = \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Homework

Linearize $\cos^3 t$ (i.e. find an expression with no power of trigonometric functions).

n-th roots

Definition: *n*-th root

Let $z \in \mathbb{C}$ and $n \in \mathbb{N}_{>0}$. We say that $w \in \mathbb{C}$ is a *n*-th root of z if $w^n = z$.

Theorem

Let $z \in \mathbb{C} \setminus \{0\}$. Then *z* admits exactly *n n*-th roots. More precisely, if $z = \rho e^{i\theta}$, $\rho > 0$, then the *n*-th roots of *z* are exactly

$$\rho^{1/n}e^{i\left(\frac{\theta}{n}+\frac{2k\pi}{n}\right)}, \ k=0,\ldots,n-1$$

Homework

Find the square roots of: 1, -1, i, 1 + i. Find the cubic roots of: 1, 2 - 2i.

Homework

Study the *r*-th roots of $z \in \mathbb{C} \setminus \{0\}$ where $r \in \mathbb{Q}$. (*Hint: write* r = p/q where gcd(p,q) = 1)

Square roots – 1

How to compute the square roots of $z = a + ib \neq 0$ without using exponential representation? Let w = x + iy then

$$w^{2} = z \Leftrightarrow \begin{cases} w^{2} = z \\ |w|^{2} = |z| \end{cases} \Leftrightarrow \begin{cases} x^{2} - y^{2} + 2ixy = a + ib \\ x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \end{cases} \Leftrightarrow \begin{cases} x^{2} - y^{2} = a \\ 2xy = b \\ x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \end{cases}$$

The last system is easy to solve: the first and last equations give 4 possible couples (x, y) and the second one allows to restrict to the expected 2 (using the sign).

Square roots – 1

How to compute the square roots of $z = a + ib \neq 0$ without using exponential representation? Let w = x + iy then

$$w^{2} = z \Leftrightarrow \begin{cases} w^{2} = z \\ |w|^{2} = |z| \end{cases} \Leftrightarrow \begin{cases} x^{2} - y^{2} + 2ixy = a + ib \\ x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \end{cases} \Leftrightarrow \begin{cases} x^{2} - y^{2} = a \\ 2xy = b \\ x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \end{cases}$$

The last system is easy to solve: the first and last equations give 4 possible couples (x, y) and the second one allows to restrict to the expected 2 (using the sign).

For
$$z = 8 - 6i$$
, we get
$$\begin{cases} x^2 - y^2 = 8\\ 2xy = -6\\ x^2 + y^2 = 10 \end{cases} \Leftrightarrow \begin{cases} x^2 = 9\\ y^2 = 1\\ 2xy = -6 \end{cases} \Leftrightarrow \begin{cases} x = \pm 3\\ y = \pm 1\\ 2xy = -6 \end{cases}$$

So the solutions are (3, -1) and (-3, 1) since *x* and *y* have opposite signs thanks to xy < 0. Hence the square roots of 8 - 6i are -3 + i and 3 - i.

Homework

Compute the square roots of 1+i/√2.
Deduce the values of cos π/8 and sin π/8.