The complex plane \mathbb{C} - CONTINUATION

September $14^{\text {th }}, 2020$

Reviews from last lecture

- Website with the material used in this section: http://uoft.me/MAT334-LEC0101
- Informally, $\mathbb{C}=\{x+i y: x, y \in \mathbb{R}\}$ where $i^{2}=-1$ with addition and multiplication which behave as you expect them to.
- \mathbb{C} is a 2 -dimension \mathbb{R}-vector space spanned by $\langle 1, i\rangle$.
- \mathbb{C} is a field and for $z=x+i y \in \mathbb{C} \backslash\{0\}, z^{-1}=\frac{1}{z}=\frac{\bar{z}}{z \bar{z}}=\frac{x}{x^{2}+y^{2}}-i \frac{y}{x^{2}+y^{2}}$.
- Real part of $z=x+i y \in \mathbb{C}: \quad \Re(z):=x \quad($ or $\operatorname{Re}(z):=x)$. Imaginary part of $z=x+i y \in \mathbb{C}: \quad \mathfrak{F}(z):=y \quad($ or $\operatorname{Im}(z):=y)$.
- Given $z=x+i y \in \mathbb{C}$, we define the (complex) conjugate of z by $\bar{z}:=x-i y$.
- $\forall z \in \mathbb{C}, \overline{\bar{z}}=z$
- $\forall z_{1}, z_{2} \in \mathbb{C}, \overline{z_{1}+z_{2}}=\overline{z_{1}}+\overline{z_{2}}$ and $\overline{z_{1} z_{2}}=\overline{z_{1}} \cdot \overline{z_{2}}$
- Let $z=x+i y \in \mathbb{C}$ then $z \bar{z}=x^{2}+y^{2}$
- $\forall z \in \mathbb{C}, \mathfrak{R}(z)=\frac{z+\bar{z}}{2}$ and $\mathfrak{J}(z)=\frac{z-\bar{z}}{2 i}$

Polar representation: modulus - 1

Definition

The modulus (or magnitude, or absolute value) of $z=x+i y \in \mathbb{C}$ is defined by

$$
|z|:=\sqrt{x^{2}+y^{2}}
$$

Polar representation: modulus - 1

Definition

The modulus (or magnitude, or absolute value) of $z=x+i y \in \mathbb{C}$ is defined by

$$
|z|:=\sqrt{x^{2}+y^{2}}
$$

- $|z| \in \mathbb{R}_{\geq 0}$

Polar representation: modulus - 1

Definition

The modulus (or magnitude, or absolute value) of $z=x+i y \in \mathbb{C}$ is defined by

$$
|z|:=\sqrt{x^{2}+y^{2}}
$$

- $|z| \in \mathbb{R}_{\geq 0}$
- The modulus of $x+i y$ is the Euclidean norm of (x, y), ie $|x+i y|=\|(x, y)\|$, it is the distance to the origin.

Polar representation: modulus - 1

Definition

The modulus (or magnitude, or absolute value) of $z=x+i y \in \mathbb{C}$ is defined by

$$
|z|:=\sqrt{x^{2}+y^{2}}
$$

- $|z| \in \mathbb{R}_{\geq 0}$
- The modulus of $x+i y$ is the Euclidean norm of (x, y), ie $|x+i y|=\|(x, y)\|$, it is the distance to the origin.
- For a real (i.e. $\mathfrak{J}(z)=0$), it coincides with the usual absolute value: $|x+i 0|=|x|$

Polar representation: modulus - 2

Properties of the modulus

- $\forall z \in \mathbb{C}, z=0 \Leftrightarrow|z|=0$
- $\forall z \in \mathbb{C},|z|^{2}=z \bar{z} \quad($ or $|z|=\sqrt{z \bar{z}})$
- $\forall z_{1}, z_{2} \in \mathbb{C},\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right| \quad$ (Triangle inequality)
- $\forall z_{1}, z_{2} \in \mathbb{C},\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right| \quad$ (Reverse triangle inequality)
- $\forall z_{1}, z_{2} \in \mathbb{C},\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|$
- $\forall z_{1} \in \mathbb{C}, \forall z_{2} \in \mathbb{C} \backslash\{0\},\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$
- $\forall z \in \mathbb{C}, \forall n \in \mathbb{Z},\left|z^{n}\right|=|z|^{n}$
- $\forall z \in \mathbb{C},|\bar{z}|=|z|$
- $\forall z \in \mathbb{C} \backslash\{0\}, \frac{1}{z}=\frac{\bar{z}}{|z|^{2}}$

In general ${ }^{1},\left|z_{1}+z_{2}\right| \neq\left|z_{1}\right|+\left|z_{2}\right|$. For example $|1+i|=\sqrt{2} \neq 2=|1|+|i|$.
${ }^{1}$ There is equality if and only if there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that $z_{1}=\lambda z_{2}$ or $z_{2}=\lambda z_{1}$ (Homework).

Polar representation: argument - 1

Theorem

For $z \in \mathbb{C} \backslash\{0\}$, there exists a unique $\theta \in[0,2 \pi)$ such that $z=|z|(\cos \theta+i \sin \theta)$.
It is called the principal argument of z and denoted by $\operatorname{Arg}(z)$.
Beware: the argument is only defined for $z \neq 0$.
The choice of the interval $[0,2 \pi)$ is not that important, we could have picked $[-\pi, \pi)$ or any other half-open interval of length 2π. In practice, it is common to pick the interval simplifying the computations.

Polar representation: argument - 1

Theorem

For $z \in \mathbb{C} \backslash\{0\}$, there exists a unique $\theta \in[0,2 \pi)$ such that $z=|z|(\cos \theta+i \sin \theta)$.
It is called the principal argument of z and denoted by $\operatorname{Arg}(z)$.

Beware - the cap is important!

If we allow $\theta \in \mathbb{R}$, then it is only defined modulo 2π and we say that θ is an argument of z. Then we use the notation $\arg (z)$ (only defined up to 2π, i.e. $\arg (z)=\theta+2 \pi n$ for some $n \in \mathbb{Z}$).

Polar representation: argument - 1

Theorem

For $z \in \mathbb{C} \backslash\{0\}$, there exists a unique $\theta \in[0,2 \pi)$ such that $z=|z|(\cos \theta+i \sin \theta)$.
It is called the principal argument of z and denoted by $\operatorname{Arg}(z)$.

Beware - the cap is important!

If we allow $\theta \in \mathbb{R}$, then it is only defined modulo 2π and we say that θ is an argument of z.
Then we use the notation $\arg (z)$ (only defined up to 2π, i.e. $\arg (z)=\theta+2 \pi n$ for some $n \in \mathbb{Z}$).

$$
\cos \theta=\frac{x}{|z|}
$$

Some useful formulae:

$$
\begin{aligned}
& \sin \theta=\frac{y}{|z|} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

Polar representation: argument - 2

Properties of the argument

- $\forall z \in \mathbb{C} \backslash\{0\}, \arg (\bar{z}) \equiv-\arg (z) \bmod 2 \pi$
- $\forall z_{1}, z_{2} \in \mathbb{C} \backslash\{0\}, \arg \left(z_{1} z_{2}\right) \equiv \arg \left(z_{1}\right)+\arg \left(z_{2}\right) \bmod 2 \pi$
- $\forall z_{1}, z_{2} \in \mathbb{C} \backslash\{0\}, \arg \left(\frac{z_{1}}{z_{2}}\right) \equiv \arg \left(z_{1}\right)-\arg \left(z_{2}\right) \bmod 2 \pi$
- $\forall z \in \mathbb{C} \backslash\{0\}, \forall n \in \mathbb{Z}, \arg \left(z^{n}\right) \equiv n \arg (z) \bmod 2 \pi$

Again, the cap and (more especially) the modulo are important

In general $\operatorname{Arg}\left(z_{1} z_{2}\right) \neq \operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$.
Indeed, for $z_{1}=z_{2}=-1, \operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}(1)=0 \neq 2 \pi=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{1}\right)$.

Homework

Write in the form $x+i y$: the complex number of modulus 3 and argument $\frac{\pi}{3}$.
Write in polar representation (what are the modulus and argument?): $\frac{\sqrt{6}-i \sqrt{2}}{2}$

De Moivre's formula

$$
\begin{aligned}
& \text { Theorem: De Moivre's formula } \\
& \qquad \forall \theta \in \mathbb{R}, \forall n \in \mathbb{Z},(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
\end{aligned}
$$

Homework

Find formulae respectively for $\cos (3 t)$ and $\sin (3 t)$ in terms of $\cos (t)$ and $\sin (t)$.

Exponential representation - 1

Definition

For $\theta \in \mathbb{R}$, we set $e^{i \theta}:=\cos \theta+i \sin \theta$.

Then we may lighten the notations for the polar representation and De Moivre's formula:

$$
z=|z| e^{i \arg (z)} \quad \text { and } \quad\left(e^{i \theta}\right)^{n}=e^{i n \theta}
$$

Homework

Prove that $\forall \theta_{1}, \theta_{2} \in \mathbb{R}, e^{i\left(\theta_{1}+\theta_{2}\right)}=e^{i \theta_{1}} e^{i \theta_{2}}$

Definition

For $x, y \in \mathbb{R}$, we set $e^{x+i y}:=e^{x} e^{i y}$.

Homework

Prove that $\forall z_{1}, z_{2} \in \mathbb{C}, e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$.

Exponential representation - 2

Proposition: Euler's formulae

$$
\mathfrak{R}\left(e^{i \theta}\right)=\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \quad \mathfrak{F}\left(e^{i \theta}\right)=\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}
$$

Homework

Linearize $\cos ^{3} t$ (i.e. find an expression with no power of trigonometric functions).

n-th roots

Definition: n-th root

Let $z \in \mathbb{C}$ and $n \in \mathbb{N}_{>0}$. We say that $w \in \mathbb{C}$ is a n-th root of z if $w^{n}=z$.

Theorem

Let $z \in \mathbb{C} \backslash\{0\}$. Then z admits exactly n-th roots.
More precisely, if $z=\rho e^{i \theta}, \rho>0$, then the n-th roots of z are exactly

$$
\rho^{1 / n} e^{i\left(\frac{\theta}{n}+\frac{2 k \pi}{n}\right)}, k=0, \ldots, n-1
$$

Homework

Find the square roots of: $1,-1, i, 1+i$.
Find the cubic roots of: $1,2-2 i$.

Homework

Study the r-th roots of $z \in \mathbb{C} \backslash\{0\}$ where $r \in \mathbb{Q}$. (Hint: write $r=p / q$ where $\operatorname{gcd}(p, q)=1$)

Square roots - 1

How to compute the square roots of $z=a+i b \neq 0$ without using exponential representation? Let $w=x+i y$ then

$$
w^{2}=z \Leftrightarrow\left\{\begin{array} { l }
{ w ^ { 2 } = z } \\
{ | w | ^ { 2 } = | z | }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ x ^ { 2 } - y ^ { 2 } + 2 i x y = a + i b } \\
{ x ^ { 2 } + y ^ { 2 } = \sqrt { a ^ { 2 } + b ^ { 2 } } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x^{2}-y^{2}=a \\
2 x y=b \\
x^{2}+y^{2}=\sqrt{a^{2}+b^{2}}
\end{array}\right.\right.\right.
$$

The last system is easy to solve: the first and last equations give 4 possible couples (x, y) and the second one allows to restrict to the expected 2 (using the sign).

Square roots - 1

How to compute the square roots of $z=a+i b \neq 0$ without using exponential representation? Let $w=x+i y$ then

$$
w^{2}=z \Leftrightarrow\left\{\begin{array} { l }
{ w ^ { 2 } = z } \\
{ | w | ^ { 2 } = | z | }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ x ^ { 2 } - y ^ { 2 } + 2 i x y = a + i b } \\
{ x ^ { 2 } + y ^ { 2 } = \sqrt { a ^ { 2 } + b ^ { 2 } } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x^{2}-y^{2}=a \\
2 x y=b \\
x^{2}+y^{2}=\sqrt{a^{2}+b^{2}}
\end{array}\right.\right.\right.
$$

The last system is easy to solve: the first and last equations give 4 possible couples (x, y) and the second one allows to restrict to the expected 2 (using the sign).

For $z=8-6 i$, we get $\left\{\begin{array}{l}x^{2}-y^{2}=8 \\ 2 x y=-6 \\ x^{2}+y^{2}=10\end{array} \Leftrightarrow\left\{\begin{array}{l}x^{2}=9 \\ y^{2}=1 \\ 2 x y=-6\end{array} \Leftrightarrow\left\{\begin{array}{l}x= \pm 3 \\ y= \pm 1 \\ 2 x y=-6\end{array}\right.\right.\right.$
So the solutions are $(3,-1)$ and $(-3,1)$ since x and y have opposite signs thanks to $x y<0$. Hence the square roots of $8-6 i$ are $-3+i$ and $3-i$.

Square roots - 2

Homework

(1) Compute the square roots of $\frac{1+i}{\sqrt{2}}$.
(2) Deduce the values of $\cos \frac{\pi}{8}$ and $\sin \frac{\pi}{8}$.

