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Information about this section – 1

Jean-Baptiste (JB) Campesato
B campesat@math.toronto.edu
 Please start the subject with “MAT334:”

Lectures schedule:
z • Monday, 10am to 11am
z • Wednesday, 10am to 11am
z • Friday, 10am to 11am

Office hours:
� • Monday, 11am to 12pm (Online via Zoom)
� • Friday, 11am to 12pm (Online via Zoom)

Website for this section:
http://uoft.me/MAT334-LEC0101
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Information about this section – 2

The course will take place online via Zoom. I will send you a message through Quercus if the
credentials change.

I am not going to record my lectures, nonetheless I will post my slides and my notes on my
webpage. Lectures from Section LEC5101 (Victor Ivrii) will be recorded.

I will probably need a few lectures in order to become comfortable with online lectures, so I
apologize in advance if the first lectures are not smooth and for the technical issues we will
probably face at the beginning…
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Information about the course – 1

Coordinator: Victor Ivrii
B ivrii@math.toronto.edu

Textbook:
Complex Variables, 2nd Edition (Dover Books on Mathematics)
by Stephen D. Fisher.
Chapters 1, 2 and 3.

Quercus is the main source of information for the course:
Annoucements, Discussions, Syllabus/Outline (read it)…

 Make sure that you are enrolled in a tutorial!
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Information about the course – 2

• There will be 4 short tests: Oct 15, Oct 29, Nov 26, Dec 3.

• There will be 7 quizzes of 20min each:
they will take place during the last 20minutes of a lecture, the planning is available on
Quercus.

• You will find more details about the marking scheme on Quercus.
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Roadmap

This course is about functions of a complex variable, i.e. of the form

𝑓 ∶ 𝐷 → ℂ
𝑧 ↦ 𝑓(𝑧)

where 𝐷 ⊂ ℂ.

More precisely, we will focus about ℂ-differentiability of such a function.

The definition is going to be quite similar to the one you are used to from calculus, but
ℂ-differentiable functions will behave quite differently from ℝ-differentiable functions.

Before going further, let’s have a look at some examples from calculus over the reals to highlight
these differences.
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Some examples from (real) calculus: functions ℝ → ℝ

• Let 𝑓 ∶ ℝ → ℝ be defined by 𝑓(𝑥) =
{

𝑥2 sin (
1
𝑥 ) if 𝑥 ≠ 0

0 otherwise
𝑓 is differentiable but not 𝒞1.

• Let 𝑔 ∶ ℝ → ℝ be defined by 𝑔(𝑥) =
{

𝑒− 1
𝑥2 if 𝑥 = 0

0 otherwise
𝑔 is differentiable, even 𝒞∞, but not analytic at 0.

• Let ℎ ∶ ℝ → ℝ be defined by ℎ(𝑥) =
{

𝑒− 1
𝑥 if 𝑥 > 0

0 otherwise
ℎ is differentiable, 𝒞∞, it vanishes on the open set (−∞, 0) but is not everywhere 0.

• sin ∶ ℝ → ℝ is differentiable, even analytic, it is non-constant and admits local maxima.
• sin ∶ ℝ → ℝ is differentiable, even analytic, it is bounded but is not constant.

• sin(1) ≠ 1
2𝑟 ∫

1+𝑟

1−𝑟
sin(𝑡)d𝑡 for 𝑟 > 0.
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Roadmap

At the end of the term, you will know that all these phenomena from the previous slide
concerning ℝ-differentiable functions of a real variable are not possible for ℂ-differentiable
functions of a complex variable.

To summarize: ℂ-differentiability admits a definition similar to the one you are used to, but it
gives a more rigid notion. For this reason, we introduce the name holomorphic.

Actually, holomorphic functions may be seen as the complex analog of harmonic functions that you may have met in multivariable calculus,
for instance in my MAT237 section last year.
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Roadmap

There are several equivalent viewpoints concerning holomorphic functions:

1 ℂ-differentiability: 𝑓 ′(𝑧0) ≔ lim
𝑧→𝑧0

𝑓(𝑧) − 𝑓(𝑧0)
𝑧 − 𝑧0

2 ℝ-differentiability + Cauchy-Riemann equations, which admit different equivalent flavours:
• 𝜕𝑓

𝜕𝑦 (𝑧0) = 𝑖𝜕𝑓
𝜕𝑥 (𝑧0), or • 𝜕𝑓(𝑧0) = 0, or • 𝜕ℜ(𝑓)

𝜕𝑥 = 𝜕ℑ(𝑓)
𝜕𝑦 and 𝜕ℜ(𝑓)

𝜕𝑦 = −𝜕ℑ(𝑓)
𝜕𝑥

3 Analyticity, i.e. 𝑓 can be expressed with a convergent power series around each 𝑧0:
𝑓(𝑧) = ∑

𝑛≥0
𝑎𝑛(𝑧 − 𝑧0)𝑛

4 𝑓 is continuous and∫𝛾
𝑓 = 0 for continuous piecewise 𝒞1 closed curves which can be

continuously deformed to a point.
5 𝑓 is continuous and admits local antiderivatives.

We will go through most of these viewpoints during the term (and their consequences).
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Prerequisites

According to the previous slide, it is a good idea to review:

• Power series/Analytic functions (definition, properties) from your first year calculus class1.

• Second year multivariable calculus class2 (for functions ℝ2 → ℝ2), especially the following
topics: topology/continuity, differentiability, line integrals, Green’s theorem.

1See for instance: http://www.math.toronto.edu/campesat/ens/1819/lec47-0401.pdf
2See for instance: http://www.math.toronto.edu/campesat/mat237.html
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Why study complex calculus?
• Several applications in physics: waves (Fourier analysis), quantum mechanics, quantum

field theory (regularization), aerodynamics (the Joukowsky transform)…

• Computation of integrals (of real functions) using Cauchy’s residue theorem.

• Applications to ODEs, PDEs (e.g. Laplace transform).

• Applications to number theory (e.g. proofs of the prime number theorem).

• Conformal geometry (assuming that 𝑓 is ℝ-differentiable and Jac𝑥,𝑦(ℜ(𝑓), ℑ(𝑓)) ≠ 0, then 𝑓
is holomorphic if and only if it preserves angles).

• …

• Last but not least, that’s a (maybe too3) beautiful theory!
3According to René Thom in Stabilité structurelle et morphogénèse, see the hidden slide.
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Welcome to the complex world!
Before studying complex functions, we first need to introduce ℂ (definition, geometric

properties, topology…).

Let’s start now with the definition!
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What is ℂ?4 – 1

• ℂ ≔ {𝑥 + 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ ℝ}
We define the following two operations:

• Addition: (𝑥1 + 𝑖𝑦1) + (𝑥2 + 𝑖𝑦2) ≔ (𝑥1 + 𝑥2) + 𝑖(𝑦1 + 𝑦2)
• Multiplication: (𝑥1 + 𝑖𝑦1) ⋅ (𝑥2 + 𝑖𝑦2) ≔ (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑦1𝑥2)

• We see ℝ as a subset of ℂ (i.e. ℝ ⊂ ℂ): for 𝑥 ∈ ℝ, 𝑥 = 𝑥 + 𝑖0 ∈ ℂ.
Note that the addition and multiplication of ℂ extend the ones of ℝ:
(𝑥1 + 𝑖0) + (𝑥2 + 𝑖0) = (𝑥1 + 𝑥2) + 𝑖0 and (𝑥1 + 𝑖0) ⋅ (𝑥2 + 𝑖0) = 𝑥1𝑥2 + 𝑖0

• Note that 𝑖2 = (0 + 𝑖1)(0 + 𝑖1) = −1 + 𝑖0 = −1.

Then the above defined operations are compatible with the usual distributive laws:

(𝑥1 + 𝑖𝑦1)(𝑥2 + 𝑖𝑦2) =
1 21 2

3 43 4

𝑥1𝑥2 + 𝑖𝑥1𝑦2 + 𝑖𝑦1𝑥2 + 𝑖2𝑦1𝑦2 = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑦1𝑥2)

4There are several rigorous constructions of ℂ, but this informal presentation is enough for our purpose.
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What is ℂ? – 2
• We will often denote an element of ℂ by the letter 𝑧.

When writing “𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ” it is implicit that 𝑥, 𝑦 ∈ ℝ.

• Let 𝑧 = 𝑥 + 𝑖𝑦 ≠ 0 and set 𝑤 = 𝑥
𝑥2 + 𝑦2 − 𝑖 𝑦

𝑥2 + 𝑦2 then 𝑧𝑤 = 𝑤𝑧 = 1.

We’ve just seen that any non-zero complex number 𝑧 = 𝑥 + 𝑖𝑦 ≠ 0 admits a multiplicative
inverse, we denote it by 𝑧−1 ≔ 𝑥

𝑥2 + 𝑦2 − 𝑖 𝑦
𝑥2 + 𝑦2 .

• The order on ℝ does NOT extend to a total order on ℂ compatible with the addition and the
multiplication5: otherwise we would get that 𝑖2 > 0, i.e. −1 > 0 which is a contradiction.
Hence,

• You should NOT write that 𝑧1 < 𝑧2 for complex numbers.
• You should NOT write that a complex number is positive (or negative).

5More formally, ℂ can NOT be turned into a totally ordered field. Nonetheless, just for your general knowledge, there exist total orders on ℂ (but not

compatible with the operations, e.g. the lexicographic order) or orders compatible with the operations (but not total, e.g. 𝑥1 + 𝑖𝑦1 ≼ 𝑥2 + 𝑖𝑦2 ⇔ 𝑥1 ≤ 𝑥2 and 𝑦1 = 𝑦2 ).
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How to recover this formula: 1
𝑥 + 𝑖𝑦 = 𝑥 − 𝑖𝑦

(𝑥 + 𝑖𝑦)(𝑥 − 𝑖𝑦) = 𝑥 − 𝑖𝑦
𝑥2 + 𝑦2

(reduction to the canonical form by taking the conjugate, we will come back later to that)
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What is ℂ? – 3
Proposition
ℂ is a 2-dimensional vector space over ℝ spanned by < 1, 𝑖 >.

Proposition
ℂ is a field, meaning that

• ∀𝑧1, 𝑧2, 𝑧3 ∈ ℂ, 𝑧1 + (𝑧2 + 𝑧3) = (𝑧1 + 𝑧2) + 𝑧3
• ∀𝑧 ∈ ℂ, 𝑧 + 0 = 0 + 𝑧 = 𝑧
• ∀𝑧 ∈ ℂ, 𝑧 + (−𝑧) = (−𝑧) + 𝑧 = 0 where −(𝑥 + 𝑖𝑦) = (−𝑥) + 𝑖(−𝑦)
• ∀𝑧1, 𝑧2 ∈ ℂ, 𝑧1 + 𝑧2 = 𝑧2 + 𝑧1
• ∀𝑧1, 𝑧2, 𝑧3 ∈ ℂ, 𝑧1(𝑧2𝑧3) = (𝑧1𝑧2)𝑧3
• ∀𝑧1, 𝑧2, 𝑧2 ∈ ℂ, 𝑧1(𝑧2 + 𝑧3) = 𝑧1𝑧2 + 𝑧1𝑧3 and (𝑧1 + 𝑧2)𝑧3 = 𝑧1𝑧3 + 𝑧2𝑧3
• ∀𝑧 ∈ ℂ, 1 ⋅ 𝑧 = 𝑧 ⋅ 1 = 𝑧
• ∀𝑧 ∈ ℂ ⧵ {0}, 𝑧 ⋅ 𝑧−1 = 𝑧−1 ⋅ 𝑧 = 1 where (𝑥 + 𝑖𝑦)−1 = 𝑥

𝑥2+𝑦2 − 𝑖 𝑦
𝑥2+𝑦2

• ∀𝑧1, 𝑧2 ∈ ℂ, 𝑧1𝑧2 = 𝑧2𝑧1
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What is ℂ? – 4

Conclusion: you should remember that ℂ = {𝑥 + 𝑖𝑦 ∶ 𝑥, 𝑦 ∈ ℝ}
where 𝑖2 = −1 with addition and multiplication which behave as you
expect them to.
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The complex plane

Definition
Given 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, we define

• The real part of 𝑧 by ℜ(𝑧) ≔ 𝑥 (or Re(𝑧) ≔ 𝑥).
• The imaginary part of 𝑧 by ℑ(𝑧) ≔ 𝑦 (or Im(𝑧) ≔ 𝑦).

Note that ℜ(𝑧), ℑ(𝑧) ∈ ℝ.

It may be convenient to identify ℂ with the Euclidean plane ℝ2:

𝑧 = 𝑥 + 𝑖𝑦

𝑥

𝑦

ℜ

ℑ
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The complex conjugate – 1

Definition
Given 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, we define the (complex) conjugate of 𝑧 by 𝑧 ≔ 𝑥 − 𝑖𝑦.

Geometrically, it is the reflection with respect to the real axis:

𝑧 = 𝑥 + 𝑖𝑦

𝑧 = 𝑥 − 𝑖𝑦

ℜ

ℑ
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The complex conjugate – 1

Definition
Given 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ, we define the (complex) conjugate of 𝑧 by 𝑧 ≔ 𝑥 − 𝑖𝑦.

Proposition
• ∀𝑧 ∈ ℂ, 𝑧 = 𝑧
• ∀𝑧1, 𝑧2 ∈ ℂ, 𝑧1 + 𝑧2 = 𝑧1 + 𝑧2 and 𝑧1𝑧2 = 𝑧1 ⋅ 𝑧2
• Let 𝑧 = 𝑥 + 𝑖𝑦 ∈ ℂ then 𝑧𝑧 = 𝑥2 + 𝑦2

Note that 𝑧𝑧 ∈ ℝ, it is useful to write a fraction in its canonical form, for instance:

3 + 4𝑖
1 + 𝑖 = (3 + 4𝑖)(1 − 𝑖)

(1 + 𝑖)(1 − 𝑖) = 7 + 𝑖
2 = 7

2 + 𝑖1
2
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The complex conjugate – 2

Euler’s formulae

∀𝑧 ∈ ℂ, ℜ(𝑧) = 𝑧 + 𝑧
2

∀𝑧 ∈ ℂ, ℑ(𝑧) = 𝑧 − 𝑧
2𝑖

Don’t forget the 𝑖 in the denominator for ℑ(𝑧).

Proposition
𝑧 ∈ ℝ ⇔ 𝑧 = ℜ(𝑧) ⇔ ℑ(𝑧) = 0 ⇔ 𝑧 = 𝑧

Jean-Baptiste Campesato MAT334H1-F – LEC0101 – Sep 11, 2020 19 / 19



A too beautiful theory?

« On peut se demander si l’importance attribuée par l’Analyse du siècle passé au corps
complexe, et à la théorie des fonctions analytiques n’a pas joué un rôle néfaste sur l’orientation
des mathématiques. En permettant l’édification d’une doctrine très belle, trop belle, qui
s’accordait d’ailleurs parfaitement à la conception alors triomphante du caractère quantitatif des
lois physiques, elle a amené à négliger l’aspect réel et qualitatif des choses. Il a fallu l’essor de la
Topologie, au milieu du XXème siècle, pour que les mathématiciens reviennent à l’étude directe
des objets géométriques, étude qui n’est d’ailleurs qu’à peine abordée actuellement; qu’on
compare l’état d’abandon où se trouve maintenant la Géométrie algébrique réelle, avec le degré
de sophistication et de perfection formelle atteint par la Géométrie algébrique complexe! Pour
tout phénomène naturel dont l’évolution est régie par une équation algébrique, il est de première
importance de savoir si cette équation a des solutions, des racines réelles. En avoir ou pas, telle
est la question, la question que supprime précisément le recours aux nombres complexes.
Comme exemple de situations où la notion de réalité joue un rôle qualitatif essentiel, on citera la
réalité des valeurs propres d’un système différentiel, l’index d’un point critique d’une fonction, le
caractère elliptique ou hyperbolique d’un opérateur différentiel linéaire. »

René Thom, Stabilité structurelle et morphogénèse.


