University of Toronto – MAT237Y1 – LEC5201 Multivariable calculus Reading week questions

Jean-Baptiste Campesato

February 21st, 2020

Here are a few questions if you want to relax by doing mathematics after a few exhausting days of reading week!

Exercise 1. Let $U \subset \mathbb{R}^n$ be an open set and $f : U \to \mathbb{R}^p$ be a C^1 function. Let $K \subset \mathbb{R}^n$ be a compact subset such that $K \subset U$. We want to prove that $f_{|K} : K \to \mathbb{R}^p$ is Lipschitz.

 Just for this question, we also assume that K is convex. Prove that the conclusion holds. (*Hint: you may use the result from http://www.math.toronto.edu/campesat/ens/1920/IFT-MVT.pdf*)

Now, we come back to the general statement and the compact set *K* is no longer supposed to be convex. We suppose by contradiction that f_{1K} is not Lipschitz.

- 2. Prove that there exist two sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ with terms in *K* which are respectively convergent to some $x \in K$ and $y \in K$ such that $\forall n \in \mathbb{N}$, $||f(y_n) f(x_n)|| > n||y_n x_n||$
- 3. Prove that necessarily x = y. (*Hint: use that* f_K *is continuous on a compact...*)
- 4. Prove that there exist r > 0 and $N \in \mathbb{N}$ such that $\overline{B}(x, r) \subset U$ and if $n \ge N$ then $x_n, y_n \in \overline{B}(x, r)$.
- 5. Find a contradiction with Question 1 and conclude.

Exercise 2. Let $U, V \subset \mathbb{R}^n$ be two open sets.

Let Φ : $U \to V$ be a homeomorphism which is also C^1 (i.e. we assume that Φ is bijective, C^1 and that Φ^{-1} is C^0 , but we don't assume that Φ^{-1} is C^1).

Let $T \subset \mathbb{R}^n$ be a Jordan measurable set (i.e. T is bounded and ∂T has zero content) such that $\overline{T} \subset U$. We want to prove that $\Phi(T)$ is Jordan measurable (i.e. $\Phi(T)$ is bounded and $\partial(\Phi(T))$ has zero content).

- 1. Prove that \overline{T} and ∂T are compact.
- 2. Prove that $\Phi(T)$ is bounded.
- 3. We want to prove that $\Phi(\partial T)$ has zero content
 - (a) Prove that a rectangle $R \subset \mathbb{R}^n$ may be covered by finitely many squares S_1, \ldots, S_q such that $\sum v(S_i) \leq 2v(R)$. A square is a rectangle whose edges have same length, i.e. a set of the form $S = [a_1, b_1] \times \cdots \times [a_n, b_n]$ where $b_i - a_i = r$ for some r > 0 or equivalently of the form $S = \{x \in \mathbb{R}^n : |x_i - a_i| \leq r/2\}$ for some center $a \in \mathbb{R}^n$ and side length r > 0.
 - (b) Let $f : A \to \mathbb{R}^n$ be Lipschitz with constant *C* where $A \subset \mathbb{R}^n$. Let $S \subset \mathbb{R}^n$ be a square of side length *r* and center $a \in A$. Prove that $f(A \cap S)$ is included in a square of volume $C^n \sqrt{n} r^n$. *Hint: you can start by proving that* $||(x_1, ..., x_n)|| \le \sqrt{n} \max(|x_1|, ..., |x_n|)$. *Notice that we only assume that the center of S is in A, we don't assume that* $S \subset A$.
 - (c) Conclude. *Hint: use the result from Exercise* 1
- 4. Prove that $\partial(\Phi(T)) = \Phi(\partial T)$.

5. Conclude.

Exercise 3. Let $U \subset \mathbb{R}^n$ be open, $\sigma : U \to \mathbb{R}^p$ be C^1 where n < p and a rectangle $R = [a_1, b_1] \times \cdots \times [a_n, b_n] \subset U$. We want to prove that $\{\sigma(t) : t \in R\}$ has zero content.

- Let *P* be the partition of *R* defined by subdividing each $[a_i, b_i]$ into *N* subintervals of the same length.
 - 1. Prove that for i = 1, ..., p, there exists C_i such that $\forall S$ subrectangle, $\forall x, y \in S$, $|\sigma_i(y) \sigma_i(x)| \le C_i ||y x||$.
 - 2. Prove that if *S* is a subrectangle then $\sigma(S)$ is included in a rectangle of volume $\frac{C}{N^p}$ where *C* is a constant.
 - 3. Conclude.

In the above exercises you proved the following theorems:

Theorem 1. Let $U \subset \mathbb{R}^n$ be an open set, $f : U \to \mathbb{R}^p$ be a C^1 function and $K \subset U$ a compact set. Then $f_{|K} : K \to \mathbb{R}^p$ is Lipschitz.

Remark. Beware, it is false that a C^1 function is Lipschitz (e.g. $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$). However, as proved in the above theorem, a C^1 function is locally Lipschitz.

The following result is important to justify that the integral in the change of variables formula is well-defined.

Theorem 2. Let $U, V \subset \mathbb{R}^n$ be two open sets, $\Phi : U \to V$ be a homeomorphism which is also C^1 and $T \subset \mathbb{R}^n$ a Jordan measurable set such that $\overline{T} \subset U$. Then $\Phi(T)$ is Jordan measurable.

Theorem 3. Let $U \subset \mathbb{R}^n$ be open, $\sigma : U \to \mathbb{R}^p$ be C^1 where n < p and $R \subset \mathbb{R}^n$ be a rectangle such that $R \subset U$. Then $\{\sigma(t) : t \in R\}$ has zero content.