University of Toronto – MAT237Y1 – LEC5201 Multivariable calculus Poincaré lemma: potentials and vector potentials

Jean-Baptiste Campesato

April 2nd, 2020

Contents

1	Star-shaped sets	1
2	Conservative vector fields $2.1 n = 2$ $2.2 n = 3$ 2.3 General case	1 2 2 2
3	Vector potentials	3
4	The general Poincaré lemma	3

Star-shaped sets 1

Definition 1. We say that $S \subset \mathbb{R}^n$ is *star-shaped* if there exists $p_0 \in S$ such that for any $q \in S$ the line segment from p_0 to q is included in S.

Proposition 2. A non-empty convex set is star-shaped.

Beware: the empty set is convex but not star-shaped (because " $\forall p \in \emptyset$, P(p)" is vacuously true whereas " $\exists p \in \emptyset$, P(p)" is always false).

2 **Conservative vector fields**

Theorem 3. Let $U \subset \mathbb{R}^n$ be open $(n \ge 2)$, and $\mathbf{F} : U \to \mathbb{R}^n$ be a continuous vector field. The following are equivalent:

- 1. There exists $f : U \to \mathbb{R} C^1$ such that $\mathbf{F} = \nabla f$.
- For any piecewise smooth closed oriented curve C in U, we have ∫_C F ⋅ dx = 0.
 F satisfies the path-independence property: for any two piecewise smooth oriented curves C₁ and C₂ with same startpoint and same endpoint, we have ∫_{C1} F ⋅ dx = ∫_{C2} F ⋅ dx.

Then we say that **F** is *conservative* and that *f* is a *potential* of **F** (beware: in physics we usually say that -fis a potential of **F**).

2.1 *n* = 2

Proposition 4. Let $U \subset \mathbb{R}^2$ be open and $\mathbf{F} : U \to \mathbb{R}^2$ be a C^1 vector field. If \mathbf{F} is conservative then $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$ on U.

When U is star-shaped, the converse is true:

Theorem 5 (Poincaré lemma). Let $U \subset \mathbb{R}^2$ be a star-shaped open set and $\mathbf{F} : U \to \mathbb{R}^2$ be a C^1 vector field. If $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$ on U then there exists $f : U \to \mathbb{R}$ C^2 such that $\mathbf{F} = \nabla f$.

Beware: the above theorem is false with no assumption on the domain. Indeed, define $\mathbf{F}(x, y) = \left(\frac{y}{x^2+y^2}, \frac{-x}{x^2+y^2}\right)$ on $U = \mathbb{R}^2 \setminus \{\mathbf{0}\}$. Then $\frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}$ but $\int_C \mathbf{F} \cdot d\mathbf{x} = -2\pi \neq 0$ where *C* is the unit circle with the counterclockwise orientation, so **F** is not conservative.

Alexis Clairaut proved a first version of this Poincaré lemma in 1739 but there was a flaw since he didn't realize that he needed some assumptions on the domain. Then Jean Le Rond d'Alembert gave this counter-example in 1768. Notice that the notation $\int_C P(x, y)dx + Q(x, y)dy$ was introduced by A. Clairaut in the above cited paper.

Proposition 6. Let $U \subset \mathbb{R}^2$ be an open rectangle and $\mathbf{F} : U \to \mathbb{R}^2$ be a C^1 conservative vector field. Let $p = (a, b) \in U$ and define $f : U \to \mathbb{R}$ by $f(x, y) = \int_a^x F_1(t, b) dt + \int_b^y F_2(x, t) dt$. Then f is C^2 and $\mathbf{F} = \nabla f$.

2.2 *n* = 3

Proposition 7. Let $U \subset \mathbb{R}^3$ be open and $\mathbf{F} : U \to \mathbb{R}^3$ be a C^1 vector field. *If* \mathbf{F} *is conservative then* curl $\mathbf{F} = \mathbf{0}$ *on* U.

When *U* is star-shaped, the converse is true:

Theorem 8 (Poincaré lemma). Let $U \subset \mathbb{R}^3$ be a star-shaped open set and $\mathbf{F} : U \to \mathbb{R}^3$ be a C^1 vector field. If curl $\mathbf{F} = \mathbf{0}$ on U then there exists $f : U \to \mathbb{R} C^2$ such that $\mathbf{F} = \nabla f$.

Proposition 9. Let $U \subset \mathbb{R}^3$ be an open rectangle and $\mathbf{F} : U \to \mathbb{R}^3$ be a C^1 conservative vector field. Let $p = (a, b, c) \in U$ and define $f : U \to \mathbb{R}$ by $f(x, y, z) = \int_a^x F_1(t, b, c) dt + \int_b^y F_2(x, t, c) dt + \int_c^z F_2(x, y, t) dt$. Then f is C^2 and $\mathbf{F} = \nabla f$.

2.3 General case

This subsection is not part of MAT237.

The proof of the above Poincaré Lemma for n = 2 relied on the Gradient Theorem, and the proof of the above Poincaré Lemma for n = 3 relied on Kelvin–Stokes theorem. They admit a generalization to any n from which we may derive the following general results.

Proposition 10. Let $U \subset \mathbb{R}^n$ be open and $\mathbf{F} : U \to \mathbb{R}^n$ be a C^1 vector field. If \mathbf{F} is conservative then $\forall i, j = 1, ..., n$, $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$ on U.

When U is star-shaped, the converse is true:

Theorem 11 (Poincaré lemma). Let $U \subset \mathbb{R}^n$ be a star-shaped open set and $\mathbf{F} : U \to \mathbb{R}^n$ be a C^1 vector field. If $\forall i, j = 1, ..., n$, $\frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}$ on U then there exists $f : U \to \mathbb{R}$ C^2 such that $\mathbf{F} = \nabla f$. **Proposition 12.** Let $U \subset \mathbb{R}^n$ be an open rectangle and $\mathbf{F} : U \to \mathbb{R}^n$ be a C^1 conservative vector field.

Let $p = (a_1, \dots, a_n) \in U$ and define $f : U \to \mathbb{R}$ by $f(x_1, \dots, x_n) = \sum_{i=1}^n \int_{a_i}^{x_i} F_i(x_1, \dots, x_{i-1}, t, a_{i+1}, \dots, a_n) dt$. Then f is C^2 and $\mathbf{F} = \nabla f$.

3 Vector potentials

Proposition 13. Let $U \subset \mathbb{R}^3$ be open and $\mathbf{F} : U \to \mathbb{R}^3$ be a C^1 vector field. If $\mathbf{F} = \operatorname{curl} \mathbf{G}$ for $\mathbf{G} : U \to \mathbb{R}^3 C^2$ then div $\mathbf{F} = 0$ on U.

Then we say that **G** is a *vector potential* of **F**.

When *U* is star-shaped, the converse is true:

Theorem 14 (Poincaré lemma). Let $U \subset \mathbb{R}^3$ be a star-shaped open set and $\mathbf{F} : U \to \mathbb{R}^3$ be a C^1 vector field. If div $\mathbf{F} = 0$ on U then there exists $\mathbf{G} : U \to \mathbb{R}^3 C^2$ such that $\mathbf{F} = \operatorname{curl} \mathbf{G}$.

Beware: the above theorem is false with no assumption on the domain. Indeed, define $\mathbf{F} = \frac{\mathbf{r}}{\|\mathbf{r}\|^3}$ on $\mathbb{R}^3 \setminus \{\mathbf{0}\}$ where $\mathbf{r}(x, y, z) = (x, y, z)$. Then div $\mathbf{F} = 0$ but there is no $\mathbf{G} : \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}^3$ such that $\mathbf{F} = \operatorname{curl} \mathbf{G}$.

Proposition 15. Let $U \subset \mathbb{R}^3$ be a star-shaped open set and $\mathbf{F} : U \to \mathbb{R}^3$ be a C^1 vector field such that div $\mathbf{F} = 0$. Let $p_0 = (x_0, y_0, z_0) \in U$ such that for any $q \in U$ the line segment from p_0 to q is included in U. Define $\mathbf{G} : U \to \mathbb{R}^3$ by

$$\mathbf{G}(x, y, z) = \int_0^1 \mathbf{F} \begin{pmatrix} x_0 + t(x - x_0) \\ y_0 + t(y - y_0) \\ z_0 + t(z - z_0) \end{pmatrix} \times \begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} t dt$$

Then **G** is C^2 and **F** = curl **G**.

Quite often (but not always), *U* is *centered* at **0** so that we can take $p_0 = 0$, then the above formula may rewritten

$$\mathbf{G} = \int_0^1 \mathbf{F}(t\mathbf{r}) \times (t\mathbf{r}) \mathrm{d}t$$

where r(x, y, z) = (x, y, z).

4 The general Poincaré lemma

In all the above results named *Poincaré Lemma*, we may relax the assumption on the domain by assuming that U is open and contractible (which is weaker than open and star-shaped since a star-shaped set is contractible) but this notion is not part of MAT237.

Then, they are all special cases of the following very general result:

Theorem 16 (Poincaré Lemma).

If *M* is a contractible manifold then $H^n_{dR}(M) = \begin{cases} \mathbb{R} & \text{if } n = 0 \\ 0 & \text{otherwise} \end{cases}$, *i.e.* the closed differential forms on *M* are exact.

You should come back here after you learn differential forms and de Rham cohomology.