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The following questions are NOT part of the material of MAT237 but I think that these results are quite interest-
ing, so, if you have time, you can have a look at them.
The Gamma and the Beta functions are functions defined by improper integrals which appear in various areas of
mathematics. In these questions we study a few of their properties and some applications.
The questions numbered in red are a little bit more difficult.

We admit the following theorem which will be useful for 1.3.(a).

Theorem. Let 𝐼 be an open interval and 𝐽 be an interval. Let 𝐹 ∶ 𝐼 × 𝐽 → ℝ
(𝑥, 𝑡) ↦ 𝐹 (𝑥, 𝑡) be a continuous function.

Assume that
1. ∀𝑥 ∈ 𝐼 , ∫𝐽

𝐹 (𝑥, 𝑡)d𝑡 is absolutely convergent.

2. 𝜕𝐹
𝜕𝑥 (𝑥, 𝑡) exists and is continuous on 𝐼 × 𝐽 .

3. For all 𝐾 ⊂ 𝐼 compact, there exists 𝜑𝐾 ∶ 𝐽 → ℝ integrable on 𝐽 such that ∀(𝑥, 𝑡) ∈ 𝐾 × 𝐽, |
𝜕𝐹
𝜕𝑥 (𝑥, 𝑡)| ≤ 𝜑𝐾 (𝑡).

Then 𝑓 ∶ 𝐼 → ℝ defined by 𝑓(𝑥) = ∫𝐽
𝐹 (𝑥, 𝑡)d𝑡 is 𝐶1 and 𝑓 ′(𝑥) = ∫𝐽

𝜕𝐹
𝜕𝑥 (𝑥, 𝑡)d𝑡 where this last integral is absolutely

convergent for every 𝑥 ∈ 𝐼 .

1 The Gamma function

Definition. We define Γ ∶ ℝ>0 → ℝ by Γ(𝑥) = ∫
+∞

0
𝑡𝑥−1𝑒−𝑡d𝑡.

1.1. Prove that Γ is well-defined (i.e. that the integral is convergent for any 𝑥 > 0).

1.2. (a) Prove that ∀𝑥 ∈ ℝ>0, Γ(𝑥 + 1) = 𝑥Γ(𝑥) (Hint: integration by parts).
(b) Deduce that ∀𝑛 ∈ ℕ≥0, Γ(𝑛 + 1) = 𝑛!.

1.3. (a) Prove that Γ is 𝐶∞ and that ∀𝑛 ∈ ℕ≥0, ∀𝑥 ∈ ℝ>0, Γ(𝑛)(𝑥) = ∫
+∞

0
(ln 𝑡)𝑛𝑡𝑥−1𝑒−𝑡d𝑡.

(b) Prove that Γ is convex.
(c) Prove that Γ(𝑥) ∼

0+
1
𝑥 (i.e. lim

𝑥→0+
𝑥Γ(𝑥) = 1).

(d) Study the monotonicity of Γ, compute lim
𝑥→+∞

Γ(𝑥) and lim𝑥→+∞
Γ(𝑥)

𝑥 , then sketch the graph of Γ.

1.4. Application 1: the Gaussian/Euler–Poisson integral.

(a) Prove that ∀𝑥 ∈ ℝ>0, Γ(𝑥) = ∫
+∞

0
2𝑒−𝑢2𝑢2𝑥−1d𝑢.

(b) Prove that Γ(1/2) = ∫
+∞

−∞
𝑒−𝑥2d𝑥.

(c) For 𝑟, 𝑠 > 0, prove that 𝐼𝑟,𝑠 = ∫ℝ2
>0

4𝑒−𝑢2−𝑣2𝑢2𝑟−1𝑣2𝑠−1d𝑢d𝑣 is well defined and that 𝐼𝑟,𝑠 = Γ(𝑟)Γ(𝑠).

(d) Prove that Γ(𝑟)Γ(𝑠) = 2Γ(𝑟 + 𝑠) ∫

𝜋
2

0
cos2𝑟−1(𝜃) sin2𝑠−1(𝜃)d𝜃 (Hint: polar coordinates).

(e) Compute the value of the Gaussian/Euler–Poisson integral ⋆ : ∫
+∞

−∞
𝑒−𝑥2d𝑥 = √𝜋.

⋆ That’s the third proof we met in MAT237, I really start to believe it is true…
For the first 2 proofs, see p75 and p85 of http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf.

http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf


2 The Gamma function and the Beta function

1.5. (a) Prove that for any 𝑐 ∈ ℝ>0, 𝑥 ↦ 𝑐𝑥Γ(𝑥) is convex on ℝ>0 (Hint: study the integrand first).
(b) (log-convexity ⋆ )Using a suitable 𝑐, deduce that ∀𝑥, 𝑦 ∈ ℝ>0, ∀𝜆 ∈ [0, 1], Γ(𝜆𝑥+(1−𝜆)𝑦) ≤ Γ(𝑥)𝜆Γ(𝑦)1−𝜆.
(c) (Gautschi’s inequality) Prove that ∀𝑥 ∈ ℝ>0, ∀𝑠 ∈ [0, 1], 𝑥1−𝑠 ≤ Γ(𝑥+1)

Γ(𝑥+𝑠) ≤ (𝑥 + 1)1−𝑠 (Hint: use (b) twice).

2 The Beta function

Definition. We define Β ∶ ℝ>0 × ℝ>0 → ℝ by Β(𝑟, 𝑠) = ∫
1

0
𝑡𝑟−1(1 − 𝑡)𝑠−1d𝑡.

2.1. Prove that Β is well-defined (i.e. that the integral is convergent for any (𝑟, 𝑠) ∈ ℝ2
>0).

2.2. Connection with the Gamma function.

(a) Prove that ∀(𝑟, 𝑠) ∈ ℝ2
>0, 𝐵(𝑟, 𝑠) = 𝐵(𝑠, 𝑟) = 2 ∫

𝜋
2

0
cos2𝑟−1(𝜃) sin2𝑠−1(𝜃)d𝜃.

(Hint for the second equality: set 𝑡 = sin2 𝜃)
(b) Prove that ∀(𝑟, 𝑠) ∈ ℝ2

>0, Β(𝑟, 𝑠) = Γ(𝑟)Γ(𝑠)
Γ(𝑟 + 𝑠) .

2.3. Application 2: Wallis’ integrals † , the Stirling formula and the Wallis product.

For 𝑛 ∈ ℕ≥0, we define Wallis’ integrals ‡ by 𝑊𝑛 = ∫

𝜋
2

0
cos𝑛(𝑡)d𝑡.

(a) Prove that 𝑊𝑛 = 1
2 Β (

𝑛+1
2 , 1

2 ).

(b) Prove that 𝑊𝑛 ∼
+∞ √

𝜋
2𝑛 (Hint: use Gautschi’s inequality).

(c) Prove that ∀𝑥 ∈ ℝ>0, 𝐵(𝑥, 𝑥) = 2−2𝑥+1𝐵(1/2, 𝑥).

(d) Prove Legendre’s duplication formula: ∀𝑥 ∈ ℝ>0, Γ(𝑥)Γ(𝑥 + 1/2) = √𝜋
22𝑥−1 Γ(2𝑥).

(e) Prove that ∀𝑛 ∈ ℕ≥0, Γ(𝑛 + 1/2) =
(2𝑛)!√𝜋

22𝑛𝑛!
.

(f) Prove that ∀𝑝 ∈ ℕ≥0, 𝑊2𝑝 = 𝜋
2

(2𝑝)!
(2𝑝𝑝!)2 and 𝑊2𝑝+1 = (2𝑝𝑝!)2

(2𝑝 + 1)! .

(g) (Stirling formula § ). We assume that there exists 𝐶 ∈ ℝ ⧵ {0} such that 𝑛! ∼
+∞

𝐶√𝑛 (
𝑛
𝑒 )

𝑛
. Find 𝐶 .

(h) (Wallis product) Prove that 𝜋
2 =

+∞

∏
𝑘=1

4𝑘2

4𝑘2 − 1
.

2.4. Application 3: volume and surface area of an 𝑛-dimensional ball.
For 𝑛 ∈ ℕ≥1 we denote by 𝑉𝑛(𝑟) the volume of 𝐵(0, 𝑟) ⊂ ℝ𝑛 and by 𝐴𝑛(𝑟) its surface area.
(a) Prove that ∀𝑛 ∈ ℕ≥1, ∀𝑟 > 0, 𝑉𝑛(𝑟) = 𝑟𝑛𝑉𝑛(1).

(b) Prove that ∀𝑛 ∈ ℕ≥1, 𝑉𝑛+1(1) = 2𝑉𝑛(1) ∫
1

0
(1 − 𝑥2)

𝑛
2 d𝑥.

(c) Prove that ∀𝑛 ∈ ℕ≥1, 𝑉𝑛+1(1) = 𝑉𝑛(1)𝐵 (
1
2, 𝑛

2 + 1).

(d) Prove ‖ that ∀𝑛 ∈ ℕ≥1, 𝑉𝑛(1) = 𝜋
𝑛
2

Γ (
𝑛
2 + 1)

= 2𝜋
𝑛
2

𝑛Γ(𝑛/2) .

(e) Give a formula for 𝑉𝑛(𝑟).
(f) Prove that 𝐴𝑛(𝑟) = 𝑉 ′

𝑛 (𝑟) and then give a formula for 𝐴𝑛(𝑟).

⋆ We usually prove the log-convexity of Γ using Cauchy–Schwarz inequality for integrals or even faster Hölder inequality. By the Bohr–
Mollerup theorem, Γ is the only function ℝ>0 → ℝ such that Γ(1) = 1, Γ(𝑥 + 1) = 𝑥Γ(𝑥) and Γ is log-convex (i.e. ln ∘Γ is convex).

† Questions (b) and (f) admit alternative elementary proofs: you can use an induction relying on a double integration by parts and the
monotonicity of (𝑊𝑛)𝑛.

‡ Notice that by setting 𝑢 = 𝑡 − 𝜋
2 , we may replace cos by sin in the definition of 𝑊𝑛.

§ Moivre proved the formula up to the constant 𝐶 which was subsequently determined by Stirling.
‖ There is an alternative formula with an elementary proof which doesn’t involve the Gamma function: using generalized cylindrical

coordinates, one may prove that 𝑉𝑛+2(1) = 2𝜋
𝑛+2 𝑉𝑛(1) and then conclude by induction, however this formula depends on the parity of 𝑛.
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