University of Toronto - MAT237Y1 - LEC5201 Multivariable calculus! The Gamma function and the Beta function

Jean-Baptiste Campesato

March 29th, 2020

The following questions are NOT part of the material of MAT237 but I think that these results are quite interesting, so, if you have time, you can have a look at them.

The Gamma and the Beta functions are functions defined by improper integrals which appear in various areas of mathematics. In these questions we study a few of their properties and some applications. The questions numbered in red are a little bit more difficult.

We admit the following theorem which will be useful for 1.3.(a).

Theorem. Let *I* be an open interval and *J* be an interval. Let *F* : $\begin{array}{cc} I \times J \rightarrow \mathbb{R} \\ (x,t) \mapsto F(x,t) \end{array}$ be a continuous function.

Assume that

- 1. $\forall x \in I$, $\int_{T} F(x, t) dt$ is absolutely convergent.
- 2. $\frac{\partial F}{\partial x}(x,t)$ exists and is continuous on $I \times J$.
- 3. For all $K \subset I$ compact, there exists $\varphi_K : J \to \mathbb{R}$ integrable on J such that $\forall (x, t) \in K \times J$, $\left| \frac{\partial F}{\partial x}(x, t) \right| \le \varphi_K(t)$. Then $f: I \to \mathbb{R}$ defined by $f(x) = \int_{I} F(x, t) dt$ is C^1 and $f'(x) = \int_{I} \frac{\partial F}{\partial x}(x, t) dt$ where this last integral is absolutely convergent for every $x \in I$.

The Gamma function 1

Definition. We define $\Gamma : \mathbb{R}_{>0} \to \mathbb{R}$ by $\Gamma(x) = \int_{0}^{+\infty} t^{x-1} e^{-t} dt$.

- 1.1. Prove that Γ is well-defined (i.e. that the integral is convergent for any x > 0).
- 1.2. (a) Prove that $\forall x \in \mathbb{R}_{>0}$, $\Gamma(x + 1) = x\Gamma(x)$ (*Hint: integration by parts*). (b) Deduce that $\forall n \in \mathbb{N}_{>0}$, $\Gamma(n+1) = n!$.
- 1.3. (a) Prove that Γ is C^{∞} and that $\forall n \in \mathbb{N}_{\geq 0}$, $\forall x \in \mathbb{R}_{>0}$, $\Gamma^{(n)}(x) = \int_{0}^{+\infty} (\ln t)^{n} t^{x-1} e^{-t} dt$.
 - (b) Prove that Γ is convex.
 - (b) Prove that Γ is convex. (c) Prove that $\Gamma(x) \underset{0^+}{\sim} \frac{1}{x}$ (i.e. $\lim_{x \to 0^+} x \Gamma(x) = 1$).
 - (d) Study the monotonicity of Γ , compute $\lim_{x \to +\infty} \Gamma(x)$ and $\lim_{x \to +\infty} \frac{\Gamma(x)}{x}$, then sketch the graph of Γ .

1.4. Application 1: the Gaussian/Euler–Poisson integral.

- (a) Prove that $\forall x \in \mathbb{R}_{>0}$, $\Gamma(x) = \int_{0}^{+\infty} 2e^{-u^2} u^{2x-1} du$. (b) Prove that $\Gamma(1/2) = \int_{-\infty}^{+\infty} e^{-x^2} dx$.
- (c) For r, s > 0, prove that $I_{r,s} = \int_{\mathbb{R}^2_{>0}} 4e^{-u^2 v^2} u^{2r-1} v^{2s-1} du dv$ is well defined and that $I_{r,s} = \Gamma(r)\Gamma(s)$.
- (d) Prove that $\Gamma(r)\Gamma(s) = 2\Gamma(r+s) \int_{0}^{\frac{\pi}{2}} \cos^{2r-1}(\theta) \sin^{2s-1}(\theta) d\theta$ (*Hint: polar coordinates*).
- (e) Compute the value of the Gaussian/Euler–Poisson integral * : $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$.

^{*} That's the third proof we met in MAT237, I really start to believe it is true...

For the first 2 proofs, see p75 and p85 of http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf.

- **1.5.** (a) Prove that for any $c \in \mathbb{R}_{>0}$, $x \mapsto c^x \Gamma(x)$ is convex on $\mathbb{R}_{>0}$ (*Hint: study the integrand first*).
 - (b) (log-convexity *) Using a suitable *c*, deduce that $\forall x, y \in \mathbb{R}_{>0}$, $\forall \lambda \in [0, 1]$, $\Gamma(\lambda x + (1 \lambda)y) \leq \Gamma(x)^{\lambda} \Gamma(y)^{1-\lambda}$. (c) (*Gautschi's inequality*) Prove that $\forall x \in \mathbb{R}_{>0}$, $\forall s \in [0, 1]$, $x^{1-s} \leq \frac{\Gamma(x+1)}{\Gamma(x+s)} \leq (x+1)^{1-s}$ (*Hint: use (b) twice*).

The Beta function 2

Definition. We define B : $\mathbb{R}_{>0} \times \mathbb{R}_{>0} \to \mathbb{R}$ by $B(r, s) = \int_{0}^{1} t^{r-1} (1-t)^{s-1} dt$.

- 2.1. Prove that B is well-defined (i.e. that the integral is convergent for any $(r, s) \in \mathbb{R}^2_{>0}$).
- 2.2. Connection with the Gamma function.
 - (a) Prove that $\forall (r, s) \in \mathbb{R}^2_{>0}$, $B(r, s) = B(s, r) = 2 \int_0^{\frac{\pi}{2}} \cos^{2r-1}(\theta) \sin^{2s-1}(\theta) d\theta$. (*Hint for the second equality: set* $t = \sin^2 \theta$) (b) Prove that $\forall (r, s) \in \mathbb{R}^2_{>0}$, $B(r, s) = \frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)}$

2.3. Application 2: Wallis' integrals[†], the Stirling formula and the Wallis product.

For
$$n \in \mathbb{N}_{\geq 0}$$
, we define Wallis' integrals[‡] by $W_n = \int_0^{\frac{1}{2}} \cos^n(t) dt$.

- (a) Prove that $W_n = \frac{1}{2} B\left(\frac{n+1}{2}, \frac{1}{2}\right)$.
- (b) Prove that $W_n \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2n}}$ (*Hint: use Gautschi's inequality*).
- (c) Prove that $\forall x \in \mathbb{R}_{>0}$, $B(x, x) = 2^{-2x+1}B(1/2, x)$.

(d) Prove Legendre's duplication formula: $\forall x \in \mathbb{R}_{>0}$, $\Gamma(x)\Gamma(x + 1/2) = \frac{\sqrt{\pi}}{2^{2x-1}}\Gamma(2x)$.

- (e) Prove that $\forall n \in \mathbb{N}_{\geq 0}$, $\Gamma(n + 1/2) = \frac{(2n)!\sqrt{\pi}}{2^{2n}n!}$.
- (f) Prove that $\forall p \in \mathbb{N}_{\geq 0}$, $W_{2p} = \frac{\pi}{2} \frac{(2p)!}{(2^p p!)^2}$ and $W_{2p+1} = \frac{(2^p p!)^2}{(2p+1)!}$.
- (g) (*Stirling formula*[§]). We assume that there exists $C \in \mathbb{R} \setminus \{0\}$ such that $n! \underset{t \to \infty}{\sim} C \sqrt{n} \left(\frac{n}{e}\right)^n$. Find C.

(h) (Wallis product) Prove that
$$\frac{\pi}{2} = \prod_{k=1}^{+\infty} \frac{4k^2}{4k^2 - 1}$$

- 2.4. Application 3: volume and surface area of an *n*-dimensional ball.
 - For $n \in \mathbb{N}_{\geq 1}$ we denote by $V_n(r)$ the volume of $\overline{B}(0,r) \subset \mathbb{R}^n$ and by $A_n(r)$ its surface area.
 - (a) Prove that $\forall n \in \mathbb{N}_{\geq 1}$, $\forall r > 0$, $V_n(r) = r^n V_n(1)$.

(b) Prove that
$$\forall n \in \mathbb{N}_{\geq 1}$$
, $V_{n+1}(1) = 2V_n(1) \int_{0}^{1} (1-x^2)^{\frac{n}{2}} dx$.

- (c) Prove that $\forall n \in \mathbb{N}_{\geq 1}$, $V_{n+1}(1) = V_n(1)B\left(\frac{1}{2}, \frac{n}{2} + 1\right)$.
- (d) Prove \parallel that $\forall n \in \mathbb{N}_{\geq 1}$, $V_n(1) = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} = \frac{2\pi^{\frac{n}{2}}}{n\Gamma(n/2)}$.
- (e) Give a formula for $V_n(r)$.
- (f) Prove that $A_n(r) = V'_n(r)$ and then give a formula for $A_n(r)$.

^{*} We usually prove the log-convexity of Γ using Cauchy–Schwarz inequality for integrals or even faster Hölder inequality. By the Bohr– Mollerup theorem, Γ is the only function $\mathbb{R}_{>0} \to \mathbb{R}$ such that $\Gamma(1) = 1$, $\Gamma(x + 1) = x\Gamma(x)$ and Γ is log-convex (i.e. $\ln \circ \Gamma$ is convex).

 $^{^{\}dagger}$ Questions (b) and (f) admit alternative elementary proofs: you can use an induction relying on a double integration by parts and the monotonicity of $(W_n)_n$.

[‡] Notice that by setting $u = t - \frac{\pi}{2}$, we may replace cos by sin in the definition of W_n .

 $^{{}^{\$}}$ Moivre proved the formula up to the constant C which was subsequently determined by Stirling.

There is an alternative formula with an elementary proof which doesn't involve the Gamma function: using generalized cylindrical coordinates, one may prove that $V_{n+2}(1) = \frac{2\pi}{n+2}V_n(1)$ and then conclude by induction, however this formula depends on the parity of *n*.