University of Toronto - MAT237Y1 - LEC5201
 Multivariable calculus!
 The Gamma function and the Beta function

Jean-Baptiste Campesato

March 29 ${ }^{\text {th }}, 2020$
The following questions are NOT part of the material of MAT237 but I think that these results are quite interesting, so, if you have time, you can have a look at them.
The Gamma and the Beta functions are functions defined by improper integrals which appear in various areas of mathematics. In these questions we study a few of their properties and some applications.
The questions numbered in red are a little bit more difficult.
We admit the following theorem which will be useful for 1.3.(a).
Theorem. Let I be an open interval and J be an interval. Let $F: \begin{array}{ccc}I \times J & \rightarrow & \mathbb{R} \\ (x, t) & \mapsto & F(x, t)\end{array}$ be a continuous function. Assume that

1. $\forall x \in I, \int_{J} F(x, t) \mathrm{d} t$ is absolutely convergent.
2. $\frac{\partial F}{\partial x}(x, t)$ exists and is continuous on $I \times J$.
3. For all $K \subset I$ compact, there exists $\varphi_{K}: J \rightarrow \mathbb{R}$ integrable on J such that $\forall(x, t) \in K \times J,\left|\frac{\partial F}{\partial x}(x, t)\right| \leq \varphi_{K}(t)$. Then $f: I \rightarrow \mathbb{R}$ defined by $f(x)=\int_{J} F(x, t) \mathrm{d} t$ is C^{1} and $f^{\prime}(x)=\int_{J} \frac{\partial F}{\partial x}(x, t) \mathrm{d} t$ where this last integral is absolutely convergent for every $x \in I$.

1 The Gamma function

Definition. We define $\Gamma: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ by $\Gamma(x)=\int_{0}^{+\infty} t^{x-1} e^{-t} \mathrm{~d} t$.
1.1. Prove that Γ is well-defined (i.e. that the integral is convergent for any $x>0$).
1.2. (a) Prove that $\forall x \in \mathbb{R}_{>0}, \Gamma(x+1)=x \Gamma(x)$ (Hint: integration by parts).
(b) Deduce that $\forall n \in \mathbb{N}_{\geq 0}, \Gamma(n+1)=n$!.
1.3. (a) Prove that Γ is C^{∞} and that $\forall n \in \mathbb{N}_{\geq 0}, \forall x \in \mathbb{R}_{>0}, \Gamma^{(n)}(x)=\int_{0}^{+\infty}(\ln t)^{n} t^{x-1} e^{-t} \mathrm{~d} t$.
(b) Prove that Γ is convex.
(c) Prove that $\Gamma(x) \underset{0^{+}}{\sim} \frac{1}{x}$ (i.e. $\lim _{x \rightarrow 0^{+}} x \Gamma(x)=1$).
(d) Study the monotonicity of Γ, compute $\lim _{x \rightarrow+\infty} \Gamma(x)$ and $\lim _{x \rightarrow+\infty} \frac{\Gamma(x)}{x}$, then sketch the graph of Γ.
1.4. Application 1: the Gaussian/Euler-Poisson integral.
(a) Prove that $\forall x \in \mathbb{R}_{>0}, \Gamma(x)=\int_{0}^{+\infty} 2 e^{-u^{2}} u^{2 x-1} \mathrm{~d} u$.
(b) Prove that $\Gamma(1 / 2)=\int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x$.
(c) For $r, s>0$, prove that $I_{r, s}=\int_{\mathbb{R}_{>0}^{2}{ }_{\pi}} 4 e^{-u^{2}-v^{2}} u^{2 r-1} v^{2 s-1} \mathrm{~d} u \mathrm{~d} v$ is well defined and that $I_{r, s}=\Gamma(r) \Gamma(s)$.
(d) Prove that $\Gamma(r) \Gamma(s)=2 \Gamma(r+s) \int_{0}^{\frac{\pi}{2}} \cos ^{2 r-1}(\theta) \sin ^{2 s-1}(\theta) \mathrm{d} \theta$ (Hint: polar coordinates).
(e) Compute the value of the Gaussian/Euler-Poisson integral ${ }^{\star}$: $\int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}$.

[^0]1.5. (a) Prove that for any $c \in \mathbb{R}_{>0}, x \mapsto c^{x} \Gamma(x)$ is convex on $\mathbb{R}_{>0}$ (Hint: study the integrand first).
(b) (log-convexity ${ }^{\star}$) Using a suitable c, deduce that $\forall x, y \in \mathbb{R}_{>0}, \forall \lambda \in[0,1], \Gamma(\lambda x+(1-\lambda) y) \leq \Gamma(x)^{\lambda} \Gamma(y)^{1-\lambda}$.
(c) (Gautschi's inequality) Prove that $\forall x \in \mathbb{R}_{>0}, \forall s \in[0,1], x^{1-s} \leq \frac{\Gamma(x+1)}{\Gamma(x+s)} \leq(x+1)^{1-s}$ (Hint: use (b) twice).

2 The Beta function

Definition. We define $\mathrm{B}: \mathbb{R}_{>0} \times \mathbb{R}_{>0} \rightarrow \mathbb{R}$ by $\mathrm{B}(r, s)=\int_{0}^{1} t^{r-1}(1-t)^{s-1} \mathrm{~d} t$.
2.1. Prove that B is well-defined (i.e. that the integral is convergent for any $(r, s) \in \mathbb{R}_{>0}^{2}$).
2.2. Connection with the Gamma function.
(a) Prove that $\forall(r, s) \in \mathbb{R}_{>0}^{2}, B(r, s)=B(s, r)=2 \int_{0}^{\frac{\pi}{2}} \cos ^{2 r-1}(\theta) \sin ^{2 s-1}(\theta) \mathrm{d} \theta$.
(Hint for the second equality: set $t=\sin ^{2} \theta$)
(b) Prove that $\forall(r, s) \in \mathbb{R}_{>0}^{2}, \mathrm{~B}(r, s)=\frac{\Gamma(r) \Gamma(s)}{\Gamma(r+s)}$.
2.3. Application 2: Wallis' integrals ${ }^{\dagger}$, the Stirling formula and the Wallis product.

For $n \in \mathbb{N}_{\geq 0}$, we define Wallis' integrals ${ }^{\ddagger}$ by $W_{n}=\int_{0}^{\frac{\pi}{2}} \cos ^{n}(t) \mathrm{d} t$.
(a) Prove that $W_{n}=\frac{1}{2} \mathrm{~B}\left(\frac{n+1}{2}, \frac{1}{2}\right)$.
(b) Prove that $W_{n} \underset{+\infty}{\sim} \sqrt{\frac{\pi}{2 n}}$ (Hint: use Gautschi's inequality).
(c) Prove that $\forall x \in \mathbb{R}_{>0}, B(x, x)=2^{-2 x+1} B(1 / 2, x)$.
(d) Prove Legendre's duplication formula: $\forall x \in \mathbb{R}_{>0}, \Gamma(x) \Gamma(x+1 / 2)=\frac{\sqrt{\pi}}{2^{2 x-1}} \Gamma(2 x)$.
(e) Prove that $\forall n \in \mathbb{N}_{\geq 0}, \Gamma(n+1 / 2)=\frac{(2 n)!\sqrt{\pi}}{2^{2 n} n!}$.
(f) Prove that $\forall p \in \mathbb{N}_{\geq 0}, W_{2 p}=\frac{\pi}{2} \frac{(2 p)!}{\left(2^{p} p!\right)^{2}}$ and $W_{2 p+1}=\frac{\left(2^{p} p!\right)^{2}}{(2 p+1)!}$.
(g) (Stirling formula ${ }^{\S}$). We assume that there exists $C \in \mathbb{R} \backslash\{0\}$ such that $n!\underset{+\infty}{\sim} C \sqrt{n}\left(\frac{n}{e}\right)^{n}$. Find C.
(h) (Wallis product) Prove that $\frac{\pi}{2}=\prod_{k=1}^{+\infty} \frac{4 k^{2}}{4 k^{2}-1}$.
2.4. Application 3: volume and surface area of an n-dimensional ball.

For $n \in \mathbb{N}_{\geq 1}$ we denote by $V_{n}(r)$ the volume of $\overline{\boldsymbol{B}}(\mathbf{0}, r) \subset \mathbb{R}^{n}$ and by $A_{n}(r)$ its surface area.
(a) Prove that $\forall n \in \mathbb{N}_{\geq 1}, \forall r>0, V_{n}(r)=r^{n} V_{n}(1)$.
(b) Prove that $\forall n \in \mathbb{N}_{\geq 1}, V_{n+1}(1)=2 V_{n}(1) \int_{0}^{1}\left(1-x^{2}\right)^{\frac{n}{2}} \mathrm{~d} x$.
(c) Prove that $\forall n \in \mathbb{N}_{\geq 1}, V_{n+1}(1)=V_{n}(1) B\left(\frac{1}{2}, \frac{n}{2}+1\right)$.
(d) Prove ${ }^{\|}$that $\forall n \in \mathbb{N}_{\geq 1}, V_{n}(1)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)}=\frac{2 \pi^{\frac{n}{2}}}{n \Gamma(n / 2)}$.
(e) Give a formula for $V_{n}(r)$.
(f) Prove that $A_{n}(r)=V_{n}^{\prime}(r)$ and then give a formula for $A_{n}(r)$.

[^1]
[^0]: * That's the third proof we met in MAT237, I really start to believe it is true...

 For the first 2 proofs, see p75 and p85 of http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf.

[^1]: * We usually prove the log-convexity of Γ using Cauchy-Schwarz inequality for integrals or even faster Hölder inequality. By the BohrMollerup theorem, Γ is the only function $\mathbb{R}_{>0} \rightarrow \mathbb{R}$ such that $\Gamma(1)=1, \Gamma(x+1)=x \Gamma(x)$ and Γ is log-convex (i.e. $\ln \circ \Gamma$ is convex).
 ${ }^{\dagger}$ Questions (b) and (f) admit alternative elementary proofs: you can use an induction relying on a double integration by parts and the monotonicity of $\left(W_{n}\right)_{n}$.
 ${ }^{\ddagger}$ Notice that by setting $u=t-\frac{\pi}{2}$, we may replace cos by sin in the definition of W_{n}.
 ${ }^{\S}$ Moivre proved the formula up to the constant C which was subsequently determined by Stirling.
 " There is an alternative formula with an elementary proof which doesn't involve the Gamma function: using generalized cylindrical coordinates, one may prove that $V_{n+2}(1)=\frac{2 \pi}{n+2} V_{n}(1)$ and then conclude by induction, however this formula depends on the parity of n.

