The Implicit Function Theorem and the Inverse Function Theorem

Jean-Baptiste Campesato

January 1st, 2020

Exercise 1. Let $B = \overline{B}(a, r) \subset \mathbb{R}^n$. Let $f : B \to B$ be a contraction mapping

(*i.e.* a Lipschitz mapping with constant $q \in [0, 1)$, or equivalently $\exists q \in [0, 1), \forall x, y \in B, ||f(x) - f(y)|| \le q||x - y||$).

1. Prove that f is continuous.

We define a sequence inductively by picking $x_0 \in B$ *and then setting* $x_{n+1} = f(x_n)$ *.*

2. Prove that $\forall n \in \mathbb{N}_{\geq 0}$, $||x_{n+1} - x_n|| \le q^n ||x_1 - x_0||$.

3. Prove that $\forall m, n \in \mathbb{N}_{\geq 0}, m > n \implies ||x_m - x_n|| \le \frac{q^n}{1-q} ||x_1 - x_0||.$

- 4. Prove that $(x_n)_{n \in \mathbb{N}_{>0}}$ is a Cauchy sequence.
- 5. Prove that $(x_n)_{n \in \mathbb{N}_{>0}}$ is convergent in **B**.
- 6. Prove that f admits a fixed point, i.e. $\exists x \in B, f(x) = x$.
- 7. Prove that f admits only one fixed point (i.e. if $y \in B$ is another fixed of f point then x = y).

You just proved the

Theorem 2 (Banach fixed point theorem). A contraction mapping $f : \overline{B}(a, r) \to \overline{B}(a, r)$ admits a unique fixed point. **Exercise 3.** Let $U \subset \mathbb{R}^n$ be an open subset containing **0** and $f : U \to \mathbb{R}^n$ be a C^1 function satisfying $f(\mathbf{0}) = \mathbf{0}$ and $Df(\mathbf{0}) = I_{n,n}$.

- 1. Prove that there exists t > 0 such that $B(0,t) \subset U$ and $\forall x \in B(0,t)$, $det(Df(x)) \neq 0$.
- 2. Define $F : U \to \mathbb{R}^n$ by F(x) = f(x) x.
 - (a) Compute $DF(\mathbf{0})$.
 - (b) Prove that there exists $r \in (0, t)$ such that $\forall x \in B(0, r), ||DF(x)|| \le \frac{1}{2}$.
 - (c) Prove that there exists $s \in (0, r)$ such that

$$\forall x, y \in \overline{B}(\mathbf{0}, s), \|F(x) - F(y)\| \le \left(\sup_{z \in \overline{B}(\mathbf{0}, s)} \|DF(z)\|\right) \|x - y\|$$

Comment: we use the Frobenius norm for matrices as in PS4 (recall that $||AB|| \le ||A|| ||B||$). (*d*) *Prove that* $\forall x, y \in \overline{B}(\mathbf{0}, s), ||F(x) - F(y)|| \le \frac{1}{2} ||x - y||.$

- 3. Let $y \in B\left(\mathbf{0}, \frac{s}{2}\right)$. Define $\theta_y : U \to \mathbb{R}^n$ by $\theta_y(x) = y F(x)$.
 - (a) Prove that $\theta_y(\overline{B}(\mathbf{0},s)) \subset B(\mathbf{0},s)$.
 - (b) Prove that θ_y : $\overline{B}(0, s) \to \overline{B}(0, s)$ is a contraction mapping with constant $\frac{1}{2}$.
 - (c) We set $V = B(\mathbf{0}, s) \cap f^{-1}\left(B\left(\mathbf{0}, \frac{s}{2}\right)\right)$ and $W = B\left(\mathbf{0}, \frac{s}{2}\right)$. Prove that $f: V \to W$ is a well-defined bijection between two open subsets of \mathbb{R}^n containing $\mathbf{0}$.
- 4. (a) Prove that $f^{-1}: W \to V$ is Lipschitz with constant 2 and then that it is continuous.
 - (b) Prove that $f^{-1}: W \to V$ is differentiable. (Hint: use the very definition of differentiability together with Question 1.)
 - (c) Prove that $f^{-1} : W \to V$ is C^1 . (Hint: study $D(f^{-1})$ using the Chain Rule.)

You just proved that

Claim 4. Let $U \subset \mathbb{R}^n$ be an open subset containing **0** and $f : U \to \mathbb{R}^n$ be of class C^1 such that $f(\mathbf{0}) = \mathbf{0}$ and $Df(\mathbf{0}) = I_{n,n}$. Then there exist $V, W \subset \mathbb{R}^n$ two open subsets such that $\mathbf{0} \in V \subset U$, $\mathbf{0} \in W$ and $f : V \to W$ is a C^1 -diffeomorphism (i.e. f is C^1 , bijective and f^{-1} is C^1).

Exercise 5. *Prove the Inverse Function Theorem (the statement is below).* (Hint: reduce to the case considered in the above claim.)

Theorem 6 (The Inverse Function Theorem). Let $U \subset \mathbb{R}^n$ open, $f : U \to \mathbb{R}^n$ of class C^1 and $a \in U$. Assume that Df(a) is invertible.

Then there exist $V, W \subset \mathbb{R}^n$ two open subsets such that $a \in V \subset U$, $f(a) \in W$ and $f : V \to W$ is a C^1 -diffeomorphism (i.e. f is C^1 , bijective and f^{-1} is C^1).

Exercise 7. Derive the Implicit Function Theorem from the Inverse Function Theorem (the statement is below).

Theorem 8 (The Implicit Function Theorem). Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^p$ be two open subsets. Let $(x_0, y_0) \in U \times V$. Let $F : \begin{array}{l} U \times V \to \mathbb{R}^p \\ (x, y) \mapsto F(x, y) \end{array}$ be of class C^1 . If $D_y F(x_0, y_0)$ is invertible then there exist r, s > 0 such that $B(x_0, r) \subset U$, $B(y_0, s) \subset V$ and there exists $\varphi : B(x_0, r) \to B(y_0, s)$ of class C^1 such that

 $\forall (x,y) \in B(x_0,r) \times B(y_0,s), \ F(x,y) = F(x_0,y_0) \Leftrightarrow y = \varphi(x)$