The Implicit Function Theorem and the Inverse Function Theorem

Jean-Baptiste Campesato

January $1^{\text {st }}, 2020$
Exercise 1. Let $\boldsymbol{B}=\bar{B}(a, r) \subset \mathbb{R}^{n}$. Let $f: B \rightarrow B$ be a contraction mapping
(i.e. a Lipschitz mapping with constant $q \in[0,1)$, or equivalently $\exists q \in[0,1), \forall x, y \in B,\|f(x)-f(y)\| \leq q\|x-y\|)$.

1. Prove that f is continuous.

We define a sequence inductively by picking $x_{0} \in B$ and then setting $x_{n+1}=f\left(x_{n}\right)$.
2. Prove that $\forall n \in \mathbb{N}_{\geq 0},\left\|x_{n+1}-x_{n}\right\| \leq q^{n}\left\|x_{1}-x_{0}\right\|$.
3. Prove that $\forall m, n \in \mathbb{N}_{\geq 0}, m>n \Longrightarrow\left\|x_{m}-x_{n}\right\| \leq \frac{q^{n}}{1-q}\left\|x_{1}-x_{0}\right\|$.
4. Prove that $\left(x_{n}\right)_{n \in \mathbb{N}_{\geq 0}}$ is a Cauchy sequence.
5. Prove that $\left(x_{n}\right)_{n \in \mathbb{N}_{\geq 0}}$ is convergent in B.
6. Prove that f admits a fixed point, i.e. $\exists x \in B, f(x)=x$.
7. Prove that f admits only one fixed point (i.e. if $y \in B$ is another fixed of f point then $x=y$).

You just proved the
Theorem 2 (Banach fixed point theorem). A contraction mapping $f: \bar{B}(a, r) \rightarrow \bar{B}(a, r)$ admits a unique fixed point.
Exercise 3. Let $U \subset \mathbb{R}^{n}$ be an open subset containing $\mathbf{0}$ and $f: U \rightarrow \mathbb{R}^{n}$ be a C^{1} function satisfying $f(\mathbf{0})=\mathbf{0}$ and $D f(\mathbf{0})=I_{n, n}$.

1. Prove that there exists $t>0$ such that $B(\mathbf{0}, t) \subset U$ and $\forall x \in B(\mathbf{0}, t), \operatorname{det}(D f(x)) \neq 0$.
2. Define $F: U \rightarrow \mathbb{R}^{n}$ by $F(x)=f(x)-x$.
(a) Compute DF(0).
(b) Prove that there exists $r \in(0, t)$ such that $\forall x \in B(0, r),\|D F(x)\| \leq \frac{1}{2}$.
(c) Prove that there exists $s \in(0, r)$ such that

$$
\forall x, y \in \bar{B}(0, s),\|F(x)-F(y)\| \leq\left(\sup _{z \in \bar{B}(0, s)}\|D F(z)\|\right)\|x-y\|
$$

Comment: we use the Frobenius norm for matrices as in PS4 (recall that $\|A B\| \leq\|A\|\|B\|$).
(d) Prove that $\forall x, y \in \bar{B}(0, s),\|F(x)-F(y)\| \leq \frac{1}{2}\|x-y\|$.
3. Let $y \in B\left(0, \frac{s}{2}\right)$. Define $\theta_{y}: U \rightarrow \mathbb{R}^{n}$ by $\theta_{y}(x)=y-F(x)$.
(a) Prove that $\theta_{y}(\bar{B}(\mathbf{0}, s)) \subset B(\mathbf{0}, s)$.
(b) Prove that $\theta_{y}: \bar{B}(\mathbf{0}, s) \rightarrow \bar{B}(\mathbf{0}, s)$ is a contraction mapping with constant $\frac{1}{2}$.
(c) We set $V=B(0, s) \cap f^{-1}\left(B\left(\mathbf{0}, \frac{s}{2}\right)\right)$ and $W=B\left(\mathbf{0}, \frac{s}{2}\right)$.

Prove that $f: V \rightarrow W$ is a well-defined bijection between two open subsets of \mathbb{R}^{n} containing $\mathbf{0}$.
4. (a) Prove that $f^{-1}: W \rightarrow V$ is Lipschitz with constant 2 and then that it is continuous.
(b) Prove that $f^{-1}: W \rightarrow V$ is differentiable.
(Hint: use the very definition of differentiability together with Question 1.)
(c) Prove that $f^{-1}: W \rightarrow V$ is C^{1}.
(Hint: study $\boldsymbol{D}\left(f^{-1}\right)$ using the Chain Rule.)

You just proved that
Claim 4. Let $U \subset \mathbb{R}^{n}$ be an open subset containing $\mathbf{0}$ and $f: U \rightarrow \mathbb{R}^{n}$ be of class C^{1} such that $f(\mathbf{0})=\mathbf{0}$ and $D f(\mathbf{0})=I_{n, n}$. Then there exist $V, W \subset \mathbb{R}^{n}$ two open subsets such that $\mathbf{0} \in V \subset U, \mathbf{0} \in W$ and $f: V \rightarrow W$ is a C^{1}-diffeomorphism (i.e. f is C^{1}, bijective and f^{-1} is C^{1}).

Exercise 5. Prove the Inverse Function Theorem (the statement is below).
(Hint: reduce to the case considered in the above claim.)
Theorem 6 (The Inverse Function Theorem). Let $U \subset \mathbb{R}^{n}$ open, $f: U \rightarrow \mathbb{R}^{n}$ of class C^{1} and $a \in U$. Assume that $D f(a)$ is invertible.
Then there exist $V, W \subset \mathbb{R}^{n}$ two open subsets such that $a \in V \subset U, f(a) \in W$ and $f: V \rightarrow W$ is a C^{1}-diffeomorphism (i.e. f is C^{1}, bijective and f^{-1} is C^{1}).

Exercise 7. Derive the Implicit Function Theorem from the Inverse Function Theorem (the statement is below).
Theorem 8 (The Implicit Function Theorem).
Let $U \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{p}$ be two open subsets. Let $\left(x_{0}, y_{0}\right) \in U \times V$.
Let $F: \begin{array}{ccc}U \times V & \rightarrow & \mathbb{R}^{p} \\ (x, y) & \mapsto & F(x, y)\end{array}$ be of class C^{1}.
If $D_{y} F\left(x_{0}, y_{0}\right)$ is invertible then there exist $r, s>0$ such that $\boldsymbol{B}\left(x_{0}, r\right) \subset U, \boldsymbol{B}\left(y_{0}, s\right) \subset V$ and there exists $\varphi: B\left(x_{0}, r\right) \rightarrow B\left(y_{0}, s\right)$ of class C^{1} such that

$$
\forall(x, y) \in B\left(x_{0}, r\right) \times B\left(y_{0}, s\right), F(x, y)=F\left(x_{0}, y_{0}\right) \Leftrightarrow y=\varphi(x)
$$

