
MAT237Y1 – LEC5201

Multivariable Calculus

DIFFERENTIABILITY: A SUMMARY

November 14th, 2019

Jean-Baptiste Campesato MAT237Y1 – LEC5201 – Nov 14, 2019 1



Real-valued case – 𝑈 ⊂ ℝ𝑛 open and 𝑓 ∶ 𝑈 → ℝ.
Name Nature Notation and definition

Directional derivative at
x ∈ 𝑈 along v ∈ ℝ𝑛 Real number 𝜕v𝑓(x) = lim

𝑡→0
𝑓(x + 𝑡v) − 𝑓(x)

𝑡

𝑖-th partial derivative at
x ∈ 𝑈 Real number 𝜕𝑓

𝜕𝑥𝑖
(x) = 𝜕e𝑖

𝑓(x)

Gradient at x ∈ 𝑈 Vector in ℝ𝑛 ∇𝑓(x) = (
𝜕𝑓
𝜕𝑥1

(x), … , 𝜕𝑓
𝜕𝑥𝑛

(x))

Differential (or total
derivative) at x ∈ 𝑈 Linear function 𝑓(x + h) = 𝑓(x) + 𝑑x𝑓(h) + 𝐸(h)

“𝑓 is differentiable at x” 𝑑x𝑓 ∶ ℝ𝑛 → ℝ with lim
h→0

𝐸(h)
‖h‖ = 0

See the slides from Oct 10 for the geometric intuitions about these objects.
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Real-valued case – 𝑓 ∶ 𝑈 → ℝ, 𝑈 ⊂ ℝ𝑛 open, x ∈ 𝑈

Continuous at x

Partial derivatives exist on 𝑈
and are continuous at x Differentiable at x

Interpretation of ∇𝑓(x):
direction: direction of
fastest increase through x
magnitude: steepness,
instantaneous rate of
change in that direction
Moreover: it is orthogo-
nal to the level sets

Directional derivatives at x exist
and moreover

• 𝜕v𝑓(x) = 𝑑x𝑓(v)
• 𝑑x𝑓(h) = ∇𝑓(x) ⋅ h
• 𝜕v𝑓(x) = ∇𝑓(x) ⋅ v

\\

\\

\\
See the slides from Oct 10 for more details
and for the counter-examples.

Partial derivatives at x exist Directional derivatives at x exist\\

All the directional derivatives at x exist Continuous at x\\
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Vector-valued case – 𝑈 ⊂ ℝ𝑛 open and f ∶ 𝑈 → ℝ𝑘.

We denote by 𝑓𝑖 the components of f, i.e. f = (𝑓1, … , 𝑓𝑘) ∶ 𝑈 → ℝ𝑘

Name Nature Notation and definition

Differential (or total
derivative) at x ∈ 𝑈 Linear function f(x + h) = f(x) + 𝑑xf(h) + E(h)

“f is differentiable at x” 𝑑xf ∶ ℝ𝑛 → ℝ𝑘 with lim
h→0

E(h)
‖h‖ = 0

Jacobian matrix of f at
x ∈ 𝑈 (𝑘 × 𝑛)-matrix 𝐷f(x) =

⎛
⎜
⎜
⎜
⎝

𝜕𝑓1
𝜕𝑥1

(x) ⋯ 𝜕𝑓1
𝜕𝑥𝑛

(x)
⋮ ⋱ ⋮

𝜕𝑓𝑘
𝜕𝑥1

(x) ⋯ 𝜕𝑓𝑘
𝜕𝑥𝑛

(x)

⎞
⎟
⎟
⎟
⎠
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Vector-valued case – f ∶ 𝑈 → ℝ𝑘, 𝑈 ⊂ ℝ𝑛 open, x ∈ 𝑈
We denote by 𝑓𝑖 ∶ 𝑈 → ℝ the components of f, i.e. f = (𝑓1, … , 𝑓𝑘) ∶ 𝑈 → ℝ𝑘

We proved that f is differentiable at x if and only if its components 𝑓𝑖 are too.
It allowed us to use the results from the real-valued case to prove the following theorems:

f is continuous at x

The partial derivatives 𝜕𝑓𝑖
𝜕𝑥𝑗

exist on 𝑈
and are continuous at x

f is differentiable at x

All the directional derivatives
𝜕v𝑓𝑖(x) of the components 𝑓𝑖
at x exist
and moreover

Mat (𝑑xf) = 𝐷f(x)
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The Chain Rule

Let 𝑈 ⊂ ℝ𝑛 open, f ∶ 𝑈 → ℝ𝑙

x ↦ f(x) , 𝑉 ⊂ ℝ𝑙 open, g ∶ 𝑉 → ℝ𝑘

y ↦ g(y) .

Assume that f(𝑈) ⊂ 𝑉 so that g ∘ f ∶ 𝑈 → ℝ𝑘 is well-defined.

Let x ∈ 𝑈 .
If f is differentiable at x and g is differentiable at f(x) then g ∘ f is differentiable at x.

• Chain rule formula for the differentials:

𝑑x(g ∘ f) = (𝑑f(x)g) ∘ (𝑑xf)
• Chain rule formula for the Jacobian matrices:

𝐷(g ∘ f)(x) = 𝐷(g)(f(x)) ⋅ 𝐷(f)(x)

• Chain rule for the partial derivatives:

𝜕(𝑔𝑖 ∘ f)
𝜕𝑥𝑗

(x) =
𝑙

∑
𝛼=1

𝜕𝑔𝑖
𝜕𝑦𝛼

(f(x)) ⋅ 𝜕𝑓𝛼
𝜕𝑥𝑗

(x)
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The Chain Rule

Let 𝑈 ⊂ ℝ𝑛 open, f ∶ 𝑈 → ℝ𝑙

x ↦ f(x) , 𝑉 ⊂ ℝ𝑙 open, g ∶ 𝑉 → ℝ𝑘

y ↦ g(y) .

Assume that f(𝑈) ⊂ 𝑉 so that g ∘ f ∶ 𝑈 → ℝ𝑘 is well-defined.

Let x ∈ 𝑈 .
If f is differentiable at x and g is differentiable at f(x) then g ∘ f is differentiable at x.

• Chain rule formula for the differentials:

𝑑x(g ∘ f) = (𝑑f(x)g) ∘ (𝑑xf)
• Chain rule formula for the Jacobian matrices:

𝐷(g ∘ f)(x) = 𝐷(g)(f(x)) ⋅ 𝐷(f)(x)

• Chain rule for the partial derivatives:

𝜕(𝑔𝑖 ∘ f)
𝜕𝑥𝑗

(x) =
𝑙

∑
𝛼=1

𝜕𝑔𝑖
𝜕𝑦𝛼

(f(x)) ⋅ 𝜕𝑓𝛼
𝜕𝑥𝑗

(x)

We derive the second formula from the first one by noticing that 𝐷(f)(x) = Mat(𝑑xf). And we derive the third formula from the second
one by looking at the (𝑖, 𝑗)-component of the matrices (the RHS is just the matrix multiplication formula).
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The Chain Rule

Let 𝑈 ⊂ ℝ𝑛 open, f ∶ 𝑈 → ℝ𝑙

x ↦ f(x) , 𝑉 ⊂ ℝ𝑙 open, g ∶ 𝑉 → ℝ𝑘

y ↦ g(y) .

Assume that f(𝑈) ⊂ 𝑉 so that g ∘ f ∶ 𝑈 → ℝ𝑘 is well-defined.

Let x ∈ 𝑈 .
If f is differentiable at x and g is differentiable at f(x) then g ∘ f is differentiable at x.

• Chain rule formula for the differentials:

𝑑x(g ∘ f) = (𝑑f(x)g) ∘ (𝑑xf)
• Chain rule formula for the Jacobian matrices:

𝐷(g ∘ f)(x) = 𝐷(g)(f(x)) ⋅ 𝐷(f)(x)

• Chain rule for the partial derivatives:

𝜕(𝑔𝑖 ∘ f)
𝜕𝑥𝑗

(x) =
𝑙

∑
𝛼=1

𝜕𝑔𝑖
𝜕𝑦𝛼

(f(x)) ⋅ 𝜕𝑓𝛼
𝜕𝑥𝑗

(x)

The last formula may seem difficult but after using it several times you’ll notice that it is easy to use in practice, it generalizes the
chain rule from MAT135/137/157 in a natural way.
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Beware!
Your worst enemy in calculus is going to be the notation!

• There are as many notations as people: if you pick two different
textbooks/mathematicians randomly, they probably don’t use the same notations
for the directional derivatives, the partial derivatives, the differentials, the Jacobian
matrices…
For instance, below are some notations more or less commonly used for the partial
derivative of 𝑓 ∶ ℝ2 → ℝ with respect to the first variable (i.e. the directional
derivative along e1):

𝜕𝑓
𝜕𝑥 , 𝜕𝑥𝑓, 𝜕e1

𝑓, 𝜕1𝑓, 𝑓𝑥, 𝑓 ′
𝑥 , 𝐷𝑥𝑓, 𝐷e1

𝑓, 𝐷1𝑓, 𝐷1𝑓, 𝐷e1 𝑓, …

• The notations might be confusing at first: be sure that you understand what you are
reading and/or writing! Rely on the context to avoid any confusion!
For instance, given a function 𝑓 ∶ ℝ2 → ℝ, 𝜕𝑓

𝜕𝑥 simply denotes the derivative with
respect to the first variable (i.e. the directional derivative along e1), do not try to
interpret the 𝑥 in the denominator 𝜕𝑥, that’s just a notation.
Therefore, if you see 𝜕𝑓

𝜕𝑥 (𝑥2, 𝑥𝑦𝑧), it means that you first compute the partial
derivative and then that you evaluate it at (𝑥2, 𝑥𝑦𝑧).
You should not compute 𝑓(𝑥2, 𝑥𝑦𝑧) and then take the derivative with respect to 𝑥.
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The MVT

Theorem. The MVT (one-variable case)
Let 𝑓 ∶ [𝑎, 𝑏] → ℝ continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏).
Then there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝑓(𝑏) − 𝑓(𝑎) = 𝑓 ′(𝑐)(𝑏 − 𝑎).

Theorem. The MVT (multivariable case)
𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ differentiable on 𝑈 .
Let a, b ∈ 𝑈 such that 𝐿a,b = {(1 − 𝑡)a + 𝑡b ∶ 𝑡 ∈ [0, 1]} ⊂ 𝑈 .
Then there exists c ∈ 𝐿a,b such that 𝑓(b) − 𝑓(a) = ∇𝑓(c) ⋅ (b − a)

Corollary. 𝑈 ⊂ ℝ𝑛 open and convex, 𝑓 ∶ 𝑈 → ℝ differentiable on 𝑈 .
If there exists 𝑀 > 0 such that ∀x ∈ 𝑈, ‖∇𝑓(x)‖ ≤ 𝑀 then
∀a, b ∈ 𝑈, |𝑓(b) − 𝑓(a)| ≤ 𝑀‖b − a‖

Corollary. 𝑈 ⊂ ℝ𝑛 open and path-connected, 𝑓 ∶ 𝑈 → ℝ differentiable.
If ∀x ∈ 𝑈, ∇𝑓(x) = 0 then 𝑓 is constant on 𝑈 .
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Higher-order partial derivatives – 1
Notation. 𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ, a ∈ 𝑈 .
Assume that 𝜕𝑓

𝜕𝑥𝑖
exists in a small ball centered at a and that it admits a directional

derivative at a along e𝑗 , then we denote the second-order partial derivatives by
𝜕2𝑓

𝜕𝑥𝑗𝜕𝑥𝑖
(a) ∶= 𝜕

𝜕𝑥𝑗 (
𝜕𝑓
𝜕𝑥𝑖 ) (a)

Be careful, we first take the partial derivative w.r.t. 𝑥𝑖 and then w.r.t. 𝑥𝑗 .

Theorem. Clairaut’s theorem.
𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ of class 𝐶2, a ∈ 𝑈 . Then

𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

(a) = 𝜕2𝑓
𝜕𝑥𝑖𝜕𝑥𝑗

(a)

“If the second-order partial derivatives are continuous then the order doesn’t matter.”

Example. The 𝐶2 assumption is crucial here!

Let 𝑓 ∶ ℝ2 → ℝ be defined by 𝑓(𝑥, 𝑦) =
{

𝑥𝑦 𝑥2−𝑦2

𝑥2+𝑦2 if (𝑥, 𝑦) ≠ (0, 0)
0 otherwise

Then 𝜕2𝑓
𝜕𝑥𝜕𝑦 (0, 0) = 1 ≠ −1 = 𝜕2𝑓

𝜕𝑦𝜕𝑥 (0, 0).

Jean-Baptiste Campesato MAT237Y1 – LEC5201 – Nov 14, 2019 9



Higher-order partial derivatives – 2

Notation. Similarly we set 𝜕𝑘𝑓
𝜕𝑥𝑖𝑘 𝜕𝑥𝑖𝑘−1

⋯ 𝜕𝑥𝑖1
(a) = 𝜕

𝜕𝑥𝑖𝑘 (
𝜕

𝜕𝑥𝑖𝑘−1 (
⋯

(
𝜕𝑓
𝜕𝑥𝑖1 )

⋯
))

(a).

Another possible notation is 𝜕𝑥𝑖𝑘
𝜕𝑥𝑖𝑘−1

⋯ 𝜕𝑥𝑖1
𝑓(a).

Be careful we read from right to left (that’s a composition): first we differentiate w.r.t. 𝑥𝑖1 ,
then w.r.t. 𝑥𝑖2 , and so on…

Definition. 𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ.
We say that 𝑓 is of class 𝐶𝑘 if all its partial derivatives of order less than or equal to 𝑘
exist and are continuous (don’t forget the continuity assumption!).

Comment. 𝐶0 means continuous.
Comment. 𝐶1 is read continuously differentiable.

Theorem. 𝐶𝑘 functions are closed under elementary operations.

Theorem. 𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ of class 𝐶𝑘, a ∈ 𝑈 .

Then 𝜕𝑘𝑓
𝜕𝑥𝑖𝑘 𝜕𝑥𝑖𝑘−1

⋯ 𝜕𝑥𝑖1
(a) doesn’t depend on the order of the 𝑖1, … , 𝑖𝑘.
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Taylor theorem – The one-variable case

Definition. 𝐼 ⊂ ℝ interval, 𝑓 ∶ 𝐼 → ℝ, 𝑎 ∈ 𝐼 , assume that 𝑓 is 𝑘-times differentiable at 𝑎
then we define the 𝑘-th order Taylor polynormal of 𝑓 at 𝑎 by

𝑃𝑎,𝑘(ℎ) ∶=
𝑘

∑
𝑗=0

𝑓 (𝑗)(𝑎)
𝑗! ℎ𝑗 = 𝑓(𝑎) + 𝑓 ′(𝑎)ℎ + 𝑓 ″(𝑎)

2 ℎ2 + ⋯ + 𝑓 (𝑘)(𝑎)
𝑘! ℎ𝑘

Comment. 𝑃𝑎,𝑘 is the unique polynomial of degree at most 𝑘 such that
𝑃𝑎,𝑘(0) = 𝑓(𝑎), 𝑃 ′

𝑎,𝑘(0) = 𝑓 ′(𝑎), 𝑃 ″
𝑎,𝑘(0) = 𝑓 ″(𝑎), …, 𝑃 (𝑘)

𝑎,𝑘 (0) = 𝑓 (𝑘)(𝑎)

Theorem. Taylor’s theorem or Taylor–Young’s theorem
𝐼 ⊂ ℝ interval, 𝑓 ∶ 𝐼 → ℝ of class 𝐶𝑘−1 on 𝐼 , and 𝑎 ∈ 𝐼 .
If 𝑓 (𝑘)(𝑎) exists then 𝑓(𝑎 + ℎ) = 𝑃𝑎,𝑘(ℎ) + 𝐸(ℎ) where lim

ℎ→0

𝐸(ℎ)
ℎ𝑘 = 0.

Theorem. Taylor–Lagrange’s theorem
Let 𝐼 ⊂ ℝ interval, 𝑓 ∶ 𝐼 → ℝ be (𝑘 + 1)-times differentiable on 𝐼 , and 𝑎 ∈ 𝐼 .
Let ℎ ∈ ℝ ⧵ {0} such that {

[𝑎, 𝑎 + ℎ] ⊂ 𝐼 if ℎ > 0 or
[𝑎 + ℎ, 𝑎] ⊂ 𝐼 if ℎ < 0 then {

∃𝜉 ∈ (𝑎, 𝑎 + ℎ) if ℎ > 0 or
∃𝜉 ∈ (𝑎 + ℎ, 𝑎) if ℎ < 0

such that 𝑓(𝑎 + ℎ) = 𝑃𝑎,𝑘(ℎ) + 𝑓 (𝑘+1)(𝜉)
(𝑘 + 1)! ℎ𝑘+1.
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Taylor theorem – The multi-variable case – 1

Theorem. Taylor’s theorem at order 1
𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ differentiable at a ∈ 𝑈 .

Then 𝑓(a + h) = 𝑓(a) +
𝑛

∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(a)ℎ𝑖 + 𝐸(h) where lim
h→0

𝐸(h)
‖h‖ = 0.

Theorem. Taylor–Lagrange’s theorem at order 2
𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ of class 𝐶2, a ∈ 𝑈 , h ∈ ℝ𝑛.
Assume that ∀𝑡 ∈ [0, 1], a + 𝑡h ∈ 𝑈 then there exists 𝜃 ∈ (0, 1) such that

𝑓(a + h) = 𝑓(a) +
𝑛

∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(a)ℎ𝑖 + 1
2

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

(a + 𝜃h)ℎ𝑖ℎ𝑗 .

Theorem. Taylor’s theorem at order 2
𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ of class 𝐶2, a ∈ 𝑈 .

Then 𝑓(a + h) = 𝑓(a) +
𝑛

∑
𝑖=1

𝜕𝑓
𝜕𝑥𝑖

(a)ℎ𝑖 + 1
2

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

(a)ℎ𝑖ℎ𝑗 + 𝐸(h) where lim
h→0

𝐸(h)
‖h‖2 = 0.
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Taylor theorem – The multi-variable case – 2

We define the Hessian matrix of 𝑓 at a by

𝐻𝑓 (a) =
⎛
⎜
⎜
⎜
⎝

𝜕2𝑓
𝜕𝑥1𝜕𝑥1

(a) ⋯ 𝜕2𝑓
𝜕𝑥1𝜕𝑥𝑛

(a)
⋮ ⋱ ⋮

𝜕2𝑓
𝜕𝑥𝑛𝜕𝑥1

(a) ⋯ 𝜕2𝑓
𝜕𝑥𝑛𝜕𝑥𝑛

(a)

⎞
⎟
⎟
⎟
⎠

Notice that

𝑛

∑
𝑗=1

𝑛

∑
𝑖=1

𝜕2𝑓
𝜕𝑥𝑗𝜕𝑥𝑖

(a)ℎ𝑖ℎ𝑗 = (ℎ1 ⋯ ℎ𝑛)
⎛
⎜
⎜
⎜
⎝

𝜕2𝑓
𝜕𝑥1𝜕𝑥1

(a) ⋯ 𝜕2𝑓
𝜕𝑥1𝜕𝑥𝑛

(a)
⋮ ⋱ ⋮

𝜕2𝑓
𝜕𝑥𝑛𝜕𝑥1

(a) ⋯ 𝜕2𝑓
𝜕𝑥𝑛𝜕𝑥𝑛

(a)

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎝

ℎ1
⋮
ℎ𝑛

⎞
⎟
⎟
⎠

= h ⋅ (𝐻𝑓 (a)h)
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Taylor theorem – The multi-variable case – 3
You do NOT need to know the following formula (see next slide)!

Theorem. (Taylor’s theorem)
𝑈 ⊂ ℝ𝑛 open, 𝑓 ∶ 𝑈 → ℝ of class 𝐶𝑘, a ∈ 𝑈 . Then

𝑓(a + h) = ∑
|𝜶|≤𝑘

𝜕𝜶𝑓(a)
𝜶! h𝜶 + 𝐸(h)

with lim
h→0

𝐸(h)
‖h‖𝑘 = 0.

Where 𝜶 = (𝛼1, … , 𝛼𝑛) ∈ ℕ𝑘
≥0, |𝜶| = 𝛼1 + ⋯ + 𝛼𝑛, 𝜶! = 𝛼1! ⋯ 𝛼𝑛!,

h𝜶 = ℎ𝛼1
1 ⋯ ℎ𝛼𝑛

𝑛 and

𝜕𝜶𝑓(a) = 𝜕|𝜶|𝑓
𝜕𝑥𝛼1

1 ⋯ 𝜕𝑥𝛼𝑛
𝑛

(a)

(Since the function is of class 𝐶𝑘 the order doesn’t matter and we gather
together the differentiation w.r.t. a same variable)
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Taylor theorem – The multi-variable case – 4 and last
In practice it would be very inefficient to use the formula from the
previous slide since it involves too many computations of partial
derivatives...
Instead you should rely on the Taylor series you already know.

Example.
𝑒𝑥−2𝑦

1 + 𝑥2 − 𝑦
= 𝑒𝑥−2𝑦

1 − (𝑦 − 𝑥2)

= (1 + (𝑥 − 2𝑦) + (𝑥 − 2𝑦)2

2 + ⋯) (1 + (𝑦 − 𝑥2) + (𝑦 − 𝑥2)2 + ⋯)

= 1 + 𝑥 − 𝑦 − 𝑥2

2 − 𝑥𝑦 + 𝑦2 + 𝐸(𝑥, 𝑦)

with lim
(𝑥,𝑦)→(0,0)

𝐸(𝑥, 𝑦)
‖(𝑥, 𝑦)‖2 = 0.

Hence 𝑃0,2(𝑥, 𝑦) = 1 + 𝑥 − 𝑦 − 𝑥2

2 − 𝑥𝑦 + 𝑦2.
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Some power series from MAT135/137/157

1 ∀𝑥 ∈ ℝ, 𝑒𝑥 =
+∞

∑
𝑛=0

𝑥𝑛

𝑛! (recall that 0! = 1)

2 ∀𝑥 ∈ ℝ, cos(𝑥) =
+∞

∑
𝑛=0

(−1)𝑛

(2𝑛)! 𝑥2𝑛 and sin(𝑥) =
+∞

∑
𝑛=0

(−1)𝑛

(2𝑛 + 1)!𝑥2𝑛+1

3 ∀𝑥 ∈ (−1, 1], ln(1 + 𝑥) =
+∞

∑
𝑛=1

(−1)𝑛+1

𝑛 𝑥𝑛

4 ∀𝑥 ∈ (−1, 1), 1
1 − 𝑥 =

+∞

∑
𝑛=0

𝑥𝑛

5 ∀𝑥 ∈ (−1, 1), (1 + 𝑥)𝛼 = 1 +
+∞

∑
𝑛=1

𝛼(𝛼 − 1) ⋯ (𝛼 − 𝑛 + 1)
𝑛! 𝑥𝑛

(The last one holds for 𝑥 ∈ ℝ when 𝛼 ∈ ℕ.)

Keep in mind that power series behave well with respect to the usual
operations: use them to reduce to the above results.
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Local extrema & critical points – 1
Local extremum
Let 𝑈 ⊂ ℝ𝑛 be open, 𝑓 ∶ 𝑈 → ℝ and a ∈ 𝑈 .
We say that a is a local min (resp. local max) of 𝑓 if

∃𝑟 > 0, ∀x ∈ 𝑈, ‖x − a‖ < 𝑟 ⟹ 𝑓(a) ≤ 𝑓(x)

(resp. ∃𝑟 > 0, ∀x ∈ 𝑈, ‖x − a‖ < 𝑟 ⟹ 𝑓(a) ≥ 𝑓(x))

Critical point
Let 𝑈 ⊂ ℝ𝑛 be open, 𝑓 ∶ 𝑈 → ℝ be differentiable and a ∈ 𝑈 .
We say that a is a critical point of 𝑓 if ∇𝑓(a) = 0.

Theorem: first derivative test
Let 𝑈 ⊂ ℝ𝑛 be open, 𝑓 ∶ 𝑈 → ℝ be differentiable and a ∈ 𝑈 .
If a is a local extremum of 𝑓 then it is a critical point of 𝑓 .

Hence the local extrema of 𝑓 are among the critical points of 𝑓 .
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Local extrema & critical points – 2

Theorem: second derivative test
Let 𝑈 ⊂ ℝ𝑛 be open, 𝑓 ∶ 𝑈 → ℝ be of class 𝐶2 and a ∈ 𝑈 be a critical point.

• If 𝐻𝑓 (a) is positive definite then a is a local min of 𝑓 .
• If 𝐻𝑓 (a) is negative definite then a is a local max of 𝑓 .
• If 𝐻𝑓 (a) is indefinite then a is a saddle point of 𝑓 .

▴ Indeed
𝑓(a + h) − 𝑓(a) = 1

2 h ⋅ (𝐻𝑓 (a)h) + 𝐸(h)

where lim
h→0

𝐸(h)
‖h‖2 = 0. ■

In all the remaining cases, the Hessian matrix is not enough to conclude about the
nature of a.

Example: The Hessian matrices of 𝑓(𝑥, 𝑦) = 𝑥2 and 𝑔(𝑥, 𝑦) = 𝑥3 at 0 are both
non-negative definite but 𝑓 has a local min at 0 whereas 𝑔 has no local extremum at 0.
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Local extrema & critical points – 3

Recall that for 𝐴 ∈ 𝑀𝑛,𝑛(ℝ) symmetric

𝐴 positive definite ⇔ ∀h ∈ ℝ𝑛 ⧵ {0}, h𝑡𝐴h > 0
⇔ All the eigenvalues of 𝐴 are > 0
⇔ There exists 𝜆 > 0, ∀h ∈ ℝ𝑛, h𝑡𝐴h ≥ 𝜆‖h‖2

𝐴 negative definite ⇔ ∀h ∈ ℝ𝑛 ⧵ {0}, h𝑡𝐴h < 0
⇔ All the eigenvalues of 𝐴 are < 0
⇔ There exists 𝜆 < 0, ∀h ∈ ℝ𝑛, h𝑡𝐴h ≤ 𝜆‖h‖2

𝐴 indefinite ⇔ ∃h, k ∈ ℝ𝑛, h𝑡𝐴h < 0 < k𝑡𝐴k
⇔ 𝐴 has a positive eigenvalue and a negative eigenvalue
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Local extrema & critical points – 4 – two-variable case
Let 𝑈 ⊂ ℝ2 be open, 𝑓 ∶ 𝑈 → ℝ be of class 𝐶2 and a ∈ 𝑈 be a critical
point (i.e. 𝜕𝑓

𝜕𝑥 (a) = 𝜕𝑓
𝜕𝑦 (a) = 0).

By Clairaut’s theorem 𝐻𝑓 (a) = (
𝛼 𝛽
𝛽 𝛾) is symmetric where

𝛼 = 𝜕2𝑓
𝜕𝑥2 (a) 𝛽 = 𝜕2𝑓

𝜕𝑥𝜕𝑦(a) = 𝜕2𝑓
𝜕𝑦𝜕𝑥(a) 𝛾 = 𝜕2𝑓

𝜕𝑦2 (a)

Compute det (𝐻𝑓 (a)) = 𝛼𝛾 − 𝛽2 then

a critical point

saddle point

𝛼𝛾 − 𝛽 2 < 0

can’t conclude
𝛼𝛾 − 𝛽2 = 0

local extremum

local min𝛼 > 0

local max𝛼 < 0

𝛼𝛾 − 𝛽2 > 0
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