# University of Toronto - MAT237Y1 - LEC5201 <br> Multivariable calculus! 

Jean-Baptiste Campesato

November 14 ${ }^{\text {th }}, 2019$
Question 1. (Re)solve the questions 13 to 18 from the Test 1 Reviews sheet (Oct 10) and read the review slides.
Question 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x y e^{x}$.

1. Justify that $f$ is differentiable on $\mathbb{R}^{2}$.
2. Compute the partial derivatives at $(1,1)$.
3. Determine $\nabla f(1,1)$.
4. Compute $\partial_{(1,2)} f(1,1)$ the directional derivative of $f$ at $(1,1)$ along $(1,2)$ using the previous question.
5. Compute $\partial_{(1,2)} f(1,1)$ the directional derivative of $f$ at $(1,1)$ along $(1,2)$ from the very definition.

Question 3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cl}\frac{y^{3}}{\sqrt{x^{2}+y^{4}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$

1. Prove that $f$ is continuous on $\mathbb{R}^{2}$.
2. Prove that the directional derivative $\partial_{v} f(0,0)$ exists for every $v \in \mathbb{R}^{2}$.
3. Prove that $f$ is not differentiable at $(0,0)$ using the results from Slide 3 of the reviews.
4. Prove that $f$ is not differentiable at $(0,0)$ using the definition of the differentiability.

Question 4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x^{2} e^{y}$.

1. Justify that $f$ is differentiable on $\mathbb{R}^{2}$.
2. Compute directly from the definition $\partial_{(1,1)} f(2,0)$ and $\partial_{(1,-1)} f(2,0)$
3. Determine $\nabla f(2,0)$.

Question 5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by $f(\mathbf{x})=\|\mathbf{x}\|^{2}$.

1. Prove that $f$ is differentiable on $\mathbb{R}^{n}$ and determine its differential and its gradient at $\mathbf{a} \in \mathbb{R}^{n}$ using the definition of differentiability.
2. Same question using the fact that $f$ is $C^{1}$ and the results from Slide 3 of the reviews.
3. Let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by $g(\mathbf{x})=\|\mathbf{x}\|$. Is $g$ differentiable on $\mathbb{R}^{n}$ ?

Question 6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cl}\frac{y^{4}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$

1. Prove that $f$ is $C^{1}$ on $\mathbb{R}^{2}$.
2. Compute $\frac{\partial^{2} f}{\partial x \partial y}(0,0)$ and $\frac{\partial^{2} f}{\partial y \partial x}(0,0)$.
3. Prove that $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ are not continuous.

Question 7. Let $\mathbf{a} \in \mathbb{R}^{3}$ and define $\mathbf{F}: \mathbb{R}^{3} \backslash\{\mathbf{a}\} \rightarrow \mathbb{R}^{3}$ by $\mathbf{F}(\mathbf{x})=\frac{\mathbf{x}-\mathbf{a}}{\|\mathbf{x}-\mathbf{a}\|^{2}}$.
Prove that there exists a $C^{1}$ function $f: \mathbb{R}^{3} \backslash\{\mathbf{a}\} \rightarrow \mathbb{R}$ such that $\forall \mathbf{x} \in \mathbb{R}^{3} \backslash\{\mathbf{a}\}, \mathbf{F}(\mathbf{x})=\nabla f(\mathbf{x})$.
Question 8 (Euler's identity). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable weighted homogeneous function of degree $r$ with weights $\left(w_{1}, \ldots, w_{n}\right)$, i.e. $\forall \mathbf{x} \in \mathbb{R}^{n}, \forall t>0, f\left(t^{w_{1}} x_{1}, \ldots, t^{w_{n}} x_{n}\right)=t^{r} f\left(x_{1}, \ldots, x_{n}\right)$.
Prove that $\forall \mathbf{x} \in \mathbb{R}^{n}, \sum_{i=1}^{n} w_{i} x_{i} \frac{\partial f}{\partial x_{i}}(\mathbf{x})=r f(\mathbf{x})$
Question 9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be of class $C^{2}$. Let $U=\left\{(r, \theta) \in \mathbb{R}^{2}: r>0\right\}$.
Define $\varphi: U \rightarrow \mathbb{R}$ by $\varphi(r, \theta)=f(r \cos (\theta), r \sin (\theta))$. Prove that $\partial_{x}^{2} f+\partial_{y}^{2} f=\partial_{r}^{2} \varphi+\frac{1}{r} \partial_{r} \varphi+\frac{1}{r^{2}} \partial_{\theta}^{2} \varphi$.
Question 10 (Tangent lines/planes).

1. Tangent line of an implicit curve.
(a) Give an equation of the tangent line of $x+y^{2}-x^{3}=1$ at $(-1,1)$.
(b) Give an equation of the tangent line of $f(x, y)=r$ at $\left(x_{0}, y_{0}\right)$ such that $f\left(x_{0}, y_{0}\right)=r$.
2. Tangent plane of an implicit surface.
(a) Give an equation of the tangent plane of $x^{3}+z x^{2}-y^{2}=0$ at $(1,2,3)$.

Try to do the same at $(0,0,1)$. What do you notice? Can you see why?
(b) Give an equation of the tangent line of $f(x, y, z)=r$ at $\left(x_{0}, y_{0}, z_{0}\right)$ such that $f\left(x_{0}, y_{0}, z_{0}\right)=r$.
3. Tangent plane of a graph.
(a) Give an equation of the plane tangent to the graph of $f(x, y)=x^{2}+y^{3}$ at $(1,1,2)$.

Method 1: find two linear independant vectors supported in the tangent plane and use their cross-product to deduce a normal vector.
Method 2: reduce to the study of a level set in order to deduce a normal vector without computing a cross-product.
(b) Give an equation of the plane tangent to the graph $z=f(x, y)$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$.

Question 11. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function of class $C^{2}$.

1. Write the Taylor polynomials $P_{\mathbf{a}, 0}(\mathbf{h}), P_{\mathbf{a}, 1}(\mathbf{h})$ and $P_{\mathbf{a}, 2}(\mathbf{h})$ of $f$ at $\mathbf{a}$ in terms of the partial derivatives.
2. Same question but using the gradient and the Hessian matrix of $f$.

Question 12. Determine whether the following symmetric matrices are positive definite? negative definite? indefinite?

1. $A \in M_{2,2}(\mathbb{R})$ such that $A\binom{1}{1}=\binom{0}{0}$
2. $A \in M_{3,3}(\mathbb{R})$ such that $A\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
3. $A \in M_{n, n}(\mathbb{R})$ such that $\forall h \in M_{n, 1}(\mathbb{R}) \simeq \mathbb{R}^{n}, h^{t} A h \leq-\pi\|h\|^{2}$
4. $A \in M_{2,2}(\mathbb{R})$ such that $A\binom{1}{1}=\binom{-1}{-1}$ and $A\binom{1}{-1}=\binom{1}{-1}$
5. $A=\left(\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right)$
6. $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right)$

Question 13. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=x^{4}+y^{4}-2(x-y)^{2}$. Study the critical points of $f$.
Question 14. Let $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a differentiable parametric curve.
We define $\mathbf{f}^{\prime}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ by $\mathbf{f}^{\prime}(t)=\left(f_{1}^{\prime}(t), f_{2}^{\prime}(t), f_{3}^{\prime}(t)\right)$.

1. Compare $\mathbf{f}^{\prime}(t)$ and the Jacobian matrix $D \mathbf{f}(t)$.
2. Compare $\mathbf{f}^{\prime}(t)$ and the differential $d_{t} \mathbf{f}$.
