University of Toronto – MAT237Y1 – LEC5201 *Multivariable calculus!*

Jean-Baptiste Campesato

November 14th, 2019

Question 1. (*Re*)solve the questions 13 to 18 from the Test 1 Reviews sheet (Oct 10) and read the review slides. **Question 2.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = xye^x$.

- 1. Justify that f is differentiable on \mathbb{R}^2 .
- 2. Compute the partial derivatives at (1, 1).
- 3. Determine $\nabla f(1, 1)$.
- 4. Compute $\partial_{(1,2)} f(1,1)$ the directional derivative of f at (1,1) along (1,2) using the previous question.
- 5. Compute $\partial_{(1,2)} f(1,1)$ the directional derivative of f at (1,1) along (1,2) from the very definition.

Question 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} \frac{y^3}{\sqrt{x^2 + y^4}} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$

- 1. Prove that f is continuous on \mathbb{R}^2 .
- 2. Prove that the directional derivative $\partial_v f(0,0)$ exists for every $v \in \mathbb{R}^2$.
- 3. Prove that f is not differentiable at (0, 0) using the results from Slide 3 of the reviews.
- 4. Prove that f is not differentiable at (0,0) using the definition of the differentiability.

Question 4. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = x^2 e^y$.

- 1. Justify that f is differentiable on \mathbb{R}^2 .
- 2. Compute directly from the definition $\partial_{(1,1)} f(2,0)$ and $\partial_{(1,-1)} f(2,0)$
- 3. Determine $\nabla f(2,0)$.

Question 5. Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined by $f(\mathbf{x}) = \|\mathbf{x}\|^2$.

- 1. Prove that f is differentiable on \mathbb{R}^n and determine its differential and its gradient at $\mathbf{a} \in \mathbb{R}^n$ using the definition of differentiability.
- 2. Same question using the fact that f is C^1 and the results from Slide 3 of the reviews.
- 3. Let $g : \mathbb{R}^n \to \mathbb{R}$ be defined by $g(\mathbf{x}) = \|\mathbf{x}\|$. Is g differentiable on \mathbb{R}^n ?

Question 6. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} \frac{y^4}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$

- 1. Prove that f is C^1 on \mathbb{R}^2 .
- 2. Compute $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ and $\frac{\partial^2 f}{\partial y \partial x}(0,0)$.
- 3. Prove that $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ are not continuous.

Question 7. Let $\mathbf{a} \in \mathbb{R}^3$ and define $\mathbf{F} : \mathbb{R}^3 \setminus \{\mathbf{a}\} \to \mathbb{R}^3$ by $\mathbf{F}(\mathbf{x}) = \frac{\mathbf{x} - \mathbf{a}}{\|\mathbf{x} - \mathbf{a}\|^2}$. Prove that there exists a C^1 function $f : \mathbb{R}^3 \setminus \{\mathbf{a}\} \to \mathbb{R}$ such that $\forall \mathbf{x} \in \mathbb{R}^3 \setminus \{\mathbf{a}\}, \mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$.

Question 8 (Euler's identity). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable weighted homogeneous function of degree r with weights (w_1, \ldots, w_n) , i.e. $\forall \mathbf{x} \in \mathbb{R}^n$, $\forall t > 0$, $f(t^{w_1}x_1, \ldots, t^{w_n}x_n) = t^r f(x_1, \ldots, x_n)$.

Prove that
$$\forall \mathbf{x} \in \mathbb{R}^n$$
, $\sum_{i=1}^n w_i x_i \frac{\partial f}{\partial x_i}(\mathbf{x}) = rf(\mathbf{x})$

Question 9. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be of class C^2 . Let $U = \{(r, \theta) \in \mathbb{R}^2 : r > 0\}$. Define $\varphi : U \to \mathbb{R}$ by $\varphi(r, \theta) = f(r \cos(\theta), r \sin(\theta))$. Prove that $\partial_x^2 f + \partial_y^2 f = \partial_r^2 \varphi + \frac{1}{r} \partial_r \varphi + \frac{1}{r^2} \partial_{\theta}^2 \varphi$.

Question 10 (Tangent lines/planes).

- 1. Tangent line of an implicit curve.
 - (a) Give an equation of the tangent line of $x + y^2 x^3 = 1$ at (-1, 1).
 - (b) Give an equation of the tangent line of f(x, y) = r at (x_0, y_0) such that $f(x_0, y_0) = r$.
- 2. Tangent plane of an implicit surface.
 - (a) Give an equation of the tangent plane of $x^3 + zx^2 y^2 = 0$ at (1, 2, 3). Try to do the same at (0, 0, 1). What do you notice? Can you see why?
 - (b) Give an equation of the tangent line of f(x, y, z) = r at (x_0, y_0, z_0) such that $f(x_0, y_0, z_0) = r$.
- 3. Tangent plane of a graph.
 - (a) Give an equation of the plane tangent to the graph of f(x, y) = x² + y³ at (1, 1, 2).
 Method 1: find two linear independant vectors supported in the tangent plane and use their cross-product to deduce a normal vector.
 Method 2: reduce to the study of a level set in order to deduce a normal vector without computing a cross-product.
 - (b) Give an equation of the plane tangent to the graph z = f(x, y) at $(x_0, y_0, f(x_0, y_0))$.

Question 11. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function of class C^2 .

- 1. Write the Taylor polynomials $P_{a,0}(\mathbf{h})$, $P_{a,1}(\mathbf{h})$ and $P_{a,2}(\mathbf{h})$ of f at \mathbf{a} in terms of the partial derivatives.
- 2. Same question but using the gradient and the Hessian matrix of f.

Question 12. Determine whether the following symmetric matrices are positive definite? negative definite? indefinite?

1.
$$A \in M_{2,2}(\mathbb{R})$$
 such that $A\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$
2. $A \in M_{3,3}(\mathbb{R})$ such that $A\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$
3. $A \in M_{n,n}(\mathbb{R})$ such that $\forall h \in M_{n,1}(\mathbb{R}) \simeq \mathbb{R}^n$, $h^t Ah \le -\pi ||h||^2$

4.
$$A \in M_{2,2}(\mathbb{R})$$
 such that $A\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}-1\\-1\end{pmatrix}$ and $A\begin{pmatrix}1\\-1\end{pmatrix} = \begin{pmatrix}1\\-1\end{pmatrix}$

5.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$

6.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Question 13. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by $f(x, y) = x^4 + y^4 - 2(x - y)^2$. Study the critical points of f. **Question 14.** Let $\mathbf{f} : \mathbb{R} \to \mathbb{R}^3$ be a differentiable parametric curve. We define $\mathbf{f}' : \mathbb{R} \to \mathbb{R}^3$ by $\mathbf{f}'(t) = (f'_1(t), f'_2(t), f'_3(t))$.

- 1. Compare $\mathbf{f}'(t)$ and the Jacobian matrix $D\mathbf{f}(t)$.
- 2. Compare $\mathbf{f}'(t)$ and the differential $d_t \mathbf{f}$.