MAT237Y1 - LEC5201 Multivariable Calculus

DIFFERENTIABILITY: A SUMMARY

October $24^{\text {th }}, 2019$

Real-valued case - $U \subset \mathbb{R}^{n}$ open and $f: U \rightarrow \mathbb{R}$.

Name

Directional derivative at $\mathbf{x} \in U$ along $\mathbf{v} \in \mathbb{R}^{n}$
i-th partial derivative at $\mathbf{x} \in U$

Real number

$$
\frac{\partial f}{\partial x_{i}}(\mathbf{x})=\partial_{\mathbf{e}_{i}} f(\mathbf{x})
$$

$$
\partial_{\mathbf{v}} f(\mathbf{x})=\lim _{t \rightarrow 0} \frac{f(\mathbf{x}+t \mathbf{v})-f(\mathbf{x})}{t}
$$

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{x}), \ldots, \frac{\partial f}{\partial x_{n}}(\mathbf{x})\right)
$$

Differential at $\mathbf{x} \in U$
" f is differentiable at \mathbf{x} "
Nature

Real number

Gradient at $\mathbf{x} \in U \quad$ Vector in \mathbb{R}^{n}

Linear function

$$
f(\mathbf{x}+\mathbf{h})=f(\mathbf{x})+d_{\mathbf{x}} f(\mathbf{h})+E(\mathbf{h})
$$

$$
\text { with } \lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{E(\mathbf{h})}{\|\mathbf{h}\|}=0
$$

See the slides from Oct 10 for the geometric intuitions about these objects.

Real-valued case - $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

Partial derivatives at \mathbf{x} exist $\Longrightarrow \quad$ Directional derivatives at \mathbf{x} exist
All the directional derivatives at \mathbf{x} exist \Longrightarrow Continuous at \mathbf{x}

Vector-valued case - $U \subset \mathbb{R}^{n}$ open and $\mathbf{f}: U \rightarrow \mathbb{R}^{k}$.

We denote by f_{i} the components of \mathbf{f}, i.e. $\mathbf{f}=\left(f_{1}, \ldots, f_{k}\right): U \rightarrow \mathbb{R}^{k}$

Name	Nature	Notation and definition		
Differential (or total derivative) at $\mathbf{x} \in U$ ' \mathbf{f} is differentiable at \mathbf{x} "	Linear function $d_{\mathbf{x}} \mathbf{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$	$\begin{gathered} \mathbf{f}(\mathbf{x}+\mathbf{h})=\mathbf{f}(\mathbf{x})+d_{\mathbf{x}} \mathbf{f}(\mathbf{h})+\mathbf{E}(\mathbf{h}) \\ \text { with } \lim _{\mathbf{h} \rightarrow \mathbf{0}} \frac{\mathbf{E}(\mathbf{h})}{\\|\mathbf{h}\\|}=\mathbf{0} \end{gathered}$		
Jacobian matrix of \mathbf{f} at $\mathbf{x} \in U$	($k \times n$)-matrix	$D \mathbf{f}(\mathbf{x})=\left(\begin{array}{lll}\frac{\partial f_{1}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{k}}{\partial x_{1}}(\mathbf{x}) & \cdots & \frac{\partial f_{k}}{\partial x_{n}}(\mathbf{x})\end{array}\right)$		

Vector-valued case-f : $U \rightarrow \mathbb{R}^{k}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

We denote by $f_{i}: U \rightarrow \mathbb{R}$ the components of \mathbf{f}, i.e. $\mathbf{f}=\left(f_{1}, \ldots, f_{k}\right): U \rightarrow \mathbb{R}^{k}$
We proved that \mathbf{f} is differentiable at \mathbf{x} if and only if its components f_{i} are too. It allowed us to use the results from the real-valued case to prove the following theorems:

The Chain Rule

Let $U \subset \mathbb{R}^{n}$ open, $\mathbf{f}: \begin{array}{ccc}U & \rightarrow & \mathbb{R}^{l} \\ \mathbf{x} & \mapsto & \mathbf{f}(\mathbf{x})\end{array}, V \subset \mathbb{R}^{l}$ open, $\mathbf{g}: \begin{array}{ccc}V & \rightarrow & \mathbb{R}^{k} \\ \mathbf{y} & \mapsto & \mathbf{g}(\mathbf{y})\end{array}$.
Assume that $\mathbf{f}(U) \subset V$ so that $\mathbf{g} \circ \mathbf{f}: U \rightarrow \mathbb{R}^{k}$ is well-defined.
Let $\mathbf{x} \in U$.
If \mathbf{f} is differentiable at \mathbf{x} and \mathbf{g} is differentiable at $\mathbf{f}(\mathbf{x})$ then $\mathbf{g} \circ \mathbf{f}$ is differentiable at \mathbf{x}.

- Chain rule formula for the differentials:

$$
d_{\mathbf{x}}(\mathbf{g} \circ \mathbf{f})=\left(d_{\mathbf{f}(\mathbf{x})} \mathbf{g}\right) \circ\left(d_{\mathbf{x}} \mathbf{f}\right)
$$

- Chain rule formula for the Jacobian matrices:

$$
D(\mathbf{g} \circ \mathbf{f})(\mathbf{x})=D(\mathbf{g})(\mathbf{f}(\mathbf{x})) \cdot D(\mathbf{f})(\mathbf{x})
$$

- Chain rule for the partial derivatives:

$$
\frac{\partial\left(g_{i} \circ \mathbf{f}\right)}{\partial x_{j}}(\mathbf{x})=\sum_{\alpha=1}^{l} \frac{\partial g_{i}}{\partial y_{\alpha}}(\mathbf{f}(\mathbf{x})) \cdot \frac{\partial f_{\alpha}}{\partial x_{j}}(\mathbf{x})
$$

The Chain Rule

Let $U \subset \mathbb{R}^{n}$ open, $\mathbf{f}: \begin{array}{lll}U & \rightarrow & \mathbb{R}^{l} \\ \mathbf{x} & \mapsto & \mathbf{f}(\mathbf{x})\end{array}, V \subset \mathbb{R}^{l}$ open, $\mathbf{g}: \begin{array}{ccc}V & \rightarrow & \mathbb{R}^{k} \\ \mathbf{y} & \mapsto & \mathbf{g}(\mathbf{y})\end{array}$.
Assume that $\mathbf{f}(U) \subset V$ so that $\mathbf{g} \circ \mathbf{f}: U \rightarrow \mathbb{R}^{k}$ is well-defined.
Let $\mathbf{x} \in U$.
If \mathbf{f} is differentiable at \mathbf{x} and \mathbf{g} is differentiable at $\mathbf{f}(\mathbf{x})$ then $\mathbf{g} \circ \mathbf{f}$ is differentiable at \mathbf{x}.

- Chain rule formula for the differentials:

$$
d_{\mathbf{x}}(\mathbf{g} \circ \mathbf{f})=\left(d_{\mathbf{f (\mathbf { x })}} \mathbf{g}\right) \circ\left(d_{\mathbf{x}}^{\mathbf{x}}\right)
$$

- Chain rule formula for the Jacobian matrices:

$$
D(\mathbf{g} \circ \mathbf{f})(\mathbf{x})=D(\mathbf{g})(\mathbf{f}(\mathbf{x})) \cdot D(\mathbf{f})(\mathbf{x})
$$

- Chain rule for the partial derivatives:

$$
\frac{\partial\left(g_{i} \circ \mathbf{f}\right)}{\partial x_{j}}(\mathbf{x})=\sum_{\alpha=1}^{l} \frac{\partial g_{i}}{\partial y_{\alpha}}(\mathbf{f}(\mathbf{x})) \cdot \frac{\partial f_{\alpha}}{\partial x_{j}}(\mathbf{x})
$$

We derive the second formula from the first one by noticing that $D(\mathbf{f})(\mathbf{x})=\operatorname{Mat}\left(d_{\mathbf{x}} \mathbf{f}\right)$. And we derive the third formula from the second one by looking at the (i, j)-component of the matrices (the RHS is just the matrix multiplication formula).

The Chain Rule

Let $U \subset \mathbb{R}^{n}$ open, $\mathbf{f}: \begin{array}{lll}U & \rightarrow & \mathbb{R}^{l} \\ \mathbf{x} & \mapsto & \mathbf{f}(\mathbf{x})\end{array}, V \subset \mathbb{R}^{l}$ open, $\mathbf{g}: \begin{array}{ccc}V & \rightarrow & \mathbb{R}^{k} \\ \mathbf{y} & \mapsto & \mathbf{g}(\mathbf{y})\end{array}$.
Assume that $\mathbf{f}(U) \subset V$ so that $\mathbf{g} \circ \mathbf{f}: U \rightarrow \mathbb{R}^{k}$ is well-defined.
Let $\mathbf{x} \in U$.
If \mathbf{f} is differentiable at \mathbf{x} and \mathbf{g} is differentiable at $\mathbf{f}(\mathbf{x})$ then $\mathbf{g} \circ \mathbf{f}$ is differentiable at \mathbf{x}.

- Chain rule formula for the differentials:

$$
d_{\mathbf{x}}(\mathbf{g} \circ \mathbf{f})=\left(d_{\mathbf{f}(\mathbf{x})} \mathbf{g}\right) \circ\left(d_{\mathbf{x}} \mathbf{f}\right)
$$

- Chain rule formula for the Jacobian matrices:

$$
D(\mathbf{g} \circ \mathbf{f})(\mathbf{x})=D(\mathbf{g})(\mathbf{f}(\mathbf{x})) \cdot D(\mathbf{f})(\mathbf{x})
$$

- Chain rule for the partial derivatives:

$$
\frac{\partial\left(g_{i} \circ \mathbf{f}\right)}{\partial x_{j}}(\mathbf{x})=\sum_{\alpha=1}^{l} \frac{\partial g_{i}}{\partial y_{\alpha}}(\mathbf{f}(\mathbf{x})) \cdot \frac{\partial f_{\alpha}}{\partial x_{j}}(\mathbf{x})
$$

The last formula may seem difficult but after using it several times you'll notice that it is easy to use in practice, it generalizes the chain rule from MAT135/137/157 in a natural way.

Beware!

Your worst enemy in calculus is going to be the notation!

- There are as many notations as people: if you pick two different textbooks/mathematicians randomly, they probably don't use the same notations for the directional derivatives, the partial derivatives, the differentials, the Jacobian matrices...
For instance, below are some notations more or less commonly used for the partial derivative of $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with respect to the first variable (i.e. the directional derivative along \mathbf{e}_{1}):

$$
\frac{\partial f}{\partial x}, \partial_{x} f, \partial_{\mathbf{e}_{1}} f, \partial_{1} f, f_{x}, f_{x}^{\prime}, D_{x} f, D_{\mathbf{e}_{1}} f, D_{1} f, D^{1} f, D^{\mathbf{e}_{1}} f, \ldots
$$

- The notations might be confusing at first: be sure that you understand what you are reading and/or writing! Rely on the context to avoid any confusion! For instance, given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \frac{\partial f}{\partial x}$ simply denotes the derivative with respect to the first variable (i.e. the directional derivative along \mathbf{e}_{1}), do not try to interpret the x in the denominator ∂x, that's just a notation.
Therefore, if you see $\frac{\partial f}{\partial x}\left(x^{2}, x y z\right)$, it means that you first compute the partial derivative and then that you evaluate it at $\left(x^{2}, x y z\right)$.
You should not compute $f\left(x^{2}, x y z\right)$ and then take the derivative with respect to x.

