DIFFERENTIABILITY
herear maps and matrices (Recollection)
Def: A map $\varphi: \mathbb{R}^m \to \mathbb{R}^k$ is linear if • $\forall v, v \in \mathbb{R}^m$, $\varphi(v+v) = \varphi(v) + \varphi(v)$ • $\forall v \in \mathbb{R}^m$, $\forall \lambda \in \mathbb{R}$, $\varphi(\lambda v) = \lambda \varphi(v)$
Motation: en = (0,, 0, 1, 0,, 0) sith components m components
So that (ein) is the strandard basis of Pm
Remark: A linear map of: B" = B' is entirely determined by the values of (ei):
Let $v \in \mathbb{R}^m$, then $v = \sum_{i=1}^m v_i e^{it}$ and $\varphi(v) = \sum_{i=1}^m v_i \varphi(e^{it})$
Del: We denote by (aij):=1. It the components of $\varphi(e_j^m)$, where $\varphi: \mathbb{R}^m \to \mathbb{R}^k$ is linear is linear
The matrix of of (in the standard bases) is
plen glen glen
$Mat(q) := \begin{cases} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{h1} & a_{h2} & \cdots & a_{hm} \end{cases} $
on columns
Remark: of is entirely determined by the above matrix.

A

DIFFERENTIABILITY
Vector-volved functions
Def: UCR^m open set, $f: U \longrightarrow \mathbb{R}^k$, $z_0 \in U$.
We say that f is differentiable at xo if there exists
a linear map doch. B" -> B' s.t.
$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-dx_0f(h)}{ h }=0$
or equivolently f(noth)=f(no)+dnof(h)+E(h)
with lim E(h) = 0
dab: B" -> R" is called the differential or total derivative of fat as
Def: UCRM open set, b= (bsm, bx): U -> Ph, x6 EU
Assume that all the partial derivatives (36:00)i=sb
exist. The we define the Jacobian matrix of f at x by
exist. The we define the facobien matrix of at 20 by Df(x0) = (3bx (x0) \cdots \cdots \cdots \cdots \cdots) Df(x0) = (3bx (x0) \cdots
36h (No) - 36h (No)
olotation used in the
The notation J(xo) is very common

Theorem. al CR open, J= (bs/11 bk). al -> Ph, 20 E ll. f is differentiable at xo (Ti, fi is differentiable at xo oloreover, if the above holds, drof= (drof: " drofn): RM -> Rk A dotice that componentwise, if l: R" - R' is linear, f(xo+h) = f(xo) + f(h) + E(h) $\begin{cases}
\begin{cases}
\xi(x_0+h) \\
\xi(x_0+h)
\end{cases} = \begin{cases}
\xi_1(x_0) \\
\vdots \\
\xi_n(x_n+h)
\end{cases} + \begin{cases}
\xi_1(x_0) \\
\vdots \\
\xi_n(x_n+h)
\end{cases} + \begin{cases}
\xi_1(x_0) \\
\vdots \\
\xi_n(x_n+h)
\end{cases}$ and $\frac{1}{\|h\|} \in (h) = \left(\frac{E_1(h)}{\|h\|}\right)$ $= \left(\frac{E_1(h)}{\|h\|}\right)$ Hence, it is enough to understand well the real-valued case: Chearen: UCR" open, f= (bsin ba): U -> Bk, xo EM If f is differentiable at to then all the directional derivatives 2, f; (20) exist (i=1,...k, 15 ERM) Mat $(dx_0) = D(f)(x_0) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x_0) & \frac{\partial f_2}{\partial x_1}(x_0) \\ \frac{\partial f_2}{\partial x_1}(x_0) & \frac{\partial f_2}{\partial x_2}(x_0) \end{pmatrix}$

A We apply the result from the real-valued case to by it be and then use the previous theorem to get that du f(ei) = (dx b_(ei), -, dx f_(ei)) $= \left(\frac{\partial b_1}{\partial x_i}(x_0), -, \frac{\partial b_2}{\partial x_i}(x_0)\right)$ dablen) de flen) da flen Hence / Obs (xe) Obi (xo) -Mat (dxob) = 36 k (xo) 36 k (xo) _ 36 k (xo) "Cheorem: UCB" open, f= (bs,-, bn): U-> Rk, no EU If all the partial decivatives $\frac{96}{9x}$; exist on all and are continuous at x_0 then f is differentiable at x_0 . A We apply the theorem from the real-realised cose to Isorba B

Theorem: If f is differentiable at x_0 then f is continuous at x_0

Proof: apply the result from the real-valued case to the components. QED

Ex: {= (bs,-, bh): (a,b) -> Ph of it differentiable at to E (a1b) iff b'(to), -, b' (to) exist and then

Df(to) = (b'(to)) In this case it is common to use the notation b'(to) instead of Db (to). Comment: if f is differentiable at to and f'(to) \$= 0 then: @ f'(to) is tangent to the parametrized come at f(to) 2 O(h) = f(to) + hf'(to), h ER, parametrizes the tangent line of the parametrized wive at f(to) See examples 2 and 3 in Section 2.2. Ex: UCB" open, f: U-> R, xo E U If I is differentiable at no then $\mathcal{D}_{\beta}(x_0) = \left(\frac{\partial \beta}{\partial x_0}(x_0) \dots \frac{\partial \beta}{\partial x_n}(x_0) \right)$ Notice that Df (20). (im) = I 3b (20) - h = Vb(20) - h We recover the gradient from the previous section. But be careful: Df(20) is the 1xm meeting of a linear map

Pb (20) is a vector of Pm