MAT237Y1 - LEC5201 Multivariable Calculus

Differentiability of real valued FUNCTIONS: A SUMMARY

October $10^{\text {th }}, 2019$

Directional derivatives: geometric interpretation

Directional derivatives: geometric interpretation

Directional derivatives: geometric interpretation

Directional derivatives: geometric interpretation

$\partial_{\mathbf{v}} f(\mathbf{x})=g^{\prime}(0)$ is the slope of the green tangent line.

Directional derivatives: geometric interpretation

$\partial_{\mathbf{v}} f(\mathbf{x})=g^{\prime}(0)$ is the slope of the green tangent line.

Differentiability: geometric interpretation (1-variable case)

$$
\begin{gathered}
f\left(x_{0}+h\right)=f\left(x_{0}\right)+d_{x_{0}} f(h)+E(h) \\
\text { where } d_{x_{0}} f(h)=f^{\prime}\left(x_{0}\right) h \text { is linear and } \lim _{h \rightarrow 0} \frac{E(h)}{h}=0 .
\end{gathered}
$$

Differentiability: geometric interpretation (2-variable case)

$$
z=f(x, y)
$$

Differentiability: geometric interpretation (2-variable case)

$$
z=f(x, y)
$$

Differentiability: geometric interpretation counter-examples

$$
z=\frac{x^{3}}{x^{2}+y^{2}}
$$

Recap - Let $U \subset \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}$.

Name	Nature	Notation
Directional derivative at $\mathbf{x} \in U$ along $\mathbf{v} \in \mathbb{R}^{n}$	Real number	$\partial_{\mathbf{v}} f(\mathbf{x})$
i-th partial derivative at $\mathbf{x} \in U$	Real number	$\frac{\partial f}{\partial x_{i}}(\mathbf{x})$
Gradient at $\mathbf{x} \in U$	Vector in \mathbb{R}^{n}	$\nabla f(\mathbf{x})$
Differential at $\mathbf{x} \in U$ " f is differentiable at $\mathbf{x}^{\prime \prime}$	Linear function $\mathbb{R}^{n} \rightarrow \mathbb{R}$	$\mathbb{R}^{n} \ni \mathbf{h} \mapsto d_{\mathbf{x}} f(\mathbf{h}) \in \mathbb{R}$

Relationships - $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

Relationships - $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

Relationships - $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

$$
\mathbb{R}^{2} \quad \rightarrow \quad \mathbb{R}
$$

Counter-example: $f:(x, y) \mapsto\left\{\begin{array}{cl}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array} \quad\right.$ (at $\left.\mathbf{x}=(0,0)\right)$.

Relationships - $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

All the directional derivatives at \mathbf{x} exist \Longrightarrow Continuous at \mathbf{x}
Counter-example: $f: \begin{array}{cc}\mathbb{R}^{2} & \rightarrow \\ (x, y) & \mapsto\end{array}\left\{\begin{array}{cll}\frac{\mathbb{R}}{} & x^{2} y \\ x^{4}+y^{2} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array} \quad(\right.$ at $\mathbf{x}=(0,0))$.

Relationships - $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

Hence, if f is not continuous at \mathbf{x} or if a directional derivative of f at \mathbf{x} doesn't exist, then f is not differentiable at \mathbf{x}.

But there is more: notice that if f is differentiable at \mathbf{x} then

$$
\partial_{\mathbf{v}_{1}+\mathbf{v}_{2}} f(\mathbf{x})=d_{\mathbf{x}}\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)=d_{\mathbf{x}}\left(\mathbf{v}_{1}\right)+d_{\mathbf{x}}\left(\mathbf{v}_{2}\right)=\partial_{\mathbf{v}_{1}} f(\mathbf{x})+\partial_{\mathbf{v}_{2}} f(\mathbf{x})
$$

It may be useful to prove that a function is not differentiable when all its directional derivatives exist. See for instance h with $\mathbf{v}_{1}=\mathbf{e}_{1}$ and $\mathbf{v}_{2}=\mathbf{e}_{2}$.

Relationships - $f: U \rightarrow \mathbb{R}, U \subset \mathbb{R}^{n}$ open, $\mathbf{x} \in U$

Partial derivatives at \mathbf{x} exist \Longrightarrow Directional derivatives at \mathbf{x} exist

All the directional derivatives at \mathbf{x} exist

