University of Toronto - MAT237Y1 - LEC5201
Multivariable calculus!

Jean-Baptiste Campesato
October $10^{\text {th }}, 2019$

Question 1 (At home). Review the in-class questions from Sep 17 and from Sep. 24 (the solutions are online).
Question 2. Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$.

1. Prove that if A and B are open then $A \times B \subset \mathbb{R}^{n+m}$ is too.
2. Prove that if A and B are closed then $A \times B \subset \mathbb{R}^{n+m}$ is too.

Question 3. Let $A, B \subset \mathbb{R}^{n}$. Prove the following statements: 1. $A \subset B \Longrightarrow \AA \subset B \quad$ 2. $A \subset B \Longrightarrow \bar{A} \subset \bar{B}$ Question 4. Let $S_{1}, S_{2}, S_{3}, S_{4} \subset \mathbb{R}^{2}$ be defined by

$$
\begin{gathered}
S_{1}=[1,3] \times[0,4] \quad S_{2}=\left\{(x, y) \in \mathbb{R}^{2}:(x+2)^{2}+(y-2)^{2}<4\right\} \\
S_{3}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=4\right\} \quad S_{4}=\left\{\left(t^{3},-t^{2}\right): t \in \mathbb{R}\right\}
\end{gathered}
$$

1. Draw $S_{1}, S_{2}, S_{3}, S_{4}$.
2. Prove that $S_{1}, S_{2}, S_{3}, S_{4}$ are path-connected.
3. Prove that $S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$ is path-connected.

Question 5. Prove that $S=\left\{(x, y) \in \mathbb{R}^{2}: 1<x^{2}+y^{2} \leq 4\right\}$ is path-connected.
Question 6. Let $S=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|=1\right\}$ and $f: S \rightarrow \mathbb{R}$ be a continuous function.

1. (\star) Prove that S is path-connected.
2. (\star) Prove that there exists $\mathbf{x} \in S$ such that $f(\mathbf{x})=f(-\mathbf{x})$.
3. Prove that S is compact.
4. Prove that f has a min and a max.

Question 7. Are the sets from Question 1 and Question 2 open? closed? bounded? compact?
Question 8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function.

1. Guess and write the formal definition (i.e. $\varepsilon-\delta$-style) of $\lim _{\|\mathbf{x}\| \rightarrow+\infty} f(\mathbf{x})=+\infty$.
2. ($\boldsymbol{\star})$ Prove that if $\lim _{\|\mathbf{x}\| \rightarrow+\infty} f(\mathbf{x})=+\infty$ then f has a min.

Question 9. Let $\left(S_{k}\right)_{k \in \mathbb{N}_{\geq 0}}$ be a decreasing sequence of non-empty compact subsets of $\mathbb{R}^{n}: S_{0} \supset S_{1} \supset S_{2} \supset \cdots \supset S_{k} \supset \cdots$

1. (\star) Prove that $\bigcap_{k \in \mathbb{N} \geq 0} S_{k} \neq \varnothing$
2. Can the above intersection be empty if we replace compact by closed?
3. Can the above intersection be empty if we replace compact by bounded?

Question 10 (Arithmetico-geometric sequences).
Let $\left(u_{n}\right)_{n \in \mathbb{N}_{\geq 0}}$ be a real-valued sequence satisfying

$$
\forall n \in \mathbb{N}_{\geq 0}, u_{n+1}=\alpha u_{n}+\beta
$$

1. We assume that $\alpha=1$. Find an algebraic expression for u_{n} (in terms of u_{0}).
2. We assume that $\alpha \neq 1$.
(a) Find $r \in \mathbb{R}$ such that $v_{n}=u_{n}-r$ is a geometric sequence.
(b) Deduce an algebraic expression for u_{n} (in terms of u_{0}).

Question 11. We define a sequence $\left(\mathbf{u}_{n}\right)_{n \geq 0}$ in \mathbb{R}^{2} by $\mathbf{u}_{0}=(1,0)$ and $\mathbf{u}_{n+1}=\frac{1}{2} \mathbf{u}_{n}+(1,2)$. Is it convergent? If so, what is its limit?
Question 12. Let $S=\left\{(x, y) \in \mathbb{R}^{2}: x \in \mathbb{Q}\right.$ and $\left.y \notin \mathbb{Q}\right\}$.

1. Without computing its interior or closure, tell whether S is closed and/or open.
2. Compute $\stackrel{\AA}{S}, \bar{S}$ and ∂S.

We recall that (see the notes from Oct. 1)

$$
\begin{aligned}
& \text { - } \forall x_{1}, x_{2} \in \mathbb{R}, x_{1}<x_{2} \Longrightarrow\left(\exists q \in \mathbb{Q}, x_{1}<q<x_{2}\right) \\
& \text { - } \forall x_{1}, x_{2} \in \mathbb{R}, x_{1}<x_{2} \Longrightarrow\left(\exists r \in \mathbb{R} \backslash \mathbb{Q}, x_{1}<r<x_{2}\right)
\end{aligned}
$$

Question 13. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function defined on an open interval and let $x_{0} \in(a, b)$.

1. Recall the definition of " f is differentiable at x_{0} " from MAT135/137/157.
2. Recall the definition of " f is differentiable at x_{0} " from MAT237.
3. Prove that f is differentiable at x_{0} in the sense of MAT1XX if and only if f is differentiable at x_{0} in the sense of MAT237.
4. If f is differentiable at x_{0}, how are the derivative of f at x_{0} and the differential of f at x_{0} related?

Question 14. Are the following functions differentiable? If so determine their differentials and gradients.

1. $f(x, y)=e^{x y}(x+y)$ on \mathbb{R}^{2}.
2. $f(x, y, z)=x y+y z+z x$ on \mathbb{R}^{3}.

Question 15. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cl}\frac{x y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$

1. Is f continuous?
2. Do the partial derivatives of f exist? Are they continuous?
3. Is f differentiable?

Question 16. Same questions as above for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\left\{\begin{array}{cl}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$
Question 17. Prove that the following functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$ admit directional derivatives at $(0,0)$ along any direction but are not continuous at $(0,0)$.

1. $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y}{x^{4}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$
2. $g(x, y)=\left\{\begin{array}{cl}y^{2} \ln (|x|) & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{array}\right.$

Question 18. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $f(x, y)=\sqrt{x^{2}+y^{2}}$.

1. Prove that f is differentiable at $(4,3)$ and determine its differential at $(4,3)$.
2. Give an approximation of $\sqrt{4.05^{2}+2.93^{2}}$.
$(\star) \equiv$ advanced question.
