University of Toronto – MAT237Y1 – LEC5201 *Multivariable calculus!*

Jean-Baptiste Campesato

October 10th, 2019

Question 1 (At home). *Review the in-class questions from Sep 17 and from Sep. 24 (the solutions are online).* **Question 2.** Let $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$.

- 1. Prove that if A and B are open then $A \times B \subset \mathbb{R}^{n+m}$ is too.
- 2. Prove that if A and B are closed then $A \times B \subset \mathbb{R}^{n+m}$ is too.

Question 3. Let $A, B \subset \mathbb{R}^n$. Prove the following statements: $1. A \subset B \implies \mathring{A} \subset \mathring{B}$ $2. A \subset B \implies \overline{A} \subset \overline{B}$ **Question 4.** Let $S_1, S_2, S_3, S_4 \subset \mathbb{R}^2$ be defined by

$$S_1 = [1,3] \times [0,4] \qquad S_2 = \{(x,y) \in \mathbb{R}^2 : (x+2)^2 + (y-2)^2 < 4\}$$
$$S_3 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\} \qquad S_4 = \{(t^3, -t^2) : t \in \mathbb{R}\}$$

- 1. Draw S_1, S_2, S_3, S_4 .
- 2. Prove that S_1, S_2, S_3, S_4 are path-connected.
- 3. Prove that $S_1 \cup S_2 \cup S_3 \cup S_4$ is path-connected.

Question 5. *Prove that* $S = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 \le 4\}$ *is path-connected.*

Question 6. Let $S = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| = 1 \}$ and $f : S \to \mathbb{R}$ be a continuous function.

- 1. (\bigstar) Prove that S is path-connected.
- 2. (\star) Prove that there exists $\mathbf{x} \in S$ such that $f(\mathbf{x}) = f(-\mathbf{x})$.
- *3. Prove that S is compact.*
- 4. Prove that *f* has a min and a max.

Question 7. Are the sets from Question 1 and Question 2 open? closed? bounded? compact?

Question 8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function.

- 1. Guess and write the formal definition (i.e. $\varepsilon \delta$ -style) of $\lim_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x}) = +\infty$.
- 2. (\bigstar) Prove that if $\lim_{\|\mathbf{x}\| \to +\infty} f(\mathbf{x}) = +\infty$ then f has a min.

Question 9. Let $(S_k)_{k \in \mathbb{N}_{\geq 0}}$ be a decreasing sequence of non-empty compact subsets of \mathbb{R}^n : $S_0 \supset S_1 \supset S_2 \supset \cdots \supset S_k \supset \cdots$

1. (\bigstar) Prove that $\bigcap_{k \in \mathbb{N}_{\geq 0}} S_k \neq \emptyset$

- 2. Can the above intersection be empty if we replace compact by closed?
- 3. Can the above intersection be empty if we replace compact by bounded?

Question 10 (Arithmetico–geometric sequences).

Let $(u_n)_{n \in \mathbb{N}_{>0}}$ be a real-valued sequence satisfying

$$\forall n \in \mathbb{N}_{\geq 0}, u_{n+1} = \alpha u_n + \beta$$

- 1. We assume that $\alpha = 1$. Find an algebraic expression for u_n (in terms of u_0).
- 2. We assume that $\alpha \neq 1$.
 - (a) Find $r \in \mathbb{R}$ such that $v_n = u_n r$ is a geometric sequence.
 - (b) Deduce an algebraic expression for u_n (in terms of u_0).

Question 11. We define a sequence $(\mathbf{u}_n)_{n\geq 0}$ in \mathbb{R}^2 by $\mathbf{u}_0 = (1,0)$ and $\mathbf{u}_{n+1} = \frac{1}{2}\mathbf{u}_n + (1,2)$. *Is it convergent? If so, what is its limit?*

Question 12. Let $S = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ and } y \notin \mathbb{Q}\}.$

- 1. Without computing its interior or closure, tell whether S is closed and/or open.
- 2. Compute \mathring{S} , \overline{S} and ∂S . We recall that (see the notes from Oct. 1)
 - $\forall x_1, x_2 \in \mathbb{R}, x_1 < x_2 \implies (\exists q \in \mathbb{Q}, x_1 < q < x_2)$ • $\forall x_1, x_2 \in \mathbb{R}, x_1 < x_2 \implies (\exists r \in \mathbb{R} \setminus \mathbb{Q}, x_1 < r < x_2)$

Question 13. Let $f : (a, b) \to \mathbb{R}$ be a function defined on an open interval and let $x_0 \in (a, b)$.

- 1. Recall the definition of "f is differentiable at x_0 " from MAT135/137/157.
- 2. Recall the definition of "f is differentiable at x_0 " from MAT237.
- 3. Prove that f is differentiable at x_0 in the sense of MAT1XX if and only if f is differentiable at x_0 in the sense of MAT237.
- 4. If f is differentiable at x_0 , how are the derivative of f at x_0 and the differential of f at x_0 related?

Question 14. Are the following functions differentiable? If so determine their differentials and gradients.

- 1. $f(x, y) = e^{xy}(x + y)$ on \mathbb{R}^2 .
- 2. f(x, y, z) = xy + yz + zx on \mathbb{R}^3 .

Question 15. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$

- 1. Is f continuous?
- 2. Do the partial derivatives of f exist? Are they continuous?
- 3. Is f differentiable?

Question 16. Same questions as above for $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$

Question 17. Prove that the following functions $\mathbb{R}^2 \to \mathbb{R}$ admit directional derivatives at (0,0) along any direction but are not continuous at (0,0).

1.
$$f(x, y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$$

2.
$$g(x, y) = \begin{cases} y^2 \ln(|x|) & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

Question 18. Let $f : \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x, y) = \sqrt{x^2 + y^2}$.

- 1. Prove that f is differentiable at (4, 3) and determine its differential at (4, 3).
- 2. Give an approximation of $\sqrt{4.05^2 + 2.93^2}$.

 $(\bigstar) \equiv$ advanced question.