University of Toronto – MAT237Y1 – LEC5201 *Multivariable calculus!* Interior, closure and boundary of Q

Jean-Baptiste Campesato

October 1st, 2019

Proposition 1. $\forall x, y \in \mathbb{R}$, $(x < y \implies \exists q \in \mathbb{Q}, x < q < y)$ *i.e. between two real numbers there is always a rational number.*

Proof. Let $x, y \in \mathbb{R}$ satisfying x < y. Set $\varepsilon = y - x > 0$. Since \mathbb{R} is archimedean \star , there exists $n \in \mathbb{N}_{>0}$ such that $n\varepsilon > 1$, i.e. $\frac{1}{n} < \varepsilon$. Set $m = \lfloor nx \rfloor + 1$, then $nx < m \le nx + 1 \implies x < \frac{m}{n} \le x + \frac{1}{n} < x + \varepsilon = y$. Furthermore, $q = \frac{m}{n} \in \mathbb{Q}$ satisfies x < q < y.

Proposition 2. *If* $I \subset \mathbb{R}$ *is an interval which is non-empty and not reduced to a singleton then* $I \cap \mathbb{Q} \neq \emptyset$.

Proof. Since *I* is non-empty and not reduced to a singleton, there exist $x, y \in I$ with x < y. Then, by Proposition 1, there exists $q \in \mathbb{Q}$ such that x < q < y. Since *I* is an interval, $q \in I$. Hence $q \in I \cap \mathbb{Q} \neq \emptyset$.

Proposition 3 (\mathbb{Q} is dense in \mathbb{R}). $\overline{\mathbb{Q}} = \mathbb{R}$

Proof. Since $\overline{\mathbb{Q}} \subset \mathbb{R}$, it is enough to show the other inclusion. Let $x \in \mathbb{R}$. Let $\varepsilon > 0$. Then $B(x, \varepsilon) = (x - \varepsilon, x + \varepsilon)$ is an interval which is non-empty and not reduced to a singleton. Hence, by Proposition 2, $B(x, \varepsilon) \cap \mathbb{Q} \neq \emptyset$. Hence $\mathbb{R} \subset \overline{\mathbb{Q}}$.

Proposition 4. $\forall x, y \in \mathbb{R}, (x < y \implies \exists s \in \mathbb{R} \setminus \mathbb{Q}, x < s < y)$ *i.e. between two real numbers there is always an irrational number.*

Proof. By Proposition 1, there exists $q \in \mathbb{Q}$ such that x < q < y. Still by Proposition 2, there exists $p \in \mathbb{Q}$ such that x .

Hence we obtained $p, q \in \mathbb{Q}$ such that x .

Set $s = p + \frac{\sqrt{2}}{2}(q - p)$. Then $s \in \mathbb{R} \setminus \mathbb{Q}$ (otherwise, by contradiction, $\sqrt{2}$ would be in \mathbb{Q}) and p < s < q (notice that $0 < \frac{\sqrt{2}}{2} < 1$ so *s* is a number between *p* and *q*). We obtained $s \in \mathbb{R} \setminus \mathbb{Q}$ such that x < s < y.

Proposition 5. *If* $I \subset \mathbb{R}$ *is an interval which is non-empty and not reduced to a singleton then* $I \cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset$.

Proof. Follow the proof of Proposition 2 but using Proposition 4.

^{*} see the Slide 3 from Tuesday, September 24.

Proposition 6. $\partial \mathbb{Q} = \mathbb{R}$

Proof. Let $x \in \mathbb{R}$. Let $\varepsilon > 0$. Then, by Proposition 2, $B(x, \varepsilon) \cap \mathbb{R} \cap \mathbb{Q} \neq \emptyset$ and, by Proposition 5, $B(x, \varepsilon) \cap \mathbb{R} \cap \mathbb{Q}^c \neq \emptyset$. Hence $\mathbb{R} \subset \partial \mathbb{Q}$. The other inclusion is obvious.

Proposition 7. $\mathring{\mathbb{Q}} = \emptyset$

Proof. $\mathring{\mathbb{Q}} = \mathbb{R} \cap \mathring{\mathbb{Q}} = \partial \mathbb{Q} \cap \mathring{\mathbb{Q}} = \emptyset$

Proposition 8. $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}, \ \widetilde{\overline{\mathbb{R} \setminus \mathbb{Q}}} = \emptyset, \ \partial \left(\mathbb{R} \setminus \mathbb{Q}\right) = \mathbb{R}$

Proof. Recall that $\partial (\mathbb{R} \setminus \mathbb{Q}) = \partial \mathbb{Q} = \mathbb{R}$. Then $\overline{\mathbb{R} \setminus \mathbb{Q}} \supset \partial (\mathbb{R} \setminus \mathbb{Q}) = \mathbb{R}$ and $\overbrace{\mathbb{R} \setminus \mathbb{Q}}^{\circ} = \emptyset$ as above.

A useful consequence of the density of \mathbb{Q} in \mathbb{R} is that any real number can be approximated by rationals:

Proposition 9. For any $x \in \mathbb{R}$, there exists a sequence (a_k) of rationals converging to x, *i.e.* such that $(\forall k, a_k \in \mathbb{Q})$ and $\lim_{k \to +\infty} a_k = x$.

Proof. Let $k \in \mathbb{N}_{>0}$. Then $\left(x - \frac{1}{k}, x + \frac{1}{k}\right)$ is an interval which is non-empty and not reduced to a singleton. Hence, by Proposition 2, there exists $a_k \in \left(x - \frac{1}{k}, x + \frac{1}{k}\right) \cap \mathbb{Q}$. We constructed a sequence such that $a_k \in \mathbb{Q}$ and $|x - a_k| < \frac{1}{k} \xrightarrow[k \to +\infty]{k \to +\infty} 0$

Example 10. The set $S = \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{Q} \text{ and } y \in \mathbb{Q}\} \subset \mathbb{R}^2 \text{ is not closed.}$ Indeed, by Proposition 9, there exists (u_k) a sequence of rationals whose limit is $\sqrt{2}$. Then $\forall k, (u_k, 0) \in S$. Hence $(\sqrt{2}, 0) = \lim_{k \to +\infty} (u_k, 0) \in \overline{S}$ but $(\sqrt{2}, 0) \notin S$. Furthermore $\overline{S} \neq S$ and S is not closed.

Notice also that *S* is not open.

Indeed, let $\varepsilon > 0$, then there exists $n \in \mathbb{N}_{>0}$ big enough such that $0 < \frac{\sqrt{2}}{n} < \varepsilon$. So $\left(\frac{\sqrt{2}}{n}, 0\right) \in B(\mathbf{0}, \varepsilon) \cap S^c$. Furthermore $\mathbf{0} \in S$ but $\forall \varepsilon > 0$, $B(\mathbf{0}, \varepsilon) \notin S$. Hence *S* is not open.

We may conclude that *S* is neither closed nor open without explicitly computing its interior or closure.