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Dedekind-completeness of ℝ
The following results seen in MAT137 about ℝ are equivalent:

• The Least Upper Bound principle
• The Monotone Convergence Theorem for sequences
• The Extreme Value Theorem
• The Intermediate Value Theorem
• Rolle’s Theorem/The Mean Value Theorem
• A bounded sequence in ℝ admits a convergent subsequence
• Cuts (if you took MAT157):

𝐴, 𝐵 ≠ ∅
ℝ = 𝐴 ∪ 𝐵

∀𝑎 ∈ 𝐴, ∀𝑏 ∈ 𝐵, 𝑎 < 𝑏

⎫⎪
⎬
⎪⎭

⟹ ∃!𝑐 ∈ ℝ, ∀𝑎 ∈ ℝ, ∀𝑏 ∈ 𝐵, 𝑎 ≤ 𝑐 ≤ 𝑏

• ⋯
We say that ℝ is Dedekind-complete.

(You can safely ignore that:)
ℝ is the unique Dedekind-complete (totally) ordered field.
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How to understand Dedekind-Completeness

Intuitively, the Dedekind-completeness of the real line tells us
two things about it:

1 There is no infinitely small positive real number
(Archimedean property): ∀𝜀 > 0, ∀𝐴 > 0, ∃𝑛 ∈ ℕ>0, 𝑛𝜀 > 𝐴.

▴ Assume, for the sake of contradiction, that
∃𝜀 > 0, ∃𝐴 > 0, ∀𝑛 ∈ ℕ>0, 𝑛𝜀 ≤ 𝐴

Then 𝑆 = {𝑛𝜀 ∶ 𝑛 ∈ ℕ>0} is bounded from above by 𝐴.
So it admits a least upper bound 𝑀 = sup 𝑆.
Since 𝑀 − 𝜀 is less than the least upper bound 𝑀 of 𝑆, it is
not an upper bound of 𝑆, i.e. 𝑀 − 𝜀 < 𝑛𝜀 for some 𝑛 ∈ ℕ>0.
But then 𝑀 < (𝑛 + 1)𝜀, which is not possible since
(𝑛 + 1)𝜀 ∈ 𝑆 and 𝑀 is an upper bound of 𝑆.
Contradiction. ■

2 There is no gap in the real line.
For instance,

• LUB: √2 = sup {𝑥 ∈ ℚ ∶ 𝑥2 < 2}.

• MCT: define a sequence by 𝑥0 = 1 and 𝑥𝑛+1 = 𝑥𝑛
2 + 1

𝑥𝑛
.

Then (𝑥𝑛) converges to some limit 𝑙 by the MCT.
But this limit must satisfy 𝑙2 = 2.

• IVT: let 𝑓(𝑥) = 𝑥2 − 2. Then 𝑓(0) < 0 and 𝑓(2) > 0.
Hence we deduce from the IVT that 𝑓 has a root,
i.e. ∃𝑥 ∈ ℝ, 𝑥2 − 2 = 0.
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Consequences

The Dedekind-completeness of the real line has several
consequences that you already know:

• The various results connecting the sign of 𝑓 ′ to the
monotonicity of 𝑓 .

• 𝐴𝐶𝑉 ⟹ 𝐶𝑉 (for series and improper integrals).
• The Fundamental Theorem of Calculus.
• L’Hôpital’s rule.
• The BCT and the LCT (for series and improper integrals).
• Cauchy-completeness of ℝ: any Cauchy sequence converges.
• ⋯

In some sense, MAT137 was about the Dedekind-completeness of
the real line and its consequences.
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What about ℝ𝑛?

The statements about the Dedekind-completeness of the real line
can not be extended to ℝ𝑛 simply by replacing ℝ with ℝ𝑛 since they
use the following properties of ℝ:

• ℝ has a product and any non-zero real number has an inverse.
• ℝ has an order compatible with its addition and product.

Nevertheless, we will be able to generalize and prove some of these
statements to ℝ𝑛, starting with the following one:
Any bounded sequence in ℝ𝑛 admits a convergent subsequence.

Warning: in the online lecture notes of the course, the above result
is called Completeness of ℝ𝑛.
Be careful that when people say that “some space is complete”, they
usually talk about a strictly weaker result (Cauchy-completeness).
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Appendix: LUB ⟹ BW (you can safely ignore it)

How can we deduce from the LUB principle that a bounded real valued
sequence (𝑎𝑘)𝑘 admits a convergent subsequence (𝑎𝜑(𝑗))𝑗?

▴ We know that ∃𝑀 > 0, ∀𝑘, |𝑎𝑘| < 𝑀 .
Then 𝐿 = sup {𝑥 ∈ [−𝑀, 𝑀] ∶ 𝑥 < 𝑎𝑘 for infinitely many 𝑘} exists by the
LUB principle (the set is bounded from above by 𝑀 and contains −𝑀).

Assume that 𝜑(𝑗 − 1) is constructed and we want to construct 𝜑(𝑗).
Since 𝐿 − 1

𝑗 is less than 𝐿, it is not an upper bound of the above set.
Hence there exist infinitely many 𝑘 such that 𝐿 − 1

𝑗 < 𝑎𝑘 < 𝐿 + 1
𝑗 (check it).

We pick 𝜑(𝑗) to be such a 𝑘 which is greater than 𝜑(𝑗 − 1) (which is
possible since there are infinitely many such 𝑘).
Hence we constructed a subsequence (𝑎𝜑(𝑗))𝑗 such that

∀𝑗, 𝐿 − 1
𝑗 < 𝑎𝜑(𝑗) < 𝐿 + 1

𝑗

Therefore this subsequence tends to 𝐿. ■
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