MAT237Y1 – LEC5201 *Multivariable Calculus*

Dedekind-completeness of \mathbb{R} : A detour via MAT137

September 24th, 2019

Dedekind-completeness of ℝ

The following results seen in MAT137 about \mathbb{R} are equivalent:

- The Least Upper Bound principle
- The Monotone Convergence Theorem for sequences
- The Extreme Value Theorem
- The Intermediate Value Theorem
- Rolle's Theorem/The Mean Value Theorem
- A **bounded** sequence in \mathbb{R} admits a convergent subsequence
- Cuts (if you took MAT157):

$$\left. \begin{array}{c} A, B \neq \varnothing \\ \mathbb{R} = A \cup B \\ \forall a \in A, \, \forall b \in B, \, a < b \end{array} \right\} \implies \exists ! c \in \mathbb{R}, \, \forall a \in \mathbb{R}, \, \forall b \in B, \, a \leq c \leq b \\ \bullet \dots \end{array}$$

We say that \mathbb{R} is Dedekind-complete.

Dedekind-completeness of ℝ

The following results seen in MAT137 about \mathbb{R} are equivalent:

- The Least Upper Bound principle
- The Monotone Convergence Theorem for sequences
- The Extreme Value Theorem
- The Intermediate Value Theorem
- Rolle's Theorem/The Mean Value Theorem
- A **bounded** sequence in \mathbb{R} admits a convergent subsequence
- Cuts (if you took MAT157):

$$\left. \begin{array}{c} A, B \neq \varnothing \\ \mathbb{R} = A \cup B \\ \forall a \in A, \, \forall b \in B, \, a < b \end{array} \right\} \implies \exists ! c \in \mathbb{R}, \, \forall a \in \mathbb{R}, \, \forall b \in B, \, a \leq c \leq b \\ \cdots$$

We say that \mathbb{R} is Dedekind-complete.

(You can safely ignore that:) \mathbb{R} is the unique Dedekind-complete (totally) ordered field.

How to understand Dedekind-Completeness

Intuitively, the Dedekind-completeness of the real line tells us two things about it:

1 There is no infinitely small positive real number (*Archimedean property*): $\forall \varepsilon > 0, \forall A > 0, \exists n \in \mathbb{N}_{>0}, n\varepsilon > A$.

▲ Assume, for the sake of contradiction, that

 $\exists \varepsilon > 0, \exists A > 0, \forall n \in \mathbb{N}_{>0}, n\varepsilon \leq A$

Then $S = \{n\varepsilon : n \in \mathbb{N}_{>0}\}$ is bounded from above by *A*. So it admits a least upper bound $M = \sup S$. Since $M - \varepsilon$ is less than the least upper bound *M* of *S*, it is not an upper bound of *S*, i.e. $M - \varepsilon < n\varepsilon$ for some $n \in \mathbb{N}_{>0}$. But then $M < (n + 1)\varepsilon$, which is not possible since $(n + 1)\varepsilon \in S$ and *M* is an upper bound of *S*. Contradiction.

How to understand Dedekind-Completeness

Intuitively, the Dedekind-completeness of the real line tells us two things about it:

- **1** There is no infinitely small positive real number (*Archimedean property*): $\forall \varepsilon > 0, \forall A > 0, \exists n \in \mathbb{N}_{>0}, n\varepsilon > A$.
- 2 There is no gap in the real line. For instance,
 - LUB: $\sqrt{2} = \sup \{ x \in \mathbb{Q} : x^2 < 2 \}.$
 - MCT: define a sequence by $x_0 = 1$ and $x_{n+1} = \frac{x_n}{2} + \frac{1}{x_n}$. Then (x_n) converges to some limit *l* by the MCT. But this limit must satisfy $l^2 = 2$.
 - IVT: let $f(x) = x^2 2$. Then f(0) < 0 and f(2) > 0. Hence we deduce from the IVT that f has a root, i.e. $\exists x \in \mathbb{R}, x^2 - 2 = 0$.

The Dedekind-completeness of the real line has several consequences that you already know:

- The various results connecting the sign of *f* ' to the monotonicity of *f*.
- $ACV \implies CV$ (for series and improper integrals).
- The Fundamental Theorem of Calculus.
- L'Hôpital's rule.
- The BCT and the LCT (for series and improper integrals).
- Cauchy-completeness of R: any Cauchy sequence converges.

• ...

In some sense, MAT137 was about the Dedekind-completeness of the real line and its consequences.

The statements about the Dedekind-completeness of the real line can **not** be extended to \mathbb{R}^n simply by replacing \mathbb{R} with \mathbb{R}^n since they use the following properties of \mathbb{R} :

- \mathbb{R} has a product and any non-zero real number has an inverse.
- R has an order *compatible* with its addition and product.

The statements about the Dedekind-completeness of the real line can **not** be extended to \mathbb{R}^n simply by replacing \mathbb{R} with \mathbb{R}^n since they use the following properties of \mathbb{R} :

- \mathbb{R} has a product and any non-zero real number has an inverse.
- R has an order *compatible* with its addition and product.

Nevertheless, we will be able to generalize and prove some of these statements to \mathbb{R}^n , starting with the following one:

Any bounded sequence in \mathbb{R}^n admits a convergent subsequence.

The statements about the Dedekind-completeness of the real line can **not** be extended to \mathbb{R}^n simply by replacing \mathbb{R} with \mathbb{R}^n since they use the following properties of \mathbb{R} :

- \mathbb{R} has a product and any non-zero real number has an inverse.
- \mathbb{R} has an order *compatible* with its addition and product.

Nevertheless, we will be able to generalize and prove some of these statements to \mathbb{R}^n , starting with the following one:

Any bounded sequence in \mathbb{R}^n admits a convergent subsequence.

Warning: in the online lecture notes of the course, the above result is called *Completeness of* \mathbb{R}^n .

Be careful that when people say that *"some space is complete"*, they usually talk about a strictly weaker result (Cauchy-completeness).

Appendix: LUB \implies BW (you can safely ignore it)

How can we deduce from the LUB principle that a *bounded real valued* sequence $(a_k)_k$ admits a convergent subsequence $(a_{\varphi(j)})_j$?

▲ We know that $\exists M > 0$, $\forall k$, $|a_k| < M$. Then $L = \sup \{x \in [-M, M] : x < a_k \text{ for infinitely many } k\}$ exists by the LUB principle (the set is bounded from above by M and contains -M).

Assume that $\varphi(j-1)$ is constructed and we want to construct $\varphi(j)$. Since $L - \frac{1}{j}$ is less than L, it is not an upper bound of the above set. Hence there exist infinitely many k such that $L - \frac{1}{j} < a_k < L + \frac{1}{j}$ (check it). We pick $\varphi(j)$ to be such a k which is greater than $\varphi(j-1)$ (which is possible since there are infinitely many such k). Hence we constructed a subsequence $(a_{\varphi(j)})_j$ such that

$$\forall j, \ L - \frac{1}{j} < a_{\varphi(j)} < L + \frac{1}{j}$$

Therefore this subsequence tends to L.