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Dedekind-completeness of R

The following results seen in MAT137 about R are equivalent:

® The Least Upper Bound principle
The Monotone Convergence Theorem for sequences
The Extreme Value Theorem
The Intermediate Value Theorem
Rolle’s Theorem/The Mean Value Theorem
A bounded sequence in R admits a convergent subsequence
Cuts (if you took MAT157):
A, B+ @
R=AUB } = AlceR,VaeR,VbeEB,a<c<h
YVae A,Vbe B,a<b
o ...

We say that R is Dedekind-complete.
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Dedekind-completeness of R

The following results seen in MAT137 about R are equivalent:

® The Least Upper Bound principle
The Monotone Convergence Theorem for sequences
The Extreme Value Theorem
The Intermediate Value Theorem
Rolle’s Theorem/The Mean Value Theorem
A bounded sequence in R admits a convergent subsequence
Cuts (if you took MAT157):
A, B+ @
R=AUB } = AlceR,VaeR,VbeEB,a<c<h
YVae A,Vbe B,a<b
o ...

We say that R is Dedekind-complete.

(You can safely ignore that:)
R is the unique Dedekind-complete (totally) ordered field.
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How to understand Dedekind-Completeness

Intuitively, the Dedekind-completeness of the real line tells us
two things about it:

© There is no infinitely small positive real number
(Archimedean property): Ve > 0, VA > 0, 3n € N, ne > A.

A Assume, for the sake of contradiction, that
de>0,3A>0,VneN,;, ne< A

Then S = {ne : neN,,} is bounded from above by A.

So it admits a least upper bound M = sup S.

Since M — ¢ is less than the least upper bound M of S, itis
not an upper bound of S, i.e. M — & < ne for some n € N, .
But then M < (n+ 1)e, which is not possible since

(n+ 1)e € S and M is an upper bound of §.

Contradiction. [ |
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How to understand Dedekind-Completeness

Intuitively, the Dedekind-completeness of the real line tells us
two things about it:

© There is no infinitely small positive real number
(Archimedean property): Ve > 0, VA > 0, 3n € N, ne > A.

@ There is no gap in the real line.
For instance,

. LUB:\/Ezsup{xe@ D x? <2},

* MCT: define a sequence by x, =1and x,, =

7’!
Then (x,) converges to some limit / by the MCT.
But this limit must satisfy /> = 2.

+ <.
X,

n

® VT let f(x) = x> —2. Then f(0) < 0 and f(2) > 0.
Hence we deduce from the IVT that f has a root,
ie. IxeR, x> -2 =0.
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Consequences

The Dedekind-completeness of the real line has several
consequences that you already know:

e The various results connecting the sign of ' to the
monotonicity of f.

ACV = CV (for series and improper integrals).

The Fundamental Theorem of Calculus.

L'Hopital’s rule.

The BCT and the LCT (for series and improper integrals).
Cauchy-completeness of R: any Cauchy sequence converges.

In some sense, MAT137 was about the Dedekind-completeness of
the real line and its consequences.
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What about R"?

The statements about the Dedekind-completeness of the real line
can not be extended to R" simply by replacing R with R" since they
use the following properties of R:
* R has a product and any non-zero real number has an inverse.
* R has an order compatible with its addition and product.
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What about R"?

The statements about the Dedekind-completeness of the real line
can not be extended to R" simply by replacing R with R" since they
use the following properties of R:
* R has a product and any non-zero real number has an inverse.
* R has an order compatible with its addition and product.

Nevertheless, we will be able to generalize and prove some of these
statements to R”, starting with the following one:
Any bounded sequence in R" admits a convergent subsequence.
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What about R"?

The statements about the Dedekind-completeness of the real line
can not be extended to R" simply by replacing R with R" since they
use the following properties of R:
* R has a product and any non-zero real number has an inverse.
* R has an order compatible with its addition and product.

Nevertheless, we will be able to generalize and prove some of these
statements to R”, starting with the following one:
Any bounded sequence in R" admits a convergent subsequence.

Warning: in the online lecture notes of the course, the above result
is called Completeness of R".

Be careful that when people say that “some space is complete”, they
usually talk about a strictly weaker result (Cauchy-completeness).
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Appendix: LUB = BW (you can safely ignore it)

How can we deduce from the LUB principle that a bounded real valued
sequence (a,), admits a convergent subsequence (a,, j))j?
A We know that 3M > 0, Vk, |a,| < M.

Then L = sup {x € [-M, M] : x < g, for infinitely many k} exists by the
LUB principle (the set is bounded from above by M and contains —M).

Assume that ¢(j — 1) is constructed and we want to construct ¢(j).
Since L — % is less than L, it is not an upper bound of the above set.

Hence there exist infinitely many k such that L — % <a, <L+ % (check it).

We pick ¢(j) to be such a k which is greater than ¢(j — 1) (which is
possible since there are infinitely many such k).
Hence we constructed a subsequence (a‘ﬂ(j))j such that

1 1
Vi,L-—-<a, <L+ -
j () j

Therefore this subsequence tends to L. |
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