University of Toronto – MAT237Y1 – LEC5201 *Multivariable calculus!* In class questions

Jean-Baptiste Campesato

September 24th, 2019

Question 1. Study $\lim_{(x,y)\to(0,0)} f(x,y)$ for the following functions.

1. $f(x, y) = \frac{x^3 y}{x^4 + y^2}$ defined on $\mathbb{R}^2 \setminus \{(0, 0)\}.$ $\left|\frac{x^3 y}{x^4 + y^2}\right| = \frac{|x^2 y|}{x^4 + y^2} |x| \le \frac{1}{2} |x| \xrightarrow[(x,y) \to (0,0)]{} 0$ Hence $\lim_{(x,y) \to (0,0)} \frac{x^3 y}{x^4 + y^2} = 0.$

2.
$$f(x, y) = \frac{xy^4}{x^2 + y^8}$$
 defined on $\mathbb{R}^2 \setminus \{(0, 0)\}.$
 $f(y^4, y) = \frac{1}{2} \xrightarrow[y \to 0]{} \frac{1}{2}$
 $f(0, y) = 0 \xrightarrow[y \to 0]{} 0$
Hence $\lim_{(x,y) \to (0,0)} \frac{xy^4}{x^2 + y^8}$ DNE.

3. $f(x, y) = \frac{1 - \cos(\sqrt{|xy|})}{|y|}$ defined on $\{(x, y) \in \mathbb{R}^2 : y \neq 0\}$. <u>Hint:</u> study $g(x) = 1 - \cos(x) - x^2$.

One can check that $\forall x \in \mathbb{R}, 1 - \cos(x) \le x^2$. Then $0 \le \frac{1 - \cos(\sqrt{|xy|})}{|y|} \le \frac{|xy|}{|y|} = |x| \xrightarrow[(x,y) \to (0,0)]{} 0$. Hence $\lim_{(x,y) \to (0,0)} \frac{1 - \cos(\sqrt{|xy|})}{|y|} = 0$.

4.
$$f(x, y) = \frac{\frac{y^3 - x^8 y}{x^6 + y^2} - y}{\sqrt{x^2 + y^2}} \text{ defined on } \mathbb{R}^2 \setminus \{(0, 0)\}.$$
$$\left| \frac{\frac{y^3 - x^8 y}{x^6 + y^2} - y}{\sqrt{x^2 + y^2}} \right| = \frac{|x^3 y|}{x^6 + y^2} \cdot \frac{|x|}{\sqrt{x^2 + y^2}} \cdot x^2 \cdot (1 + x^2)$$

The first factor is bounded from above by $\frac{1}{2}$, the second one is bounded from above by 1, the third one converges to 0 and the last one converges to 1 when $(x, y) \rightarrow (0, 0)$.

Hence
$$\lim_{(x,y)\to(0,0)} \frac{\frac{y^3 - x^8 y}{x^6 + y^2} - y}{\sqrt{x^2 + y^2}} = 0.$$

5. $f(x, y) = \frac{3x^2 + xy}{\sqrt{x^2 + y^2}}$ defined on $\mathbb{R}^2 \setminus \{(0, 0)\}.$ *Notice that* $x^2 \le x^2 + y^2 = ||(x, y)||^2$ *and that* $|xy| \le \frac{x^2 + y^2}{2} = \frac{||(x, y)||^2}{2}$. Hence $\left|\frac{3x^2 + xy}{\sqrt{x^2 + y^2}}\right| \le \frac{3x^2 + |xy|}{\sqrt{x^2 + y^2}} \le \frac{3\|(x, y)\|^2 + \frac{\|(x, y)\|^2}{2}}{\|(x, y)\|} = 3\|(x, y)\| + \frac{\|(x, y)\|}{2} \xrightarrow[(x, y) \to (0, 0)]{} 0.$ Furthermore $\lim_{(x,y)\to(0,0)} \frac{3x^2 + xy}{\sqrt{x^2 + y^2}} = 0.$

6.
$$f(x, y) = \frac{(x^2 - y)(y^2 - x)}{x + y}$$
 defined on $\{(x, y) \in \mathbb{R}^2 : x + y \neq 0\}$
 $f(x, 0) = -x^2 \xrightarrow[x \to 0]{} 0.$
 $f(x, -x + x^2) = x^3 - 2x^2 + x - 1 \xrightarrow[x \to 0]{} -1.$
Hence $\lim_{(x,y)\to(0,0)} \frac{(x^2 - y)(y^2 - x)}{x + y}$ DNE.

Question 2. Are the following subsets open? closed?

1. $S = \{(x, y) \in \mathbb{R}^2 : x^2 y^2 > 1\} \subset \mathbb{R}^2$

We may write $S = f^{-1}((1, +\infty))$ where $f : \mathbb{R}^2 \to \mathbb{R}$ is defined by $f(x, y) = x^2 y^2$. *Notice that* f *is continuous and that* $(1, +\infty) \subset \mathbb{R}$ *is open. Hence S is open as the inverse image of an open set by a continuous map.*

2. $T = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1, y \ge 0\} \subset \mathbb{R}^2$

Notice that $T = f^{-1}(\{1\}) \cap g^{-1}([0, +\infty))$ where $f, g : \mathbb{R}^2 \to \mathbb{R}$ are respectively defined by $f(x, y) = x^2 + y^2$ and g(x, y) = y. Each of the both preimages is closed as the inverse image of a closed subset by a continuous map.

Hence T is closed as the intersection of closed sets.