University of Toronto - MAT237Y1 - LEC5201
 Multivariable calculus!

 In class questions

 In class questions}

Jean-Baptiste Campesato

September $24^{\text {th }}, 2019$

Question 1. Study $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ for the following functions.

1. $f(x, y)=\frac{x^{3} y}{x^{4}+y^{2}}$ defined on $\mathbb{R}^{2} \backslash\{(0,0)\}$.
$\left|\frac{x^{3} y}{x^{4}+y^{2}}\right|=\frac{\left|x^{2} y\right|}{x^{4}+y^{2}}|x| \leq \frac{1}{2}|x| \xrightarrow[(x, y) \rightarrow(0,0)]{ } 0$
Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{4}+y^{2}}=0$.
2. $f(x, y)=\frac{x y^{4}}{x^{2}+y^{8}}$ defined on $\mathbb{R}^{2} \backslash\{(0,0)\}$.
$f\left(y^{4}, y\right)=\frac{1}{2} \xrightarrow[y \rightarrow 0]{ } \frac{1}{2}$
$f(0, y)=0 \xrightarrow[y \rightarrow 0]{ } 0$
Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{4}}{x^{2}+y^{8}}$ DNE.
3. $f(x, y)=\frac{1-\cos (\sqrt{|x y|})}{|y|}$ defined on $\left\{(x, y) \in \mathbb{R}^{2}: y \neq 0\right\}$.

Hint: study $g(x)=1-\cos (x)-x^{2}$.
One can check that $\forall x \in \mathbb{R}, 1-\cos (x) \leq x^{2}$.
Then $0 \leq \frac{1-\cos (\sqrt{|x y|})}{|y|} \leq \frac{|x y|}{|y|}=|x| \xrightarrow[(x, y) \rightarrow(0,0)]{ } 0$.
Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{1-\cos (\sqrt{|x y|})}{|y|}=0$.
4. $f(x, y)=\frac{\frac{y^{3}-x^{8} y}{x^{6}+y^{2}}-y}{\sqrt{x^{2}+y^{2}}}$ defined on $\mathbb{R}^{2} \backslash\{(0,0)\}$.
$\left|\frac{\frac{y^{3}-x^{8} y}{x^{6}+y^{2}}-y}{\sqrt{x^{2}+y^{2}}}\right|=\frac{\left|x^{3} y\right|}{x^{6}+y^{2}} \cdot \frac{|x|}{\sqrt{x^{2}+y^{2}}} \cdot x^{2} \cdot\left(1+x^{2}\right)$.
The first factor is bounded from above by $\frac{1}{2}$, the second one is bounded from above by 1 , the third one converges to 0 and the last one converges to 1 when $(x, y) \rightarrow(0,0)$.

Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{\frac{y^{3}-x^{8} y}{x^{6}+y^{2}}-y}{\sqrt{x^{2}+y^{2}}}=0$.
5. $f(x, y)=\frac{3 x^{2}+x y}{\sqrt{x^{2}+y^{2}}}$ defined on $\mathbb{R}^{2} \backslash\{(0,0)\}$.

Notice that $x^{2} \leq x^{2}+y^{2}=\|(x, y)\|^{2}$ and that $|x y| \leq \frac{x^{2}+y^{2}}{2}=\frac{\|(x, y)\|^{2}}{2}$.
Hence $\left|\frac{3 x^{2}+x y}{\sqrt{x^{2}+y^{2}}}\right| \leq \frac{3 x^{2}+|x y|}{\sqrt{x^{2}+y^{2}}} \leq \frac{3\|(x, y)\|^{2}+\frac{\|(x, y)\|^{2}}{2}}{\|(x, y)\|}=3\|(x, y)\|+\frac{\|(x, y)\|}{2} \xrightarrow[(x, y) \rightarrow(0,0)]{ } 0$.
Furthermore $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2}+x y}{\sqrt{x^{2}+y^{2}}}=0$.
6. $f(x, y)=\frac{\left(x^{2}-y\right)\left(y^{2}-x\right)}{x+y}$ defined on $\left\{(x, y) \in \mathbb{R}^{2}: x+y \neq 0\right\}$.
$f(x, 0)=-x^{2} \underset{x \rightarrow 0}{\longrightarrow} 0$.
$f\left(x,-x+x^{2}\right)=x^{3}-2 x^{2}+x-1 \underset{x \rightarrow 0}{\longrightarrow}-1$.
Hence $\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}-y\right)\left(y^{2}-x\right)}{x+y}$ DNE.

Question 2. Are the following subsets open? closed?

1. $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2} y^{2}>1\right\} \subset \mathbb{R}^{2}$

We may write $S=f^{-1}((1,+\infty))$ where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $f(x, y)=x^{2} y^{2}$.
Notice that f is continuous and that $(1,+\infty) \subset \mathbb{R}$ is open.
Hence S is open as the inverse image of an open set by a continuous map.
2. $T=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1, y \geq 0\right\} \subset \mathbb{R}^{2}$

Notice that $T=f^{-1}(\{1\}) \cap g^{-1}([0,+\infty))$ where $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ are respectively defined by $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=y$.
Each of the both preimages is closed as the inverse image of a closed subset by a continuous map.
Hence T is closed as the intersection of closed sets.

