University of Toronto – MAT237Y1 – LEC5201 *Multivariable calculus!* Solutions to the in class questions

Jean-Baptiste Campesato

September 17th, 2019

Question: Let $S \subset \mathbb{R}^n$. Prove that \mathring{S} is open.

Answer. Let $x \in \mathring{S}$ then there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset S$. I claim that $B(x, \varepsilon) \subset \mathring{S}$. Indeed, let $y \in B(x, \varepsilon)$ then we can check (triangle inequality) that $B(y, \varepsilon - ||x - y||) \subset B(x, \varepsilon) \subset S$. So for any $y \in B(x, \varepsilon)$, there exists $\varepsilon' = \varepsilon - ||x - y|| > 0$ such that $B(y, \varepsilon') \subset S$ so $y \in \mathring{S}$. Hence $B(x, \varepsilon) \subset \mathring{S}$ as claimed.

To sum up, for any $x \in \mathring{S}$, there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset \mathring{S}$. Hence \mathring{S} is open.

Remark: we also proved that an open ball is open.

Question: Let $S \subset \mathbb{R}^n$. Prove that \overline{S} is closed.

Answer. We are going to prove that $\left(\overline{S}\right)^c = \mathbb{R}^n \setminus S$ is open.

$$\left(\overline{S}\right)^{c} = \left\{ x \in \mathbb{R}^{n} : \text{no}\left(\forall \varepsilon > 0, B(x,\varepsilon) \cap S \neq \emptyset\right) \right\}$$
$$= \left\{ x \in \mathbb{R}^{n} : \exists \varepsilon > 0, B(x,\varepsilon) \cap S = \emptyset \right\}$$
$$= \left\{ x \in \mathbb{R}^{n} : \exists \varepsilon > 0, B(x,\varepsilon) \subset S^{c} \right\}$$
$$= \overset{\circ}{S^{c}}$$

This last set is open according to the first question.

Remarks: We also proved that the complement of the closure is the interior of the complement:

$$\left(\overline{S}\right)^c = \hat{S^c}$$

By replacing S by S^c we get that the complement of the interior is the closure of the complement:

$$\left(\mathring{S}\right)^{c} = \overline{S^{c}}$$

These two properties can be very helpful!

Advanced question:

1. Let $(O_i)_{i \in I}$ be a family of open subsets of \mathbb{R}^n . Prove that $\bigcup O_i$ is open.

Answer. Let $x \in \bigcup_{i \in I} O_i := \{x \in \mathbb{R}^n : \exists i \in I, x \in O_i\}$. Then there exists $i \in I$ such that $x \in O_i$. Since O_i is open there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset O_i$. Hence $B(x, \varepsilon) \subset O_i \subset \bigcup O_i$. We've just proved that for any $x \in \bigcup O_i$, there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset \bigcup O_i$. Furthermore $\bigcup O_i$ is open.

Remark: notice that the above proof is true for any *I* (finite or not, countable or not).

2. Let $U, V \subset \mathbb{R}^n$ be two open sets. Prove that $U \cap V$ is open.

Answer. Let $x \in U \cap V$. Since $x \in U$ open, there exists $\varepsilon_1 > 0$ such that $B(x, \varepsilon_1) \subset U$. Since $x \in V$ open, there exists $\varepsilon_2 > 0$ such that $B(x, \varepsilon_2) \subset V$. Take $\varepsilon = \min(\varepsilon_1, \varepsilon_2) > 0$. Then $B(x, \varepsilon) \subset B(x, \varepsilon_1) \subset U$ and $B(x, \varepsilon) \subset B(x, \varepsilon_2) \subset V$. Hence $B(x, \varepsilon) \subset U \cap V$. We've just proved that for any $x \in U \cap V$ there exists $\varepsilon > 0$ such that $B(x, \varepsilon) \subset U \cap V$. Furthermore $U \cap V$ is open.

3. Find a infinite family of open subsets of \mathbb{R} whose intersection is not open.

Answer.

$$\bigcap_{n\in\mathbb{N}_{>0}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$$

Important remark: according to question 2, a finite intersection of open sets is open. But, according to question 3, it is possible for an infinite intersection of open sets to **not** be open.

4. What about closed sets?

Answer.

Using the fact that S is closed if and only if S^c is open, we get that:

- Any intersection (finite or not) of closed sets is closed.
- A finite union of closed sets if closed.
- However, an infinite union of closed sets may not be closed:

$$\bigcup_{n\in\mathbb{N}>0}\left[\frac{1}{n},+\infty\right)=(0,+\infty)$$

or

$$\bigcup_{x \in (-1,1)} \{x\} = (-1,1)$$