MAT237Y1 - LEC5201 Multivariable Calculus

Preliminaries:
 How to visualize a multivariable function

UNIVERSITY OF
 TORONTO

September $12^{\text {th }}, 2019$

How to visualize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- By its graph

$$
\Gamma_{f}=\left\{(\mathbf{u}, v) \in \mathbb{R}^{n} \times \mathbb{R}: v=f(\mathbf{u})\right\} \subset \mathbb{R}^{n+1}
$$

(efficient for $n \leq 2$.)

- By its level sets, for $c \in \mathbb{R}$,

$$
L_{c}(f)=\left\{\mathbf{u} \in \mathbb{R}^{n}: f(\mathbf{u})=c\right\} \subset \mathbb{R}^{n}
$$

(efficient for $n \leq 3$.)

In the following slides, we'll see how the level sets $L_{c}(f)=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=c\right\}$ of a 2-variable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ allow you to visualize its graph.

How to visualize a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

- By its graph

$$
\Gamma_{f}=\left\{(\mathbf{u}, v) \in \mathbb{R}^{n} \times \mathbb{R}: v=f(\mathbf{u})\right\} \subset \mathbb{R}^{n+1}
$$

(efficient for $n \leq 2$.)

- By its level sets, for $c \in \mathbb{R}$,

$$
L_{c}(f)=\left\{\mathbf{u} \in \mathbb{R}^{n}: f(\mathbf{u})=c\right\} \subset \mathbb{R}^{n}
$$

(efficient for $n \leq 3$.)

In the following slides, we'll see how the level sets
$L_{c}(f)=\left\{(x, y) \in \mathbb{R}^{2}: f(x, y)=c\right\}$ of a 2-variable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ allow you to visualize its graph.

Graphs and level sets - 1

Let f be the function that associates to the location on earth at coordinates (x, y) its elevation $f(x, y)$.

We draw the level sets $f(x, y)=c$ for
$c=0,10,20,30,40,50,60,70,80,90, \mathbf{1 0 0}, 110, \ldots$

Graphs and level sets - 1

Graphs and level sets - 1

Graphs and level sets - 2

Graphs and level sets - 2

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.
$f(x, y)=y^{2}-x^{2}=(y-x)(y+x)=u v$
So we just have to draw $u v=c$ (or $v=c / u$) and then to apply the change of variables (beware of the orientation).

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.
$f(x, y)=y^{2}-x^{2}=(y-x)(y+x)=u v$
So we just have to draw $u v=c$ (or $v=c / u$) and then to apply the change of variables (beware of the orientation).

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.
$f(x, y)=y^{2}-x^{2}=(y-x)(y+x)=u v$
So we just have to draw $u v=c$ (or $v=c / u$) and then to apply the change of variables (beware of the orientation).

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.
$f(x, y)=y^{2}-x^{2}=(y-x)(y+x)=u v$
So we just have to draw $u v=c$ (or $v=c / u$) and then to apply the change of variables (beware of the orientation).

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.
$f(x, y)=y^{2}-x^{2}=(y-x)(y+x)=u v$
So we just have to draw $u v=c$ (or $v=c / u$) and then to apply the change of variables (beware of the orientation).

Or you directly recognize the equation of a hyperbola.

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.

Graphs and level sets - 3

Let $f(x, y)=y^{2}-x^{2}$
Draw some level sets $f(x, y)=c$ and then try to visualize the graph of f from them.

Homework

(1) Read the section 0.3 of the lecture notes.
(2) Play with the interactive examples in the notes.
(3) Work on the questions from the lecture notes (section 0.P).

