MAT237Y1 - LEC5201 Multivariable Calculus

Preliminaries: SETS AND FUNCTIONS

UNIVERSITY OF

TORONTO

September $5^{\text {th }}, 2019$

Functions

Does it define a function?
If so, is it injective, surjective and/or bijective?
If it is bijective then give its inverse.

Functions

Does it define a function?
If so, is it injective, surjective and/or bijective?
If it is bijective then give its inverse.

Functions

Does it define a function?
If so, is it injective, surjective and/or bijective?
If it is bijective then give its inverse.

Functions

Does it define a function?
If so, is it injective, surjective and/or bijective?
If it is bijective then give its inverse.

Functions

Does it define a function?
If so, is it injective, surjective and/or bijective?
If it is bijective then give its inverse.

Functions

Does it define a function?
If so, is it injective, surjective and/or bijective?
If it is bijective then give its inverse.

$$
\{a, b, c\} \xrightarrow{f_{6}}\{1,2,3\}
$$

Functions

Does it define a function?
If so, is it injective, surjective and/or bijective?
If it is bijective then give its inverse.

$$
\begin{aligned}
f_{7}: \begin{array}{ccc}
\mathbb{R}^{2} & \rightarrow & \mathbb{R} \\
(x, y) & \mapsto & x e^{y} \\
f_{8}: & \\
\mathbb{R}^{2} & \rightarrow & \mathbb{R}^{2} \\
(x, y) & \mapsto & \left(e^{x}, x^{2}\right)
\end{array}
\end{aligned}
$$

Image and inverse image of a set by a function

Compute $f(\{a, c, d\})$ and $f^{-1}(\{2,3,4\})$.

Image and inverse image of a set by a function

$$
f(\{a, c, d\})=\{1,2\} \text { and } f^{-1}(\{2,3,4\})=\{b, c, d\} .
$$

Compute the graph of the following function

Compute the graph of the following function

Is it the graph of a function $f:[1,2] \rightarrow \mathbb{R}$?

(1)

2

Injective/surjective/bijective functions

Are the following functions injective? surjective? bijective? For a bijective one, give its inverse function.
(1) $f: \begin{array}{ccc}\mathbb{R}^{3} & \rightarrow & \mathbb{R}^{2} \\ (x, y, z) & \rightarrow & (x, y)\end{array}$
(2) $g: \begin{array}{ccc}\mathbb{R}^{2} & \rightarrow & \mathbb{R}^{2} \\ (x, y) & \rightarrow & \left(e^{x},\left(x^{2}+1\right) y\right)\end{array}$
(3) $h: \quad \mathbb{R}^{2} \rightarrow \quad \mathbb{R}^{2}$

$$
(x, y) \rightarrow(x+y,-x)
$$

Injective/surjective/bijective functions

Are the following functions injective? surjective? bijective?
For a bijective one, give its inverse function.
(1) $f: \begin{array}{ccc}\mathbb{R}^{3} & \rightarrow & \mathbb{R}^{2} \\ (x, y, z) & \rightarrow & (x, y)\end{array}$
(2) $g: \begin{array}{ccc}\mathbb{R}^{2} & \rightarrow & \mathbb{R}^{2} \\ (x, y) & \rightarrow & \left(e^{x},\left(x^{2}+1\right) y\right)\end{array}$
(3) $h: \mathbb{R}^{2} \rightarrow \quad \mathbb{R}^{2}$

$$
(x, y) \rightarrow(x+y,-x)
$$

(4) $l: \begin{array}{ll}\mathbb{N}_{\geq 0} & \rightarrow \mathbb{Z} \\ n & \rightarrow\left\{\begin{array}{cl}\frac{n}{2} & \text { if } n \text { is even } \\ -\frac{n+1}{2} & \text { otherwise }\end{array}\right.\end{array}$

