Tokes theorem (Also brown as Kehin-Ytoker or curl theorem)
Yettep: So \mathbb{R}^{3} a smooth surface

- S a surface lying in So
- We denote the relative boundary of S in So by $\partial_{S_{0}} S$ (wee assume -t is a are or \varnothing)
(We often drop the So and simply write ∂S, tut be careful $\partial_{S_{0}} S \neq \partial S$)
Comment: by "relative" we mean that we forget \mathbb{R}^{3} and see the ambient space as So for some topology. I won't give details because it outreaches MAT 237 but that's a winy intuitive notion.
If you went a formal definition for $\partial_{s_{0}} S$:

$$
\partial_{S_{0}} S=\left\{x \in S_{0}: \forall \varepsilon=0, B(x, \varepsilon) \cap S \neq \phi \text { and } B(x, c) \cap(S \cup \backslash S) \neq \dot{\phi}\right\}
$$

- We assume that S is oriented lay $\vec{m}=S \rightarrow \mathbb{R}^{3}$ a C^{0} noun unit vector field
- Ne assume that DSSS is positively oriented: if \vec{v} gives the orientation
 of $\partial s_{0} S$ then $\vec{m} \times \vec{v}$ paints to S

Theorem (Stokes, Kehin-Ytokes or curl)

$$
\begin{aligned}
& F: \| \longrightarrow \mathbb{R}^{3} \quad C^{1}, \mu C \mathbb{R}^{3} \text { open, SCM, then } \\
& \quad \int_{\partial_{0} S} \vec{F} \cdot d \vec{x}=\iint_{S}(\text { curl } \vec{F}) \cdot \vec{m}
\end{aligned}
$$

Comment: tat's a "3D" version of Green's theorem:
the latter is a special case when the surface is "flat" (ie inside a plane)

Comment. That's (again!) a special case of the general Stokes theorem for differential forms.

Ex: We define C as the ellipse obtained by intersecting the cylinder $x^{2}+y^{2}=1$ with the plane $y-z=0$ oriented counterclockwise as viewed from above.
Compute $\int_{C}(x-z) d x+(x+y) d y+(y+z) d z$
 unit nectar pointing ho

Yo

$$
\begin{aligned}
& \begin{array}{l}
\int_{C}(x-z) d x+(x+y) d y+(y+z) d z \\
\quad=\iint_{S} \text { cull } \vec{F} \cdot \vec{m} \text { where } \vec{F}(x y, z)=(x-z, x+y, y+z)
\end{array} \\
& \operatorname{arl} \vec{F}=\binom{1}{-1}
\end{aligned}
$$

\vec{m} is the unit vectra normal to $y-z=0$ pointing to the tor so.

$$
\vec{m}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right)
$$

and $\operatorname{cul} \vec{F} \cdot \vec{m}=\frac{2}{\sqrt{2}}=\sqrt{2}$

$$
\int_{C} \vec{F} \cdot d \vec{x}=\iint_{S} \sqrt{l}
$$

$$
\sigma(f, \theta)
$$

Stun notice that $S=\{(r \cos \theta, 1 \prime \sin \theta,(\sin \theta): r \in[0,1], \theta \in[-\pi, \pi]\}$

$$
\partial_{s} \sigma \times \partial_{2} \sigma=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
\sin \theta
\end{array}\right) \times\left(\begin{array}{c}
-r \sin \theta \\
r \cos \theta \\
r \cos \theta
\end{array}\right)=\left(\begin{array}{c}
0 \\
-r \\
r
\end{array}\right)
$$

hence $\int_{c} \vec{F} \cdot d \vec{x}=\int_{-\pi}^{\pi} \int_{0}^{1} \sqrt{2}\|(0,-r, r)\| d r d \theta$

$$
\begin{aligned}
& =4 \pi \int_{0}^{1} r d r \\
& =2 \pi
\end{aligned}
$$

In this corollary, I am not very formal.
It is possible to define properly what do I mean by "closed", but I think that's not necessary for our purpose.

Corollary:
You can believe your intuition: "closed" means that there is no "boundary" in the above sense, so the line integral is 0.
Assume that S is "closed"

$$
\text { then } \iint_{S}(\operatorname{cur}(\vec{F}) \cdot \vec{m}=0
$$

Stones thoomm allows to give a physics interpetation of url. Tet a $\in \mathbb{R}^{3}, \vec{m}$ a unit vector and D_{r} the disks centred at a normal to \vec{m} and of radius r

$$
\text { then } \begin{align*}
(\text { cull } \vec{F}(a)) \cdot \vec{m} & =\lim _{r \rightarrow 0} \frac{1}{\pi r^{2}} \iint_{D r}(\text { cull } \vec{F}) \cdot \vec{m} \\
& =\lim _{r \rightarrow 0} \frac{1}{\pi r^{2}} \int_{C_{r}} \vec{F} \cdot d \vec{x} \tag{x}
\end{align*}
$$

If \vec{F} is a force field, then $\int_{C_{r}} \vec{F} \cdot d \vec{x}$ is the week of F on a patide moving along C_{r} :
So $\operatorname{cusf} \vec{f}(a) \cdot \vec{m}>0$: the force pushes the pactide counturdoctouse <0 \qquad clochurise

By "counterclockwise", I mean that the force pushes the particle in the direction of the orientation of the boundary, as in the "right hand rule" on the right:

Another example of usage:
Tet S be the part of the cone $z=\sqrt{x^{2}+y^{2}}$ below $x+z=1$ oriented by \vec{m} going upwiend (in the inside)

we want to conquite $\iint_{S}(\operatorname{curl} \vec{F}) \cdot \vec{m}$
notice the the ellipse T has the some boundary
compatible orientation if \vec{m} goes upwind
\& $\iint_{S} \operatorname{carl} \vec{F} \cdot \vec{m}=\int_{C} \vec{F} \cdot d \vec{x}=\iint_{T} \operatorname{arl} \vec{F} \cdot \vec{m}$
that could be easier to compute
1.

If is folds in general that

$$
\begin{aligned}
& \iint_{S_{1}} \vec{G} \cdot \vec{m}=\iint_{S_{2}} \vec{G} \cdot \vec{m} \text { for } G \text { a vector field } \\
& \text { if } \partial S_{s}=\partial S_{2}
\end{aligned}
$$

(it is true when $\vec{G}=$ wal \vec{F}) $\mid l!!!$!

In this chapter, you met the following special caus of the general Y toshes theorem: $\int_{\Omega} d w=\int_{\partial \Omega} \omega$

