Ex 1:
\Rightarrow Assume that S is Cordou-measoneble
S is bounded, there exists a rectangle R sit. SCR We define $X_{S}: R \rightarrow \mathbb{R}$ by $X_{S}(x)=0$ if $x \in S$

$$
X_{S}(x)=1 \text { if } x \in S
$$

dotice that the descoutimenty set of X_{S} is ∂S which has $Z C$ by carromption, so X_{S} is integrable on R
E: Proof 1 using helesgue criterion (easier bet not part of MAT 237)
X_{S} is integrable on $R \Rightarrow \partial S$ its discontimuityset has mean 0
\Rightarrow IS has grocoutrent since it is compact (Heime-Borel)
hetero
Proof 2 : Net P a partition of R st. $U_{p}\left(x_{s}\right)-L_{p}\left(x_{s}\right)<\varepsilon$
We dense ley 3 the set of subrectangles of P intersecting IS then

$$
\sum_{R \in \mathcal{P}} J(R)=U_{p}\left(X_{S}\right)-L_{p}\left(X_{S}\right)<\varepsilon
$$

Let me add an extra explanation: $\quad \sum_{R \in \mathcal{P}} \nu(R)=\sum_{R}\left(\sup _{R} \chi_{S}-\inf _{R} \chi_{S}\right) \nu(R)=U_{P}\left(\chi_{S}\right)-L_{P}\left(\chi_{S}\right)<\varepsilon$

To graph of f
the idea is that 25 has ger-coutent
P perstition of T.
\rightarrow He difference is a small as we went by defirition of nitgoelty thet $\varepsilon>0$. Let P be a partition of T s.t.

$$
U_{p}(b)-L_{p}(b)<\varepsilon
$$

Then $\bar{\int} x_{s}-\int x_{s} \leqslant \sum_{\substack{1 \\ \text { soneatag } \\ \text { of }}} J\left(R \times\left[0, \sin _{a} p B\right]\right)-\partial\left(R \times\left[\operatorname{Oin}_{R} b\right]\right)$

$$
=\sum_{R}\left(\operatorname{sop}_{R} f-\operatorname{in}_{R} f b\right) \partial(R)
$$

So $\int_{\text {meascable ley }} x_{s}=\int_{E_{0}} x_{s}$ and $<\varepsilon$. x_{s} is intregreable thus S is fondan measxable by Exo 1.
dotice also that

$$
\begin{aligned}
& \int_{T} f-\int_{S} x_{S} \leqslant \sum_{R} \partial(R \times[0, \operatorname{sop} f])-D(R \times[a ; i f f]) \\
&<\varepsilon \\
& \text { So } \quad \int_{T} f=\int_{T} f=\int x_{S}=\int x_{S}=: \int_{S} 1
\end{aligned}
$$

Mectod 2

$\operatorname{\partial SC}\left(T_{x}\{0,0) \cup\left(\partial T_{x}\left\{\frac{s p p}{T}\right\}\right) \cup \Gamma_{f}\right.$

- Tx 29 has Zc:

Her a 20, $T \times\{0\} C T \times\left[-\frac{\varepsilon}{3(t)}, \frac{2}{30(\pi)}\right]$
and $\partial\left(T \times\left[-\frac{\varepsilon}{3 \text { 2n }}, \frac{\varepsilon}{3 \text { (tit) }}\right]\right)=\partial(T) \times \frac{2 \varepsilon}{3 D T}=\frac{2 \varepsilon}{3}<\varepsilon$

- Ler zoo,

DT hes jerocouteat so $3 R_{i}, 1=$ sinr s.t. $\partial T C \cup R_{i}$ and $\sum \partial(R)<\sqrt{\varepsilon}$

$$
\begin{aligned}
& \partial T_{k}\{\sup b\} \subset \cup \operatorname{Rix} \times\left[\operatorname{se}-\frac{\sqrt{\varepsilon}}{2}, \operatorname{sp}+\frac{\sqrt{\varepsilon}}{2}\right] \\
& \text { and } \bar{\Sigma} J(S)=\sum D\left(R_{i}\right) \sqrt{\varepsilon}<\sqrt{\varepsilon} \sqrt{\varepsilon}=\varepsilon
\end{aligned}
$$

- If has $Z C$ as the graph of an integrable fenchan

CCL: ∂S has $Z C$ as the buliet of a ext hering $Z C\binom{$ as the finte }{ amien - }
Hence S is fandan measonable
doxt.

$$
\begin{aligned}
\left.\therefore \partial(S)=\int_{S} 1=\int_{T} \int_{[0, \operatorname{sex}]} x_{[\cos]}(y)\right] d y d x & =\int_{T} \int_{0}^{8(t)} 1 d y d x \\
& =\int_{T} f(x) d x
\end{aligned}
$$

Exo 4:
(1)

$$
\begin{aligned}
\int_{S} y d x d y & =\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} y d y d x=\int_{-1}^{1}\left[\frac{y^{2}}{2}\right]_{0}^{\sqrt{1-x^{2}}} d x \\
& =\frac{1}{2} \int_{-1}^{1}\left(1-x^{2}\right) d x=2 / 3
\end{aligned}
$$

(2)

$$
\begin{aligned}
\int_{S} y d x d y=\int_{0}^{\pi} \int_{0}^{1} r^{2} \sin \theta d r d \theta & =\left[\frac{r^{3}}{3}\right]_{0}^{1} \times[-\cos \theta]_{0}^{\pi} \\
& =2 / 3
\end{aligned}
$$

Exo 5: dotice that $\sqrt{\left|y-x^{2}\right|}= \begin{cases}\sqrt{y-x^{2}} & \text { when } y \geqslant x^{2} \\ \sqrt{x^{2}-y} \text { otherwise }\end{cases}$
We have $[-1,1] \times[0,2]=S_{1} \cup S_{2}$
where $S_{1}=\left\{(x, y): x \in[-1,1], 0 \leqslant y \leqslant x^{2}\right\}$

$$
S_{2}=\left\{(x, y): x \in[-1,1], \quad x^{2} \leq y \leq 2\right\}
$$

then $\int_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|}=\int_{S_{1}} \sqrt{x^{2}-y}+\int_{S_{2}} \sqrt{y-x^{2}}$

$$
\begin{aligned}
& {[-1,1] \times[0,2] }=\int_{-1}^{1} \int_{0}^{x_{1}} \sqrt{x^{2}-y} d y d x+\int_{-1}^{1} \int_{x^{2}}^{2} \sqrt{y-x^{2}} d y d x \\
&=\frac{2}{3} \int_{-1}^{1}\left|x^{3}\right| d x+\frac{2}{3} \int_{-1}^{1}\left(2-x^{2}\right)^{3 / 2} d x \\
&=\frac{4}{3} \int_{0}^{1} x^{3} d x+\frac{4}{3} \int_{0}^{1}\left(2-x^{2}\right)^{3 / 2} d x=\frac{16}{3} \int_{0}^{\pi / 4} \cos 4+d t+\frac{1}{3} \\
& x=\sqrt{2} \sin t=\frac{5}{3}+\frac{\pi}{2}
\end{aligned}
$$

Exob $(0,1)$
Melhod 1:

$$
\int_{s_{2}} x y=\int_{-3 / 5}^{1} y \int_{0}^{\frac{1-y}{2}} x d x d y=\frac{1}{8} \int_{-3 / 5}^{1} y^{3}-2 y^{2}+y d y=-\frac{64}{1675}
$$

$$
\int_{S_{3}} x y=\int_{0}^{4 / 5} x \int_{-\sqrt{1-x^{2}}}^{-3 / 5} y d y d x=\frac{1}{2} \int_{0}^{4 / 5} x^{3}-\frac{16}{25} x d x=\frac{-32}{625}
$$

$$
\int_{S_{1}} x y=\int_{0}^{1} \int_{-\frac{\pi}{2}}^{\frac{3 \pi}{2}} r^{3} \cos \theta \sin \theta d \theta d r=\frac{1}{8} \int_{\pi / 2}^{\frac{3 \pi}{2}} \sin (2 \theta) d \theta
$$

$$
\text { Yo } \int_{A} x y=-\frac{64}{1875}-\frac{32}{625}=-\frac{32}{375}
$$

Helhod 2 :

- $\iint_{\bar{B}(0,1)} x y=\int_{0}^{1} \int_{-\pi}^{\pi} r^{3} \cos \theta \sin \theta d \theta d r=\frac{1}{8} \int_{-\pi}^{\pi} \sin (2 \theta) d \theta=0$

$$
\text { . } T=\left\{(x, y):-\frac{3}{5} \leqslant y \leqslant 1, \frac{1-y}{2} \leqslant x \leqslant \sqrt{1-y^{2}}\right\}
$$

So $\quad \int_{T} x y=\int_{-3 / 5}^{1} y \int_{\frac{1-1}{2}}^{\sqrt{1-y^{2}}} x d x d y=\frac{1}{8} \int_{-3 / 5}^{1}-5 y^{3}+2 y^{2}+3 y d y$

$$
=\frac{32}{375}
$$

Hence $\int_{A} x y=\int_{B(011)} x y-\int_{T} x y=0-\frac{32}{375}=-\frac{32}{375}$

Ex 7
(1) Using polar coordinates

Define $\psi(r, \theta)=\Phi(r \cos \theta, r \sin \theta)$

$$
=r^{2}(\cos (2 \theta), \sin (2 \theta))
$$

It is easy to check that

$$
\mathcal{N}: \mathbb{R}_{>0} \times\left(-\frac{\pi}{2} \cdot \frac{\pi}{2}\right) \rightarrow \mathbb{R}^{2} \backslash\{(x, 0): x \leqslant 0\}
$$

is a bijection.
Moreover $\operatorname{det} D \psi(r, \theta)=\left|\begin{array}{ll}2 r \cos (2 \theta) & -2 r^{2} \sin (2 \theta) \\ 2 r \sin (2 \theta) & 2 r^{2} \cos (2 \theta)\end{array}\right|$

$$
=4 r^{3}>0
$$

Hence ψ and hence Φ is a C^{1}-diffeomophiom

Method 2: $\|\Phi(x, y)\|=x^{2}+y^{2}$

- $\Phi \mathbb{R} \rightarrow 0 \times \mathbb{R} \rightarrow \mathbb{R}^{2} \backslash\{(x(0): x \leqslant 0\}$ is well defined
- Yet $(0,0)=\pi(x, y)=\left(x^{2}-y^{2}, 8 x y\right)$
so that $u=x^{2}-y^{2}, v=2 x y, \sqrt{v^{2}+v^{2}}=x^{2}+y^{2}$

and $(H)=\Phi^{-1}$
(2) By symmetry $\int_{S}\left(y^{2}-x^{2}\right)^{x y}\left(x^{2}+y^{2}\right)=2 \int_{S N\{x>0\}}\left(y^{2}-x^{2}\right)^{x y}\left(x^{2}+y^{2}\right)$

And I maps $\operatorname{sol}\{x>0\}$ to

$$
\{(u, v):-1 \leqslant u \leqslant 0, \quad 2 a \leq v \leqslant 2 b\}
$$

Notice that

$$
\operatorname{Det} \operatorname{DCF}(x, y)=\left|\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right|=4\left(x^{2}+y^{2}\right)>0
$$

so $\int_{\int}\left(y^{2}-x^{2}\right)^{x y}\left(x^{2}+y^{2}\right) d x d y$

$$
\begin{aligned}
& =2 \int_{S \cap\{x 20}\left(y^{2}-x^{2}\right)^{x y}\left(x^{2}+y^{2}\right) d x d y \\
& =\frac{1}{2} \int_{2 a}^{2 b} \int_{-1}^{0}(-v)^{\frac{v}{2}} d v d v \\
& =\frac{1}{2} \int_{2 a}^{2 b}\left[-\frac{(-v)^{N / 2+1}}{v / 2+1}\right]_{a-1}^{0} d v \\
& =\int_{2 a}^{2 b} \frac{1}{v+2} d v \\
& =\ln \left(\frac{2 b+2}{2 a+2}\right) \\
& =\ln \left(\frac{b+1}{a+1}\right)
\end{aligned}
$$

Ex 8
$\Phi(x, y)=(x+y, y)$ defines a c^{1}-deffer $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\operatorname{dir}(D)(x, y)=\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|=1>0
$$

hence $\quad \int_{0}^{\pi} \int_{0}^{\pi}|\cos (x+y)| d x d y=\int_{0}^{\pi}\left(\int_{v}^{s+\pi}|\cos (v)| d v\right) d v$

$$
\begin{aligned}
& =\int_{0}^{\pi}\left(\int_{N}^{\pi / 2}|\cos (v)| d v+\int_{\pi / 2}^{\pi}|\cos (v)| d v+\int_{\pi}^{N+\pi}|\cos (v)| d v\right) d v \\
& \left.\left.=\int_{0}^{\pi}\left(\int_{N}^{\pi / 2}|\cos v| d v+\int_{\pi / 2}^{\pi} \mid \cos v\right) d v+\int_{0}^{v} \mid \cos v\right) d v\right) d v \\
& =\int_{0}^{\pi} \int_{0}^{\pi}|\cos v| d u d v \\
& =2 \pi \int_{0}^{\pi / 2} \cos v d v \\
& =2 \pi
\end{aligned}
$$

Method 2:

$$
\begin{aligned}
& \int_{0}^{\pi}\left(\int_{v}^{v+\pi}|\cos u| \mathrm{d} u\right) \mathrm{d} v=\int_{0}^{\frac{\pi}{2}}\left(\int_{v}^{\frac{\pi}{2}} \cos u \mathrm{~d} u-\int_{\frac{\pi}{2}}^{v+\pi} \cos u \mathrm{~d} u\right) \mathrm{d} v+\int_{\frac{\pi}{2}}^{\pi}\left(-\int_{v}^{\frac{\pi}{2}} \cos u \mathrm{~d} u+\int_{\frac{3 \pi}{2}}^{v+\pi} \cos u \mathrm{~d} u\right) \mathrm{d} v \\
&=\int_{0}^{\frac{\pi}{2}}(1-\sin v-\sin (v+\pi)+1) \mathrm{d} v+\int_{\frac{\pi}{2}}^{\pi}(1+\sin v+\sin (\pi+v)+1) \mathrm{d} v \\
& \sin v+\sin (\pi+v)=0 \\
&=\int_{0}^{\frac{\pi}{2}} 2 \mathrm{~d} v+\int_{\frac{\pi}{2}}^{\pi} 2 \mathrm{~d} v \\
&=2 \pi
\end{aligned}
$$

Ex 9
(1) $F(x)=\int_{a}^{b} f(x, y) d y$

$$
\begin{aligned}
\text { FTC } \rightarrow & =\int_{a}^{b}\left(\int_{c}^{x} \frac{\partial b}{\partial x}(s, y) d s+f(c, y)\right) d y \\
& =\int_{a}^{b} \int_{c}^{x} \frac{\partial b}{\partial x}(s, y) d s d y+\int_{a}^{b} f(c, y) d y \\
\text { Folimi } \rightarrow & =\int_{c}^{x} \int_{a}^{b} \frac{\partial b}{\partial x}(s, y) d y d s+\int_{a}^{b} f(c, y) d y
\end{aligned}
$$

So by the FTC: $F^{\prime}(x)=\int_{a}^{b} \frac{\partial b}{\partial x}(x, y) d y$

$$
\left(s \mapsto \int_{a}^{b} \frac{\partial b}{\partial x}(s, y) d y \text { is } c^{\circ} \text { by the } c^{0} 4 m\right)
$$

(2) It is enough to study $G(x)=\int_{a}^{Q(x)} f(x, y) d y$

We define $F(x, t)=\int_{a}^{t} f(x, y) d y$

$$
\begin{array}{cc}
\frac{\partial F}{\partial r}(x, r)=f(x, r) & \frac{\partial F}{\partial x}(x, r)=\int_{a}^{t} \frac{\partial b}{\partial x}(x, y) d y \\
b y
\end{array}
$$

Then $G(x)=F(x, \varphi(x))$
By the chain tue $G^{\prime}(x)=\frac{\partial F}{\partial x}(x, \varphi(x))+\varphi^{\prime}(x) \frac{\partial F}{\partial r}(x, \varphi(x))$

$$
=\int_{a}^{\varphi} \frac{\partial b}{\partial x}(x, y) d y+\varphi^{\prime}(x) f(x, \varphi(x))
$$

Expo:
(1) Let $y_{0} \in[0,1]$

- If $y_{0}=0$ their $f_{y_{0}}(x)=$ and $f_{y_{0}}$ is integrable

$$
\begin{aligned}
& \text { or } y_{0}=1 \\
& \text { If } y_{0} \in(0,1), \quad f_{y_{0}}(x)=\left\{\begin{array}{lll}
0 & \text { at } x=0 \\
y_{0}^{-2} & \text { if } 0<x<y_{0} \\
0 & \text { if } x=y_{0} \\
-x^{-2} & \text { if } y_{0}<x<1 \\
0 & \text { if } x=1
\end{array}\right.
\end{aligned}
$$

Notice the the discontinuity set in finite and the $f_{y_{0}}$ bounded to $f_{y_{0}}$ is integrable
(2)

$$
\begin{aligned}
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right) d y & \left.=\int_{0}^{1}\left(\int_{0}^{y} y^{-2} d x+\int_{y}^{1}-x^{-2} d x\right)\right) d y \\
& =\int_{0}^{1} \frac{1}{y}+1-\frac{1}{y} d y=1 \\
\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right) d x & =\int_{0}^{1}\left(\int_{0}^{x}-x^{-2} d y+\int_{x}^{1} y^{-2} d y\right) d x \\
& =\int_{0}^{1}-\frac{1}{x}-1+\frac{1}{x} d x=-1
\end{aligned}
$$

(3) f is not banded/integrable

In class, we proved Fubini's theorem for the usual Darboux/Riemann integral. In particular f has to be integrable (hence bounded) to apply the result stated in class.
So we cant directly apply the theorem here.
Actually, Fubini's theorem is far more general. Here the issue is actually that the integral of f is not improperly convergent (ie. absolutely convergent).

Exod y
(1) Yet $F(x, y)=\frac{\partial^{2} f}{\partial x \partial y}(x, y)-\frac{\partial^{2} f}{\partial y \partial x}(x, y)$
$\operatorname{let}\left(x, y_{0}\right) \in U$.
Since $F\left(x_{0}, y_{0}\right)>0$, by continuity of F, there exists a rectangle R containing $\left(x_{0}\left(y_{0}\right)\right.$ st.

$$
\forall(x, y) \in R, F(x, y)>\frac{F\left(x_{0}, y_{0}\right)}{2}
$$

then $\int_{R} F(x, y)>\frac{F\left(x_{0}, y_{0}\right)}{2} \partial(R)>0$
(2) Assume that $R=[a, b] \times[a, d]$ then

$$
\text { o< } \begin{aligned}
\int_{R} \frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}= & \int_{c}^{d} \int_{a}^{b} \frac{\partial}{\partial x}\left(\frac{\partial b}{\partial y}\right) d x d y \\
& -\int_{a}^{b} \int_{c}^{d} \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) d y d x \\
= & \int_{c}^{d} \frac{\partial f}{\partial y}(b, y)-\frac{\partial b}{\partial y}(a, y) d y \\
& -\int_{a}^{b} \frac{\partial f}{\partial x}(x, d)-\frac{\partial b}{\partial x}(x, c) d x \\
= & f(b, d)-f(a, d)-f(b, c)+f(a, c) . \\
& -f(b, d)+f(b, c)+f(a, d)-f(a, c) \\
= & 0
\end{aligned}
$$

Contradiction!

Ex 12 :
We can apply the tHrown $\int \Leftrightarrow \frac{\partial}{\partial x}$ (cluck the assumption)

$$
\text { so } \begin{aligned}
f^{\prime}(x)=\int_{0}^{1} \frac{2 x}{x^{2}+y^{2}} d y & =\int_{0}^{1} \frac{2}{1+(1 / 1)^{2}} \frac{d y}{x} \\
u=\frac{y}{x} & =\int_{0}^{1 / x} \frac{2}{1+u^{2}} d u \\
& =2 \arctan (1 / x)
\end{aligned}
$$

Ex 13 :

Cups, I've just realized that I forgot this exercise...
You have to use the generalized theorem to differentiate under the integral from Exercise 9!

Sorry for that!

ADDENDUM (March 25): the full solution is next page!

$$
u(x)=\int_{0}^{x}(x-y) e^{x-y} f(y) d y
$$

- $F(x, y)=(x-y) e^{x-y} f(y)$ is c^{0} on \mathbb{R}^{2}
- $\frac{\partial F}{\partial x}(x, y)=(x-y+1) e^{x-y} f(y)$ is \mathbb{C}^{0} on \mathbb{R}^{2}

So we can apply the formula from Ex, 2: 0 is C^{1} and

$$
\begin{aligned}
& O^{\prime}(x)=\int_{0}^{x} \frac{\partial F}{\partial x}(x, y) d y+\underbrace{1}_{\varphi_{2}(x)} \cdot F(x, x) \\
&=\int_{0}^{x}(x-y+1) e^{x-y} f(y) d y+0 \\
&=\int_{0}^{x}(x-y+1) e^{x-y} f(y) d y \\
& \cdot G(x, y)=(x-y+1) e^{x-y} f(y) \text { and } \frac{\partial G}{\partial x}(x, y)=(x-y+2) e^{x-y} f(y) \text { on } C^{0} \\
& \text { or } \mathbb{R}^{2}
\end{aligned}
$$

80
(again by

$$
\begin{aligned}
u^{\prime \prime}(x) & =\int_{0}^{x} \frac{\partial G}{\partial x}(x, y) d y+1 \cdot G(x, x) \\
& =\int_{0}^{x}(x-y+2) e^{x-y} f(y) d y+(x-x+1) e^{x-x} f(x) \\
& =\int_{0}^{x}(x-y+2) e^{x-y} f(y) d y+f(x)
\end{aligned}
$$

Then $v^{\prime \prime}(x)-2 v^{\prime}(x)+u(x)=\int_{0}^{x}(x-y+2) e^{x-y} f(y) d y+f(x)$

$$
\begin{aligned}
& -2 \int_{0}^{x}(x-y+1) e^{x-y} f(y) d y+\int_{0}^{x}(x-y) e^{x-y} f(y) d y \\
= & f(x)+\int_{0}^{x} e^{x-y} f(y) \underbrace{(x-y+2-2 x+2 y-2+x-y)}_{=0} d y \\
= & f(x)
\end{aligned}
$$

Ex 15
(1)

$$
\begin{aligned}
& \int_{1}^{\infty}\left(\int_{1}^{\infty} \frac{y-x}{(x+y)^{3}} d x\right) d y \\
&=\int_{1}^{\infty}\left[\frac{x}{(x+y)^{2}}\right]_{1}^{\infty} d y \\
&=\int_{1}^{\infty}-\frac{1}{(1+y)^{2}} \\
&= {\left[\frac{1}{1+y}\right]_{1}^{\infty} } \\
&=-1 / 2
\end{aligned}
$$

(2) $\int_{1}^{\infty}\left(\int_{1}^{\infty} \frac{y-x}{(x+y)^{3}} d y\right) d x=\int_{1}^{+\infty} \frac{1}{(1+x)^{2}} d x=\left[-\frac{1}{1+x}\right]_{1}^{\infty}=1 / 2$
(3) $\int \frac{y-x}{(x+y)^{3}}$ is not impopenly convergent

Ex 16
Since $f(x)=e^{-\alpha\|x\|^{2}}$ is poritive, we have:

$$
\begin{aligned}
\int_{\mathbb{R}^{m}} e^{-\alpha\|x\|^{2}} & =\int_{\mathbb{R}^{m}} e^{-\alpha\left(\Sigma x^{2}\right)} \\
& =\int_{\mathbb{R}^{m}} e^{-\sum \alpha x_{i}^{2}} \\
& =\prod_{i=1}^{m} \int_{\mathbb{R}} e^{-\alpha x^{2}} d x i \\
& =\left(\int_{-\infty}^{+\infty} e^{-\alpha x^{2}} d x\right)^{m} \quad \text { (eventwally }+\infty \text { at this reint) }
\end{aligned}
$$

then, since $e^{-\alpha x^{2}}>0$, we may tabe:

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} e^{-\alpha x^{2}} d x=\lim _{m \rightarrow+\infty} \int_{-m}^{m} e^{-\alpha x^{2}} d x=\lim _{m \rightarrow+\infty} \int_{-\sqrt{2} m}^{\sqrt{\alpha m}} e^{-u^{2}} \frac{d u}{\sqrt{\alpha}} \\
& \text { He velue }\left(\begin{array}{l}
\text { pessilly }+\infty) \\
\text { decosmit deqens on the } \\
\text { exhawhen since }>0
\end{array}\right.=\frac{1}{\sqrt{\alpha}} \int_{-\infty}^{+\infty} e^{-u^{2} d u} \\
&=\sqrt{\frac{\pi}{\alpha}} \\
& \text { So } \int_{\mathbb{R}^{m}} e^{-\alpha\|x\|^{2}}=\left(\frac{\pi}{\alpha}\right)^{m / 2}
\end{aligned}
$$

ExI7
Cince the inlegand is paritive, the value of the integreal (yousilly $+\infty$) doesn't depend on the exhaeshon.

$$
\int_{\left\{x^{2}+y^{2}<1\right\}} \frac{d x d y}{\left(1-x^{2}-y^{2}\right)^{\alpha}}=\lim _{m \rightarrow+\infty} \int_{\left(x^{2}+y^{2}\right)^{1 / 2} \leqslant 1-\frac{1}{m}} \frac{d x d y}{\left(1-x^{2}-y^{2}\right)^{\alpha}}
$$

$$
\begin{aligned}
& \text { for the exhearshon, } \\
& \text { ve tabe dishos bigger and } \\
& \text { lugger }
\end{aligned}=\lim _{n \rightarrow+\infty} \int_{-\pi}^{\pi} \int_{0}^{1-\frac{1}{m}} r d r d \theta
$$

CoV: $u=1-r^{2}$

$$
\begin{aligned}
& =\lim _{m \rightarrow+\infty} 2 \pi \int_{m a t e s}^{1-\frac{1}{m}} \frac{r}{1-\left(1-\frac{1}{m}\right)^{2}} d r \\
& =\lim _{m \rightarrow+\infty}-\pi \int_{1}^{\left.1-r^{2}\right)^{\alpha}} \frac{1}{v^{\alpha}} d v \\
& =\lim _{m \rightarrow+\infty} \pi \int_{1-\left(1-\frac{1}{m}\right)^{2}}^{1} \frac{1}{v^{\alpha}} d v
\end{aligned}
$$

which is $C V$ iff $x<1$
(Piemann improper integrals)
If you don't remenber:

$$
\begin{aligned}
& \text { you don'r semenker: } \\
& \qquad \int_{N}^{1} \frac{1}{u^{\alpha}} d \omega=\left\{\begin{array}{l}
{\left[\frac{u^{1-\alpha}}{1-\alpha}\right]_{N}^{1} \text { ib } \alpha \neq 1} \\
{[\ln u]_{N}^{1} \text { if } \alpha=1}
\end{array}\right. \\
& \left.\begin{array}{c}
\frac{1}{1-\alpha} \text { if } \alpha<1 \\
+\infty
\end{array}\right\} \stackrel{N \rightarrow 0^{+}}{=}= \begin{cases}\frac{1}{1-\alpha}-\frac{N^{1-\alpha}}{1-\alpha} & \text { if } \alpha \neq 1 \\
-\ln N & \text { if } \alpha=1\end{cases}
\end{aligned}
$$

Ex 18.
(1)
$\int_{0}^{1} \int_{0}^{1} \int_{0}^{\infty} \frac{1}{\left(1+x^{2} z^{2}\right)\left(1+y^{2} z^{2}\right)} d z d x d y$
the integrand is >0
so no med to be too cautious (bet be carol thine)

$$
\begin{aligned}
& =\int_{0}^{1} \int_{0}^{1} \frac{1}{x^{2}-y^{2}}\left(\int_{0}^{\infty} \frac{x^{2}}{1+x^{2} z^{2}}-\frac{y^{2}}{1+y^{2} z^{2}} d z\right) d x d y \\
& \left.=\int_{0}^{1} \int_{0}^{1} \frac{1}{x^{2}-y^{2}}[x \arctan \mid x z)-y \operatorname{archan}(y z)\right]_{0}^{\infty} d x d y \\
& =\frac{\pi}{2} \int_{0}^{1} \int_{0}^{1} \frac{x-y}{x^{2}-y^{2}} d x d y \\
& =\frac{\pi}{2} \int_{0}^{1} \int_{0}^{1} \frac{1}{x+y} d x d y \quad \begin{array}{l}
\text { Be careful, here it is improper at }(0,0), \\
\text { but the integrand is positive. }
\end{array} \\
& =\frac{\pi}{2} \int_{0}^{1}[\ln (x+y)]_{0}^{1} d y \\
& =\frac{\pi}{2} \int_{0}^{1} \ln (\lambda+y)-\ln (y) d y \\
& =\frac{\pi}{2}[(1+y) \ln (1+y)-(1+y)-y \ln y+y]_{0}^{1} \begin{array}{l}
\text { Here } 1 \text { went very fast, that's an improper } \\
\text { integral at } 0, \text { for the lower bound, I took } \\
\text { the limit when } \begin{array}{l}
\text { evaluate at } 0) \text { goes to } 0 \text { (} 1 \text { did dian } y \\
\text { en }
\end{array} \\
=\ln y=0
\end{array} \\
& =\pi \ln (2)
\end{aligned}
$$

If you forget the antiderivative of \ln :

$$
\begin{aligned}
& \int_{1}^{x} \ln (t) d t=[\operatorname{tn} t]_{1}^{x}-\int_{1}^{x} d r=x \ln x-x+1 \\
& u=\operatorname{tn} t \quad v^{\prime}=1 \quad \text { So } \quad \int \ln x=x \ln x-x
\end{aligned}
$$

$E_{x} 18$
(2)

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{1} \int_{0}^{1} \frac{1}{\left(1+x^{2} z^{2}\right)\left(1+y^{2} z^{2}\right)} d x d y d z=\pi \ln 2 \\
& =\int_{0}^{\infty}\left(\int_{0}^{1} \frac{1}{1+x^{2} z^{2}} d x\right)^{2} d z \\
& =\int_{0}^{\infty}\left(\frac{\arctan z}{z}\right)^{2} d z
\end{aligned}
$$

Ex 19.
(a) $\sigma(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$

$$
\begin{aligned}
\sigma^{\prime}(r) & =\left(e^{t}(\cos t-\sin t), e^{t}(\sin (t)+\cos t)\right) \\
\left\|\sigma^{\prime}(r)\right\|^{2} & =e^{2 t}\left((\cos t-\sin t)^{2}+(\cos t+\sin t)^{2}\right) \\
& =e^{2 t}\left(\cos ^{2} t+\sin ^{2} t-2 \cos t \sin t+\cos ^{2} t-\sin ^{2} t+2 \cos s \sin \right) \\
& =2 e^{2 t}
\end{aligned}
$$

Yo $\left\|\sigma^{\prime}(r)\right\|=\sqrt{2} e^{t}$

$$
f(c)=\int_{0}^{\pi / 2} \sqrt{2} e^{r}=\sqrt{2}\left(e^{\frac{\pi}{2}}-1\right)
$$

(2)

$$
\begin{aligned}
& \sigma(r)=\left(\ln t, 2 r, t^{2}\right) \\
& \sigma^{\prime}(r)=(1 / t, 2,2 t) \\
& \left\|\sigma^{\prime}(r)\right\|^{2}=\frac{1}{t^{2}}+4+4 t^{2}=\frac{1+4 t^{2}+4 t^{4}}{t^{2}}=\frac{\left(1+2 t^{2}\right)^{2}}{t^{2}}
\end{aligned}
$$

Qo $\left\|\sigma^{\prime}(t)\right\|=\frac{1+2 t^{2}}{t} \quad(t \in[1, e]$ so $>0)$
and

$$
\begin{aligned}
\mathcal{L}(c) & =\int_{1}^{e} \frac{1}{t}+2 t=\left[\ln t+t^{2}\right]_{1}^{e} \\
& =1+e^{2}-1=e^{2}
\end{aligned}
$$

In Exercise 20, we are computing line integrals of SCALAR fields (not vector fields), so the answer doesn't depend on the orientation (that's why I didn't precise any orientation in the question)!
Ex $20^{(0,1)}$
(1)

$$
\begin{array}{rlrl}
\sigma_{3}= & (0,1-r) & G \sigma_{1}(r)=(t, 0) \\
& r \in[0,1] & & r \in[0,1]
\end{array}
$$

$$
\text { Yo } \begin{aligned}
\int_{c} x+y & =\int_{c_{1}} x+y+\int_{c_{2}} x+y+\int_{c_{3}} x+y \\
& =\int_{0}^{1} t+\int_{0}^{1} \sqrt{2}+\int_{0}^{1}(1-t) \\
& =\frac{1}{2}+\sqrt{2}+\frac{1}{2}=1+\sqrt{2}
\end{aligned}
$$

(2) $\sigma(t)=(t \cos t, t \sin t, t), \sigma^{\prime}(t)=(\cos t-t \sin t, \sin t+r \cos t, l)$

$$
\left.\begin{array}{rl}
\left\|\sigma^{\prime}(r)\right\|^{2}= & (\cos t-t \sin t)^{2}+(\sin t+r \cos t)^{2}+1 \\
= & \cos ^{2} r-2 r \cos t \sin t+t^{2} \sin ^{2} t \\
& +\sin ^{2} t+2 r \cos t \sin r+r^{2} \cos ^{2} t+1 \\
= & 2+t^{2} \\
\int_{c} z=\int_{0}^{a} t \sqrt{2+r^{2}} d t=\frac{1}{2} \int_{0}^{a^{2}} \sqrt{2+v} d v=\left[\frac{(2+0)^{3 / 2}}{3}\right]_{0}^{a^{2}} \\
u=t^{2}
\end{array}\right]=\frac{\left(2+a^{2}\right)^{3 / 2}-2^{3 / 2}}{3} .
$$

Ex 21

$$
\begin{aligned}
& \text { (1) } \sigma(t)=\left(t \cdot t^{2}\right), t \in[0, l] \\
& \sigma^{\prime}(r)=(1,2 t) \\
& \int_{c} x e^{-y} d x+\sin (\pi x) d y=\int_{0}^{1} t e^{-t^{2}}+\frac{2 t \sin (\pi t)}{G \text { parts }} d t \\
& u=t \quad v=\sin (\pi r t) \\
& \left.u=v=-\frac{\cos (\pi)}{4}\right) \\
& =\left[-\frac{1}{2} e^{-r^{2}}\right]_{0}^{1}+2\left(\left[-\frac{t \cos (\pi r)}{\pi}\right]_{0}^{1}+\frac{1}{\pi} \int_{0}^{1} \cos \pi r d d\right) \\
& =\frac{1}{2}-\frac{1}{2 c}+\frac{2}{\pi}+\frac{2}{\pi^{2}}[\sin \pi t]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{2 e} \times \frac{2}{\pi}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \sigma_{3}(r)=[0,1 r) \quad \sigma_{1}(r)=(r, 0) \\
& r \in[0,1] \quad r \in[0,1)
\end{aligned}
$$

Ops, you'll notice that I am solving for the counterclockwise orientation, whereas I asked in the question to use the clockwise orientation...
Sorry for that, I was wearing my trigonometric watch!
That's easy to fix: we will multiply by -1 at the end!

$$
\int_{-C} y^{2} d x-2 x d y=\int_{0}^{1} 0+\int_{0}^{1}-t^{2}-2(1-t) d t+\int_{0}^{1} 0
$$

Here I use "-C" to say that I work with the opposite orientation!

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
y \text { that } \\
\text { site }
\end{array}
\end{array} \int_{0}^{1}-t^{2}+2 t-2 d t \\
&=\left[-\frac{t^{3}}{3}+t^{2}-2 t\right]_{0}^{1} \\
&=-\frac{1}{3}+1-2=-\frac{4}{3} \\
& \text { Then } \int_{C} y^{2} \mathrm{~d} x-2 x \mathrm{~d} y=-\int_{-C} y^{2} \mathrm{~d} x-2 x \mathrm{~d} y=\frac{4}{3}
\end{aligned}
$$

(2) Dinectly with the good arientahon

$$
\begin{array}{ll}
c_{2}: \sigma_{2}(t)=(1-t, 0), t \in[0,1] \\
c_{2}: & \sigma_{2}(t)=(0, t), t \in[0,1] \\
c_{1} & C_{3}:(t)=(t, 1-t), t \in[0,1]
\end{array}
$$

$$
\text { So } \begin{aligned}
& \int_{C} y^{2} d x-2 x d y \\
&=\int_{C_{1}} y^{2} d x-2 x d y+\int_{C_{2}} y^{2} d x-2 x d y+\int_{C_{3}} y^{2} d x-2 x d y \\
&=\int_{0}^{1} 0 d t+\int_{0}^{1} 0 d t+\int_{0}^{1} t^{2} \times 1-2 t \times(-1) d t \\
&=\int_{0}^{1} t^{2}+2 t d t \\
&=\left[\frac{t^{3}}{3}+t^{2}\right]_{0}^{1} \\
&=\frac{1}{3}+1 \\
&=\frac{4}{3}
\end{aligned}
$$

Comment. Hlue, it was also pasible to use Green's theorem

$$
\int_{C} y^{2} d x-2 x d y=-\iint_{S}-2-2 y=2 \iint_{S} 1+y=2 \int_{0}^{1} \int_{0}^{1-x} 1+y d y d x=\frac{4}{3}
$$

Iden't ux le pentive ourintahoun
(3) Hethod.

$$
\text { athed 1: } \begin{aligned}
\sigma(r) & =\left(t, t^{2}\right), t \in[0,2] \\
\sigma^{\prime}(r) & =(1,2 r) \\
\int_{c} y d x+x d y & =\int_{0}^{2} r^{2}+2 r^{2} d r=3\left[\frac{t^{3}}{3}\right]_{0}^{2} \\
& =\frac{32^{3}}{3}=8
\end{aligned}
$$

Hethod 2: $\quad F(x, y)=(y, x)$
$F=\nabla f$ where $f(x, y)=x y$
so $\quad \int_{C} y d x+x d y=\int_{C} \overrightarrow{\nabla f} \cdot d \vec{x}=f(2,4)-f(0,0)=8$
Goodient thoven

$$
\begin{aligned}
& \begin{array}{l}
\sigma_{3}(x)=\left(-h_{1} 1-x\right) \quad(0,1) \\
r E^{(011)} c_{3}
\end{array} \\
& \text { (h) } \\
& C=C_{0}^{C_{3}} \rightarrow \sigma_{2}(t)=(1, r, r), t \in[0,1] \\
& \xrightarrow[\rightarrow 1-r)]{(-1,0)} C_{n} \underset{(0,1)}{C_{1}} C_{1} \rightarrow \sigma_{1}(r)=(h, t-1), r \in[0,1] \\
& \sigma_{h}(r)=(r-1, i) \rightarrow C_{n}(0,-1) \\
& \int_{c} y|y| d x+x|x| d y=\int_{0}^{1}-(t-1)^{2}+t^{2} d t+\int_{0}^{1}-t^{2}+(1-r)^{2} d t \\
& +\int_{0}^{1}-(t-r)^{2}+t^{2} d t+\int_{0}^{1}-t^{2}+(t-1)^{2} d t \\
& =0
\end{aligned}
$$

Ex $22:$
(1) Set $f(x, y)=x^{3} y+\frac{1}{2} x^{2} y^{2}$
then $\nabla f(x, y)=\left(3 x y+x y^{2}, x^{3}+x^{2} y\right)=F(x, y)$
(2) By the Gradient theorm:

$$
\begin{aligned}
\int_{c}^{\vec{F}} \cdot d \vec{x} & =f(7,8)-f(0,0) \\
& =7^{3} \cdot 8+\frac{1}{2} 7^{2} 8^{2} \\
& =4312
\end{aligned}
$$

Ex23. Let $\sigma:[a, b] \rightarrow C$ be a poametizathon of C
 if I' don't we the goed ore, the 1.1 wode thill the -)

$$
\begin{aligned}
\left|\int_{c} \vec{F} \cdot d \vec{x}\right| & =\left|\int_{a}^{b} F(\sigma(r)) \cdot \sigma^{\prime}(r) d r\right| \\
& \leqslant \int_{a}^{b}\left|F(\sigma(r)) \cdot \sigma^{\prime}(r)\right| d r
\end{aligned}
$$

Cacdy-Yolwey $\rightarrow \leqslant \int_{a}^{b}\|F(\sigma(r))\|\left\|\sigma^{\prime}(r)\right\| d r$

$$
\begin{aligned}
& \leqslant \max \|F\| \int_{a}^{b}\left\|\sigma^{\prime}(r)\right\| d r \\
& =\max \|f\| \mathcal{L}(c)
\end{aligned}
$$

Exz4: (1) Method 1

$$
\begin{aligned}
S=\{\sigma(\theta, \varphi) & : \theta \in[0,2 \pi], \varphi \in[0, \pi]\} \\
\sigma(\theta, \varphi) & =(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi) \\
\left\|\partial_{\theta} \sigma \times \partial_{\varphi} \sigma\right\| & =\left\|\left(\begin{array}{c}
-\sin \theta \sin \varphi \\
\cos \theta \\
0
\end{array}\right) \times\left(\begin{array}{c}
\cos \theta \cos \varphi \\
\sin \theta \cos \varphi \\
-\sin \varphi
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{c}
-\cos \theta \sin ^{2} \varphi \\
-\sin \theta \sin ^{2} \varphi \\
-\sin \varphi \operatorname{con}^{\varphi} \varphi
\end{array}\right)\right\| \\
& =\left(\cos ^{2} \theta \sin ^{4} \varphi+\sin ^{2} \theta \sin 4 \varphi+\sin ^{2} \varphi \cos ^{2} \varphi\right)^{1 / 2} \\
& =\left(\sin ^{4} \varphi+\sin ^{2} \varphi \cos ^{2} \varphi\right)^{1 / 2}=\sin \varphi
\end{aligned}
$$

Yo $\quad \iint_{S} z^{2}=\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \varphi \cos ^{2} \varphi d \theta d \varphi$

$$
=2 \pi \int_{0}^{\pi} \sin \varphi \cos ^{2} \varphi d \varphi
$$

$$
\begin{aligned}
& u=\cos \varphi \\
& d u=-\sin \varphi d \varphi=-2 \pi \int_{1}^{-1} u^{2} d u \\
&=\frac{2 \pi}{3}\left[u^{3}\right]_{-1}^{+1} \\
&=\frac{4 \pi}{3}
\end{aligned}
$$

Hethed 2
By symmetry $\iint_{S} x^{2}=\iint_{S} y^{2}=\iint_{S} z^{2}$

$$
\text { Yo } \begin{aligned}
\iint_{S} x^{2} & =\frac{1}{3} \iint_{S} x^{2}+y^{2}+z^{2} \\
& =\frac{1}{3} \iint_{S} 1 \\
& =\frac{1}{3} \text { Areals) } \\
& =\frac{1 \pi}{3}
\end{aligned}
$$

(2) $\sigma(r, \theta)=(r \cos \theta, \sin \theta, \theta)$

$$
\begin{aligned}
&\|\partial r \sigma \times \partial \theta \sigma\|=\left\|\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right) \times\left(\begin{array}{c}
-r \sin \theta \\
r \cos \theta \\
1
\end{array}\right)\right\| \\
&=\left\|\left(\begin{array}{c}
\sin \theta \\
-\cos \theta \\
r
\end{array}\right)\right\|=\sqrt{1+r^{2}} \\
& \begin{aligned}
\iint_{S} \sqrt{1+x^{2}+r^{2}} & =\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+r^{2}} \sqrt{1+r^{2}} d r d \theta \\
& =2 \pi \int_{0}^{1} 1+r^{2} d r \\
& =2 \pi\left(1+\frac{1}{3}\right)=\frac{8 \pi}{3}
\end{aligned}
\end{aligned}
$$

x We aply a rotation of argle θ around z :

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
y(r) \\
z(r)
\end{array}\right)=\left(\begin{array}{c}
-\sin \theta y(r) \\
\cos \theta y(r) \\
z(r)
\end{array}\right)
$$

Yo $S=\{\sigma(t, \theta): d \in[a, b], \theta \in[0,2 \pi]\}$
where $\sigma(r, \theta)=(-y(r) \sin \theta, y(r) \cos \theta, z(r))$
(2)

$$
\begin{aligned}
& \left\|\partial_{r} \sigma \times \partial \theta \sigma\right\|=\left\|\left(\begin{array}{c}
-y^{\prime}(t) \sin \theta \\
y^{\prime}(r) \cos \theta \\
z^{\prime}(r)
\end{array}\right) \times\left(\begin{array}{c}
-y(r) \cos \theta \\
-y(r) \sin \theta \\
0
\end{array}\right)\right\| \\
& =\left\|\begin{array}{c}
y(r) z^{\prime}(r) \sin \theta \\
-y(r) z^{\prime}(r) \cos \theta \\
y^{\prime}(r) y(r)
\end{array}\right\|=|y(r)| \sqrt{y^{\prime}\left(r^{2}+z^{\prime}\left(r^{2}\right.\right.} \\
& \text { Yo } \quad \int_{S} f=\int_{0}^{2 \pi} \int_{a}^{b} f(-y(r) \sin \theta, y(r) \cos \theta, z(r))|y(r)| \sqrt{\left.y^{\prime}(r)^{2}+z^{\prime}(t)\right)^{2}} d r d \theta
\end{aligned}
$$

$$
\begin{aligned}
y_{0} \iint_{s}^{x} 1 & =\int_{0}^{2 \pi} \int_{0}^{h} 1 \cdot|r| \cdot \sqrt{0^{2}+\lambda^{2}} d r d \theta \\
& =2 \pi r h
\end{aligned}
$$

(4)

c is the tiv segment from $(0,0, h) t_{0}(0, r, 0)$
$h \underset{r}{\text { h }}$

$$
\sigma(r)=(0, t r,(1-r) h), r \in[0,1]
$$

$$
\iint_{S} 1=\int_{0}^{2 \pi} \int_{0}^{1} 1 \cdot|t r| \cdot \sqrt{r^{2}+h^{2}} d t d \theta
$$

$$
=2 \pi r \sqrt{r^{2}+t^{2}} \int_{0}^{1} t d t
$$

$$
=\pi r \sqrt{r^{2}+h^{2}}
$$

(5)

$$
\begin{aligned}
& \xrightarrow{\bullet} \text { b } \longrightarrow C=\{(0, b+a \cos t, a \sin t): t \in[0,2 \pi]\} \\
& \iint_{S} 1=\int_{0}^{c \pi} \int_{0}^{2 \pi} \lambda \cdot|b+a \cos t| \sqrt{a^{2}} d r d \theta \\
& =2 \pi \int_{0}^{2 \pi} a b+a^{2} \cos t d t \\
& =4 \pi^{2} a b
\end{aligned}
$$

Ex 26
(1)

We know that \vec{m} is orthogonal to $1 x+1 y+1 z=1$
So $\vec{m}=\lambda(1,1,1)$
So $\vec{m}=\frac{1}{\sqrt{3}}(1,1,1)$ everegothe on S
(\vec{m} is positing to you whin foo look ar the drain)

Yet $T=\{(x, y): x \geqslant 0, y \geqslant 0, x+y \leqslant 1\}$
than $z=1-x-y$, so $\sigma(x, y)=(x, y, 1-x-y)$
Yo $S=\{(x, y, 1-x-y):(x, y) \in T\} \quad \begin{aligned} & =\sqrt{3} \\ & \lambda>0\end{aligned}$

$$
\begin{aligned}
\partial_{x} \sigma \times \partial y \sigma=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \times\left(\begin{array}{l}
0 \\
1 \\
-1
\end{array}\right) & =\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)=\lambda \vec{n} \text { so we have } \\
\iint_{S} \int_{T} \vec{F} \cdot \vec{m}=\int_{T}\binom{x_{2}}{y_{1}^{2}-x-y} \cdot\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) & =\int_{0}^{1} \int_{0}^{1-y} y^{2}-y+1 d x d y \\
& =\int_{0}^{1}(1-y)\left(y^{2}-y+1\right) d y \\
& =\int_{0}^{1}-y^{3}+2 y^{2}-2 y+1 d y \\
& =-\frac{1}{4}+\frac{2}{3}-1+1 \\
& =\frac{5}{12}
\end{aligned}
$$

(2) Cllsing splaical cordinets

$$
\begin{aligned}
& \sigma(\theta, \varphi)=(\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi) \theta \in[0, \pi], \varphi \in[0, \pi] \\
& \partial \theta \sigma \times \partial \varphi \sigma \equiv\left(\begin{array}{c}
-\cos \theta \sin ^{2} \varphi \\
-\sin \theta \sin ^{2} \varphi \\
-\sin \varphi \cos \varphi
\end{array}\right)=-\sin \varphi\left(\begin{array}{c}
\cos \theta \sin \varphi \\
\sin \theta \sin \varphi \\
\cos \varphi
\end{array}\right) \\
&=-\underbrace{-\sin \varphi}_{<0} \sigma \mid \theta, \varphi) \\
& \text { point } \\
& \text { imwend }
\end{aligned}
$$

Oups...... We don't have the good olientaition: 'C...
Pethod 1: $\partial_{\varphi} \sigma \times \partial_{\theta} \sigma=-\partial_{\theta} \sigma \times \partial_{\varphi} \sigma$ so you bwap the vaniabls $\sigma(\varphi, \theta)=\ldots$ and you have a prametrizatour compatille with S
Hetthed 2 : Hlue the gestor dosn't ask me explicitely to find a paranctrizaton compatible witt the ariutrahor, just to connute $\iint_{S} \vec{F} \cdot \vec{n}$. You can be byy and simply multiply by -1.

$$
\begin{aligned}
\iint_{S} \vec{F} \cdot \vec{m} & =\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\begin{array}{c}
\cos ^{2} \theta \sin ^{2} \varphi \\
\cos \varphi \\
-\sin \theta \sin \varphi
\end{array}\right)\left(\begin{array}{c}
\cos \theta \sin ^{2} \varphi \\
\sin \theta \sin ^{2} \varphi \\
\sin \varphi \cos \varphi
\end{array}\right) d \theta d \varphi \\
& =\int_{0}^{\pi} \int_{0}^{\pi} \cos ^{3} \theta \sin ^{4} \varphi+\cos \varphi \sin \theta \sin ^{7} \varphi-\sin \theta \sin ^{2} \varphi \cos \varphi d \theta d \phi \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \cos ^{3} \theta \sin ^{4} \varphi d \theta d \varphi
\end{aligned}
$$

$=$.. I am lazy.. you just have to
linearize $\cos ^{3} \theta$ and $\sin ^{4} \varphi$ uning

$$
\begin{aligned}
& \cos ^{2} x=\frac{\cos (2 x)+1}{2} \\
& \sin ^{2} x=\frac{1-\cos 2 x}{2}
\end{aligned}
$$

(3)

S_{2} aglindu
$\rightarrow S_{3}$ bottom part
Ss: $\vec{m} \quad \vec{m}(r, \theta)=(r \cos \theta,(\sin \theta, l), r \in[0, l], \theta \in[0, \pi]$

$$
\partial_{r} r \times \partial_{\theta} r=\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right) \times\left(\begin{array}{c}
-r \sin \theta \\
r \cos \theta \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
r
\end{array}\right)
$$

$r>0$ so we have the goed orimitahing. (except at the ougin, so that'sok, that's om peont)

$$
\iint_{S_{1}} \vec{F} \cdot \vec{m}=\int_{0}^{2 \pi} \int_{0}^{1}\left(\begin{array}{c}
r \cos \theta \\
r \sin \theta \\
\lambda
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
r
\end{array}\right) d r d \theta=2 \pi \int_{0}^{1} r d r=\pi
$$

Se: when z is fixed, wehare a cirle, so it is casy $t o$ find a prameligathon:

$$
\begin{aligned}
& \text { prametrizahon: } \\
& \sigma(z, \theta)=(\cos \theta, \sin \theta, z), z \in[0,1], \theta \in[0,2 \pi] \\
& \partial_{z} \sigma \times \partial_{\theta} \sigma=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \times\left(\begin{array}{c}
-\sin \theta \\
\cos \theta \\
0
\end{array}\right)=\left(\begin{array}{c}
-\cos \theta \\
-\sin \theta \\
0
\end{array}\right) \\
& Y_{0} \text { (Hat's the bad aricuration, so I multhinlyly }-(-1)
\end{aligned}
$$

$$
\iint_{S_{2}} \vec{F} \cdot \vec{m}=\int_{0}^{1} \int_{0}^{2 \pi}\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
z^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right) d \theta d z=\int_{0}^{1} \int_{0}^{2 \pi} f d \theta d z=2 \pi
$$

$$
\partial_{r} \sigma \times \partial_{\theta} r=\left(\begin{array}{c}
\cos \theta \\
\cos \theta \\
0
\end{array}\right) \times\left(\begin{array}{c}
-r \cos \theta \\
r \cos \theta \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
r
\end{array}\right) \text { bed arientahon }
$$

So $\iint_{S_{3}} \vec{F} \cdot \vec{m}=\int_{0}^{2 \pi} \int_{0}^{1}\left(\begin{array}{c}c \cos \theta \\ r \sin \theta \\ 0\end{array}\right) \cdot\left(\begin{array}{c}0 \\ 0 \\ i\end{array}\right) d r d \theta=\iint 0 d r d \theta=0$
$C C L \iint_{S} \vec{F} \cdot \vec{m}=\iint_{S_{1}} \vec{F} \cdot \vec{m}+\iint_{S_{2}} \vec{F} \cdot \vec{m}+\iint_{S_{3}} \vec{F} \cdot \vec{m}=\pi+2 \pi \rightarrow 0=3 \pi$

Ex 27

$$
\begin{aligned}
& \text { (1) } \begin{aligned}
& C=\{(\cos \theta, \sin \theta): \theta \in[0,2 \pi]\} \\
& \int_{C} \frac{-y}{x^{2}+4 y^{2}} d x+\frac{x}{x^{2}+\log 2} d y \\
&=\int_{0}^{2 \pi}+\frac{\sin \theta}{\cos ^{2} \theta+4 \sin ^{2} \theta} \cdot \sin \theta+\frac{\cos \theta}{\cos ^{2} \theta+4 \sin ^{2} \theta} \cdot \cos \theta d \theta \\
&=\int_{0}^{2 \pi} \frac{1}{\cos ^{2} \theta+4 \sin ^{2} \theta} d \theta \\
&=2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1 / \cos ^{2} \theta}{1+4 \tan ^{2} \theta} d \theta \quad u=\tan \theta \\
&=\frac{1}{\cos ^{2} \theta} d \theta \\
&=\frac{d u}{1+4 u^{2}} d x \\
&=\left[\frac{\pi}{2}+\frac{\pi}{2}=\pi\right.
\end{aligned} \\
&
\end{aligned}
$$

(2) fust a computation

$$
c=O \quad S=S
$$

(3) By Greenstreoum, we shoold obtain $\int \vec{F} \cdot \vec{m}=\iint_{S} 0=0 \neq \pi$ It seenns to be a contradichion... ase may fare reachad the limit
a. of meltermatics and hoold shor...

喜嶪: Oc... Mayle... one arsomption offyeen's theoom is not setisfied...
 and Frimet defined at $\overrightarrow{0} \ldots$

Ex 28: I have justwrittei the last 5 soluhous in a row and it is 2:30 AH ... don't belibe the following computahous
(1)

dow yes (by "-c" I mean C with the oppoit ountation)

$$
\begin{aligned}
& \int_{C}\left(1-x^{2}\right) y d x+\left(1+y^{2}\right) x d y \\
&=-\int_{-C}\left(1-x^{2}\right) y d x+\left(1+y^{2}\right) x d y \\
&=-\int_{S} 1+y^{2}-x+x^{2} \\
&=-\int_{-\pi}^{\pi} \int_{0}^{a} r^{2} r d r d \theta=-2 \pi\left[\frac{r^{4}}{4}\right]_{0}^{a} \\
&=-\frac{\pi a^{4}}{2}
\end{aligned}
$$

is pesitively aintad

$$
\int_{C}\left(-x^{2} y\right) d x+\left(x y^{2}\right) d y
$$

$$
=\iint_{S} y^{2}+x^{2}
$$

Ggrean's theom

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \int_{1}^{2} r^{2} r d r d \theta \\
& =2 \pi \int_{1}^{2} r^{3} d r \\
& =2 \pi\left[\frac{r^{4}}{4}\right]_{1}^{2} \\
& =\frac{\pi}{2}\left(2^{4}-1\right)
\end{aligned}
$$

Good might \qquad

Ex 29
(t) Notice that $\sigma(\theta+2 \pi)=(2 \pi R, 0)+\sigma(\theta)$ and that $\sigma_{2}^{\prime}(\theta)=R \sin \theta \quad \frac{10 \pi 2 \pi}{\sigma_{1} \neq 0+0} \begin{array}{lll}r_{2} & \pi\end{array}$

So ore arch is given for $\theta \in[0,2 \pi]$:

$$
\begin{aligned}
& \text { Yo } A=\iint_{S} 1=\iint_{S} \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y} \text { for }(P, Q)=(-y, 0) \\
& =\int_{C}-y d x \text { lb open's theorem } \\
& \sigma_{2}(H)=(R 1 t-\sin t)_{1} \\
& R(1-i \infty(4)) \\
& =\int_{c_{1}}-y d x+\int_{c_{2}}-y d x \\
& =\int_{0}^{2 \pi R} 0=\int_{0}^{2 \pi}-R(1-\cos t) R(1-\omega s t) d t \\
& c_{s}^{\prime} \sigma(t)=(h, 0) \\
& \text { with the eqparte } \\
& \text { acutation } \\
& t \in[\pi, 2 \pi R] \\
& =R^{2} \int_{0}^{2 \pi}(1-\cos t)^{2} d t \\
& =R^{2} \int_{0}^{2 \pi} 1-2 \cos t+\cos ^{2} t d t \\
& =R^{2} \int_{0}^{2 \pi} 1-2 \cos t+\frac{1+\cos 2 t}{2} d r \\
& =R^{2} \times \frac{3}{2} \times 2 \pi \\
& =3 \pi R^{2}
\end{aligned}
$$

Ex 30
Set $F(x, y)=\left(y x^{3}+x e^{y}, x y^{3}+y e^{x}-2 y\right)$ on R^{2}

$$
\begin{aligned}
& \frac{\partial F_{2}}{\partial x}(x, y)=y^{3}+y e^{x} \\
& \frac{\partial F_{1}}{\partial y}(x, y)=x^{3}+x e^{y}
\end{aligned}
$$

Hence by Grani: theorem

$$
\begin{aligned}
& \int_{C} \vec{F} \cdot d \vec{x}=\iint_{S} \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=\iint_{S} y^{3}+y e^{x}-x^{3}-x e^{y} \\
& =\iint_{S} y^{3}+y e^{x}-\iint_{S} x^{3}+x e^{y} \\
& =\iint_{S} y^{3}+g e^{x}=\iint_{S} y^{3}+y e^{x} \text { by rymmety: } \\
& =0 \\
& \text { I: } \underset{(x, y)}{\stackrel{N}{\longrightarrow}} \stackrel{S}{(y, x)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ex 31: } F(x, y, z)=\left(x^{2}, x y z, y z^{2}\right) \\
& \operatorname{dis} F(x, y, z)=\sum_{i=1}^{3} \frac{\partial F_{i}}{\partial x}(x, y, z)=2 x+x z+2 y z \\
& \operatorname{arl} F(x, y, z)=\left(\begin{array}{c}
\partial / \partial x \\
\partial, \partial y \\
\partial, \partial z
\end{array}\right) \times\left(\begin{array}{c}
F_{1} \\
f_{2} \\
f_{3}
\end{array}\right)(x, y, z)=\left(\begin{array}{c}
z^{2}-x y \\
0 \\
y z
\end{array}\right) \\
& \quad \operatorname{so} \operatorname{arl} F(x, y, z)=\left(z^{2}-x y, 0, y z\right)
\end{aligned}
$$

$$
\Delta F(x, y, z)=\left(\Delta F_{1}(x, y, z), \Delta F_{2}(x, y, t), \Delta F_{3}(x, y, z)\right)=(2,0,2 y)
$$

Ex 32
(1) $\frac{\partial}{\partial x i}(b g)=f \cdot \frac{\partial f}{\partial x i}+g \cdot \frac{\partial b}{\partial x i}$

So $\nabla(\mathrm{bg})=\left(\frac{\partial}{\partial x^{i}}(8 g)\right)_{i=1-m}=f \nabla g+g \nabla f$
(2)

$$
\begin{aligned}
\operatorname{div}(B \vec{G}) & =\operatorname{div}\left(B G_{1}, b G_{2}, \ldots G_{m}\right) \\
& =\sum_{i=1}^{m} \frac{\partial}{\partial x_{i}}\left(b G_{i}\right) \\
& =\sum_{i=1}^{n}\left(\frac{\partial b}{\partial x_{i}} \cdot G_{i}+b \frac{\partial G_{i}}{\partial x_{i}}\right) \\
& =f\left(\sum_{i=1}^{n} \frac{G_{i}}{\partial x_{i}}\right)+\sum_{i=1}^{m} \frac{\partial b}{\partial x_{i}} \cdot G_{i} \\
& =b \operatorname{div} \vec{G}+\nabla b \cdot G
\end{aligned}
$$

(3) $\operatorname{carl}(\overrightarrow{b G})=\left(\begin{array}{l}\partial / \partial x \\ \partial / \partial y \\ \partial / \partial z\end{array}\right) \times\left(\begin{array}{l}b G_{1} \\ b G_{2} \\ b G_{3}\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{l}
\frac{\partial\left(B G_{3}\right)}{\partial y}-\frac{\partial\left(b G_{2}\right)}{\partial z} \\
\frac{\partial\left(b G_{1}\right)}{\partial z}-\frac{\partial\left(b G_{3}\right.}{\partial x} \\
\frac{\partial\left(b G_{2}\right)}{\partial x}-\frac{\partial\left(b G_{1}\right)}{\partial y}
\end{array}\right) \\
& =\left(\begin{array}{l}
\frac{\partial b}{\partial y} \cdot G_{3}+b \frac{\partial G_{3}}{\partial y}-\frac{\partial b}{\partial z} G_{2}-b \frac{\partial G_{2}}{\partial z} \\
\frac{\partial b}{\partial z} G_{1}+b \frac{\partial G_{1}}{\partial z}-\frac{\partial b}{\partial x} G_{3}-b \frac{\partial b_{3}}{\partial x} \\
\frac{\partial b}{\partial x} G_{2}+b \frac{\partial G_{2}}{\partial x}-\frac{\partial b}{\partial y} G_{1}-b \frac{\partial G_{1}}{\partial y}
\end{array}\right)
\end{aligned}
$$

$$
=f \operatorname{corl} \vec{G}+\nabla b \cdot \vec{G}
$$

(h)

$$
\begin{aligned}
& \operatorname{div}(\vec{F} \times \vec{G})=\operatorname{div}\left(\begin{array}{l}
F_{2} G_{3}-F_{3} G_{2} \\
F_{3} G_{1}-F_{2} G_{3} \\
F_{1} G_{2}-F_{2} G_{1}
\end{array}\right) \\
& =\frac{\partial}{\partial x}\left(F_{2} G_{3}-F_{3} G_{2}\right)+\frac{\partial}{\partial y}\left(F_{3} G_{1}-F_{1} G_{3}\right)+\frac{\partial}{\partial x}\left(F_{1} G_{2}-F_{2} G_{1}\right) \\
& =\frac{\partial F_{2}}{\partial x} \cdot G_{3}+F_{2} \frac{\partial G_{3}}{\partial x}-\frac{\partial F_{3}}{\partial x} G_{2}-F_{3} \frac{\partial}{\partial x} G_{2}+\frac{\partial F_{3}}{\partial y} G_{1}+F_{3} \frac{\partial G_{1}}{\partial y}-\frac{\partial F_{1}}{\partial y} G_{3}-F_{1} \frac{\partial G_{3}}{\partial y} \\
& +\frac{\partial F_{1}}{\partial z} G_{2}+F_{1} \frac{\partial G_{2}}{\partial z}-\frac{\partial F_{2}}{\partial z} G_{1}-F_{2} \frac{\partial G_{1}}{\partial z} \\
& =G_{1}\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}\right)+G_{2}\left(\frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}\right)+G_{3}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& \text { - } F_{1}\left(\frac{\partial G_{3}}{\partial y}-\frac{\partial G_{2}}{\partial z}\right)-F_{2}\left(\frac{\partial G_{1}}{\partial z}-\frac{\partial G_{3}}{\partial x}\right)-F_{3}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) \\
& =\vec{G} \cdot \operatorname{cosl} \vec{F}-\vec{F} \cdot \operatorname{cull} \vec{G}
\end{aligned}
$$

the formule can't be symmetric in \vec{F} and \vec{G} since $\operatorname{din}(\vec{b} \times \vec{F})=\operatorname{div}(-\vec{F} \times \vec{G})$ that's coly theve is a - here $=-\operatorname{div}(\bar{f} \times \vec{G})$

Ex33: Chis queshon seens very difficult/long: we have to find several autidrisahtrer
But let's thirth funt: Assume $\overrightarrow{F F}: u^{0} \rightarrow \mathbb{R}^{3}$ opeu C^{2}
s.t. $\quad \operatorname{arl} \vec{F}=(x, y, z)$
then $\operatorname{div}(\operatorname{cor} P \vec{F})=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3$

Coutradichon
" by a reselt of the lectorne
So there is mo such \vec{F}.
Ex34: Tuist, let me give you a mmemonic denice:
Gou fonder frome the firittenn that $a \times(b \times c)=(a \cdot c) b-(a \cdot b) c$
so if you let $a=b=\nabla, c=F$ you get:

$$
\nabla \times(\nabla \times F)=\nabla(\nabla \cdot F)-\nabla^{2} F
$$

Holowever, it is not a pooof since ∇ is not really a wector-
Go back to the exo:

$$
\begin{aligned}
& \nabla \times(\nabla \times F)=\nabla \times\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) \\
& =\left(\frac{\partial^{2} F_{2}}{\partial y \partial x}-\frac{\partial^{2} F_{1}}{\partial y^{2}}-\frac{\partial^{2} F_{1}}{\partial z^{2}}+\frac{\partial^{2} F_{3}}{\partial z \partial x}\right) \\
& \text { For these } 2 \int \frac{\partial^{2} F_{3}}{\partial z \partial y}-\frac{\partial^{2} F_{2}}{\partial z^{2}}-\frac{\partial^{2} F_{2}}{\partial x^{2}}+\frac{\partial^{2} F_{1}}{\partial x \partial y} \text {; } \\
& \left.\frac{\partial^{2} F_{1}}{\partial x \partial z}-\frac{\partial^{2} F_{3}}{\partial x^{2}}-\frac{\partial^{2} F_{3}}{\partial y^{2}}+\frac{\partial^{2} F_{2}}{\partial y \partial z}\right)
\end{aligned}
$$

Teved the symonnatity
to permite the vovialles from

I start to have some regrets about this gueston
If's tine for a 5 min coffee break! $B R B$ I am back!

$$
\begin{aligned}
= & \left(\left(\frac{\partial^{2} F_{1}}{\partial x^{2}}+\frac{\partial^{2} F_{2}}{\partial x \partial y}+\frac{\partial^{2} F_{3}}{\partial x \partial z}\right)-\left(\frac{\partial^{2} F_{1}}{\partial x^{2}}+\frac{\partial^{2} F_{2}}{\partial y^{2}}+\frac{\partial F_{3}}{\partial z^{2}}\right),\right. \\
& \left(\frac{\partial^{2} F_{1}}{\partial y \partial x}+\frac{\partial^{2} F_{2}}{\partial y^{2}}+\frac{\partial^{2} F_{3}}{\partial y \partial z}\right)-\left(\frac{\partial^{2} F_{2}}{\partial x^{2}}+\frac{\partial^{2} F_{2}}{\partial y^{2}}+\frac{\partial^{2} F_{3}}{\partial z^{2}}\right), \\
& \left.\left(\frac{\partial^{2} F_{1}}{\partial z \partial x}+\frac{\partial^{2} F_{2}}{\partial z \partial y}+\frac{\partial^{3} F_{3}}{\partial z^{2}}\right)-\left(\frac{\partial^{2} F_{3}}{\partial x^{2}}+\frac{\partial^{2} F_{3}}{\partial y^{2}}+\frac{\partial^{2} F_{3}}{\partial z^{2}}\right)\right) \\
= & \nabla\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}\right)-\Delta F \\
= & \nabla(\nabla \cdot F)-\Delta F
\end{aligned}
$$

That was not -that bad!

Ex35
(1) $\operatorname{div} \vec{r}=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3$

$$
\nabla\left(\|\vec{r}\|^{2}\right)=\nabla\left(x^{2}+y^{2}+z^{2}\right)=(2 x, 2 y, 2 z)=2 \vec{r}
$$

$$
\text { ard } \vec{r}=\left(\begin{array}{l}
\partial / \partial x \\
\partial / y \\
\partial / z
\end{array}\right) \times\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)=\overrightarrow{0}
$$

(2) $\operatorname{carl}(\vec{a} \times \vec{r})=\operatorname{cosl}\left(\begin{array}{l}b z-c y \\ c x-a z \\ a y-b x\end{array}\right)=\left(\begin{array}{l}2 a \\ 2 b \\ 2 c\end{array}\right)=2 \vec{a}$
fou some recerons, I used $\vec{a}=(a, b, c) \ldots$

$$
\text { - } \begin{aligned}
\operatorname{div}((\vec{a} \cdot \vec{r}) \vec{a}) & =\operatorname{div}\left(\begin{array}{ll}
a_{1}^{2} & x \\
a_{2}^{2} & y \\
a_{3}^{2} & z
\end{array}\right)=a_{3}^{2}+a_{2}^{2}+a_{3}^{2}= \\
\cdot \operatorname{div}((\vec{a} \times \vec{r}) \times \vec{a}) & =\vec{a} \cdot \operatorname{arl}(\vec{a} \times \vec{r})-(\vec{a} \times \vec{r}) \cdot \operatorname{cul} \vec{a} \\
(h) \text { of } & =\vec{a} \cdot(2 \vec{a})-0 \\
\text { Exo } 32 & =2 \vec{a} \cdot \vec{a}=2\|\vec{a}\|^{2}
\end{aligned}
$$

$$
\begin{aligned}
&(\underline{)}=2 a \cdot a \\
& \operatorname{dis}\left(\|\vec{r}\|^{m}(\vec{a} \in \vec{r})\right.=\|r\|^{m} \operatorname{dis}(\vec{a} \times \vec{r})+\nabla\left(\|\vec{r}\|^{m}\right) \cdot(\vec{a} \times \vec{r}) \\
&=\|r\|^{m} \cdot 0+m\|\vec{r}\|^{m-2} \vec{r} \cdot(a \times \vec{r}) \\
& \text { borth }
\end{aligned}
$$

Goithojenal tor \vec{r}

$$
=0
$$

Ex 36
(1) $\frac{\partial F_{2}}{\partial x}=3 x^{2}+2 x y \quad \frac{\partial F_{1}}{\partial y}=2 x y+3 x^{2}$

The domain \mathbb{R}^{2} is strustaped we can apply Poincare Lemma
to condole the \bar{F} is conservative

$$
\text { ie } \exists f: \mathbb{R}^{2} \rightarrow \mathbb{R} C^{1} \text { st. } \vec{F}=\nabla f
$$

(2) Using th formula see is class (seen the domain is a rectangle)

$$
\begin{aligned}
f(x, y) & =\int_{0}^{x} F_{1}(t, 0) d t+\int_{0}^{y} F_{2}(x, t) d t \\
& =\int_{0}^{x} 0 d t+\int_{0}^{y}\left(x^{3}+t x^{2}\right) d t
\end{aligned}
$$

$f(x, y)=x^{3} y+\frac{x^{2} y^{2}}{2}$ is a suitable potechal.
(we could have used a "guess and check" mittiod here)
(3) Use th Gradient theorem

Ex 37
\vec{F} is defined on $\mathbb{R}^{2} \backslash\{0\}$ which is not star shaped hence the arsumptias of Paincené kerne are not sotiffed and the is no cournadichou- OUFI
\leftrightarrow "hew "in French!
(Actually Princene lemma holds when the domain is "contrichlile", but this notion is not part of HAT 233^{\prime} and $\mathbb{R}^{2} \backslash\left\{03\right.$ is not couth achle) (Contrachble is more general $\left.\begin{array}{c}\text { since staisteped } \Rightarrow \text { coutricichle }\end{array}\right)$

