University of Toronto - MAT237Y1 - LEC5201 Multivariable calculus!

Jean-Baptiste Campesato

Exercise 1. Let $S \subset \mathbb{R}^n$. Prove that S is Jordan-measurable if and only if there exists a rectangle R containing S such that $\chi_S : R \to \mathbb{R}$ is integrable. Then we define the volume of S by $v(S) := \int_S 1 := \int_R \chi_S$.

Exercise 2. Solve the questions p50 of

http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf

Exercise 3. Let $T \subset \mathbb{R}^n$ be a rectangle and $f : T \to \mathbb{R}$ be a non-negative integrable function.

Prove that $S = \{(x, y) \in T \times \mathbb{R} : 0 \le y \le f(x)\}$ is Jordan measurable and that $v(S) = \int_{-\infty}^{\infty} f$.

Exercise 4. Compute $\int_{S} y dx dy$ where $S = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \ge 0\}$: (1) Using Fubini's theorem. (2) Using a change of variables.

Exercise 5. Compute $\int_{[-1,1]\times[0,2]} \sqrt{|y-x^2|} dx dy$

Exercise 6. Compute $\int_A xy dx dy$ where $A \subset \mathbb{R}^2$ is the set enclosed by $x^2 + y^2 = 1$ and 2x + y = 1 on the left.

- **Exercise 7.** 1. Prove that $\Phi(x, y) = (x^2 y^2, 2xy)$ defines a C^1 -diffeomorphism from $U = \mathbb{R}_{>0} \times \mathbb{R}$ to $\mathbb{R}^2 \setminus \{(x, 0), x \le 0\}$. (*Hint: compute* $||\Phi(x, y)||$ *or use polar coordinates*). 2. Let $0 < a \le b$ and $S \subset \mathbb{R}^2$ be the set enclosed by y = x, $y^2 x^2 = 1$, xy = a and xy = b.
 - Compute $\int_{S} (y^2 x^2)^{xy} (x^2 + y^2) dx dy.$

Exercise 8. Compute $\int_0^{\pi} \int_0^{\pi} |\cos(x+y)| dx dy$. (*Hint:* u = x + y, v = y).

Exercise 9. 1. Give another proof of Leibniz rule by using Fubini's theorem: Let $f : I \times [a, b] \to \mathbb{R}$ be continuous where *I* is an open interval and such that $\frac{\partial f}{\partial x}(x, y)$ exists and is continuous

on
$$I \times [a, b]$$
. Then $\frac{\partial}{\partial x} \int_{a}^{b} f(x, y) dy = \int_{a}^{b} \frac{\partial f}{\partial x}(x, y) dy$.

2. Let $f : I \times J \to \mathbb{R}$ be continuous where *I* is an open interval and *J* is an interval. Assume that $\partial f / \partial x(x, y)$ exists and is continuous on $I \times J$. Let $\varphi_1, \varphi_2 : I \to J$ be differentiable. Prove that

$$\frac{\partial}{\partial x} \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) \mathrm{d}y = \int_{\varphi_1(x)}^{\varphi_2(x)} \frac{\partial f}{\partial x}(x, y) \mathrm{d}y + \varphi_2'(x) f(x, \varphi_2(x)) - \varphi_1'(x) f(x, \varphi_1(x))$$

Exercise 10. Define $f : [0,1] \times [0,1] \rightarrow \mathbb{R}$ by $f(x,y) = y^{-2}$ if 0 < x < y < 1, $f(x,y) = -x^{-2}$ if 0 < y < x < 1 and f(x, y) = 0 otherwise.

1. Prove that $f_x(y) = f(x, y)$ and $f_y(x) = f(x, y)$ are both integrable on [0, 1].

2. Prove that $\int_0^1 \left(\int_0^1 f(x, y) dx \right) dy$ and $\int_0^1 \left(\int_0^1 f(x, y) dy \right) dx$ exist and are unequal. 3. Is there a contradiction with Fubini's theorem?

Exercise 11 (An integral proof of Clairaut's theorem). Let $U \subset \mathbb{R}^2$ be an open subset and $f : U \to \mathbb{R}$ a C^2 function. We want to prove Clairaut's theorem, i.e. $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.

We assume by contradiction that $\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) - \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) > 0$ for some $(x_0, y_0) \in U$.

(1) Prove that there exists a rectangle $R \subset U$ such that $\int_{B} \left(\frac{\partial^2 f}{\partial x \partial y} - \frac{\partial^2 f}{\partial y \partial x} \right) dx dy > 0.$ (2) Conclude!

Exercise 12. Define
$$F(x) = \int_0^1 \ln(x^2 + y^2) dy$$
 for $x > 0$. Compute $F'(x)$.

Exercise 13. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Define $u(x) = \int_0^x (x - y)e^{x-y}f(y)dy$. Prove that u'' - 2u' + u = f.

Exercise 14. Review the examples at pp.85–91 from http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf.

1. Compute $\int_{1}^{\infty} \left(\int_{1}^{\infty} \frac{y - x}{(x + y)^3} dx \right) dy$ in the MAT137 (one-variable improper) sense. Exercise 15. 2. Compute $\int_{1}^{\infty} \left(\int_{1}^{\infty} \frac{y - x}{(x + y)^3} dy \right) dx$ in the MAT137 (one-variable improper) sense. 3. Conclude!

Exercise 16. Prove that $\int_{\mathbb{R}^n} e^{-\alpha \|\mathbf{x}\|^2} d\mathbf{x} = \left(\frac{\pi}{\alpha}\right)^{\frac{n}{2}}$ where $\alpha > 0$ (improper integral).

Exercise 17. Compute the improper integral $\int_{x^2+v^2<1} \frac{dxdy}{(1-x^2-v^2)^{\alpha}}$ where $\alpha > 0$.

Exercise 18.

1. Compute the improper integral $\int_{S} \frac{dxdydz}{(1+x^{2}z^{2})(1+y^{2}z^{2})}$ where $S = \{(x, y, z) \in \mathbb{R}^{3} : 0 < x < 1, 0 < y < 1, z > 0\}$. (*Hint: compute* $(1+y^{2}z^{2})x^{2} - (1+x^{2}z^{2})y^{2})$ 2. Deduce that $\int_{0}^{\infty} \left(\frac{\arctan t}{t}\right)^{2} dt = \pi \ln 2$.

Exercise 19. Compute the arclength of *C* where: (1) $C = \{ (e^t \cos t, e^t \sin t) : t \in [0, \pi/2] \}$ (2) $C = \{ (\ln t, 2t, t^2) : t \in [1, e] \}$

Exercise 20.

1. Compute $\int_C (x + y)$ where *C* is the triangle with vertices (0, 0), (1, 0) and (0, 1). 2. Compute $\int_C z$ where $C = \{(t \cos t, t \sin t, t) : t \in [0, a]\}.$

Exercise 21. Compute

- 1. $\int_C xe^{-y} dx + \sin(\pi x) dy$ where *C* is the portion of the parabola $y = x^2$ starting at (0,0) and ending at (1,1). 2. $\int_C y^2 dx - 2x dy$ where *C* is the triangle with vertices (0,0), (1,0) and (0,1) oriented clockwise. 3. $\int_{C}^{C} y dx + x dy$ where *C* is the portion of the parabola $y = x^2$ with start point (0,0) and endpoint (2,4).
- 4. $\int_{C} y|y|dx + x|x|dy$ where *C* is the boundary of $\{(x, y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$ positively oriented.

Exercise 22. Let \mathbf{F} : $\mathbb{R}^2 \to \mathbb{R}^2$ defined by $\mathbf{F}(x, y) = (xy^2 + 3x^2y, x^3 + yx^2)$.

- 1. Prove that there exists $f : \mathbb{R}^2 \to \mathbb{R} C^1$ such that $F = \nabla f$.
- 2. Compute $\int_C \mathbf{F} \cdot d\mathbf{x}$ where *C* is the given by the portion of the parabola $y = x^2$ from (0,0) to (2,4) then the line segment from (2,4) to (4,4) and finally the line segment from (4,4) to (7,8).

Exercise 23. Let $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous vector field and $C \subset \mathbb{R}^n$ be a piecewise smooth curve. Prove that

$$\left| \int_{C} \mathbf{F} \cdot d\mathbf{x} \right| \leq \left(\max_{x \in C} \|\mathbf{F}(x)\| \right) \mathcal{L}(C) \qquad (where \ \mathcal{L}(C) \text{ is the arclength of } C)$$

Exercise 24. 1. Compute $\iint_{S} z^2$ for $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$

2. Compute
$$\iint_{S} \sqrt{x^2 + y^2 + 1} \text{ for } S = \{(r \cos \theta, r \sin \theta, \theta) : r \in [0, 1], \theta \in [0, 2\pi]\} \text{ (helicoid, sketch it!)}$$

Exercise 25. Assume that $C = \{(0, y(t), z(t)) : t \in [a, b]\}$ is a curve in the *yz*-place where $y(t) \ge 0$. We denote by S the surface of revolution obtained by revolving *C* around the *z*-axis.

1. Find a parametrization of *S*.

- 2. Find an expression for $\iint_{S} f$ where $f : S \to \mathbb{R}$ is continuous.
- 3. Find the area of the cylinder of radius r > 0 and height h > 0.
- 4. Find the area of the cone of base radius r > 0 and height h > 0.
- 5. Find the area of the torus obtained by revolving the circle situated in the xy-plan whose center is on the positive part of the *y*-axis at distance *b* to the origin and of radius *a* where 0 < a < b.

Exercise 26. Compute $\iint_{S} \mathbf{F} \cdot \mathbf{n}$ where

- 1. $\mathbf{F}(x, y, z) = (x, y^2, z)$ and S is the triangle whose vertices are obtained by intersecting the plane x + y + z = 1with the axes and whose orientation is obtained by taking the normal vector pointing away from the origin.
- 2. $F(x, y, z) = (x^2, z, -y)$ and S is the unit sphere whose orientation is obtained by the outward pointing normal unit vector.
- 3. $\mathbf{F}(x, y, z) = (x, y, z^2)$ where S is the cylinder $x^2 + y^2 = 1$ for $0 \le z \le 1$ and including the top and the bottom always with the outward normal unit vector orientation.

Exercise 27.

- 1. Compute $\int_C \frac{-y}{x^2 + 4y^2} dx + \frac{x}{x^2 + 4y^2} dy$ where *C* is the unit circle with the counter-clockwise orientation.
- 2. Prove that $\frac{\partial}{\partial x} \left(\frac{x}{x^2 + 4y^2} \right) \frac{\partial}{\partial y} \left(\frac{-y}{x^2 + 4y^2} \right) = 0.$ 3. Is there any contradiction with Green's theorem?
- **tise 28.** 1. Compute $\int_C (1 x^2) y dx + (1 + y^2) x dy$ where *C* is the circle centered at **0** of radius a > 0 with the clockwise orientation. Exercise 28.
 - 2. Compute $\int_C (-x^2y) dx + (xy^2) dy$ where *C* is the boundary of the annulus centered at **0** of radii 1 and 2 positively oriented (draw *C* with its orientation first!).

Exercise 29.

- 1. Compute the area between the *x*-axis and one arch of the cycloid $\sigma(\theta) = (R(\theta \sin \theta), R(1 \cos \theta))$.
- 2. Compute the area enclosed within the cardioid $(x^2 + y^2 ax)^2 = a^2(x^2 + y^2)$ where a > 0. (*Hint: find a polar equation* $r(\theta) = \cdots$ *in order to draw the cardioid and find a parametrization*).

Exercise 30.

Prove that $\int_C (yx^3 + xe^y) dx + (xy^3 + ye^x - 2y) dy = 0$ where *C* is any closed curve symmetric w.r.t. the origin.

Exercise 31. Let $F(x, y, z) = (x^2, xyz, yz^2)$. Compute div F, curl F and ΔF .

Exercise 32. Let $f, g : U \to \mathbb{R}$ and $\mathbf{F}, \mathbf{G} : U \to \mathbb{R}^n$ be C^1 where $U \subset \mathbb{R}^n$ is open. Prove the following product rules. (1) $\nabla(fg) = f\nabla g + g\nabla f$ (2) div $(f\mathbf{G}) = f \operatorname{div} \mathbf{G} + (\nabla f) \cdot \mathbf{G}$ (3) $\operatorname{curl}(f\mathbf{G}) = f \operatorname{curl} \mathbf{G} + (\nabla f) \times \mathbf{G} \quad (n = 3)$ (4) div($\mathbf{F} \times \mathbf{G}$) = $\mathbf{G} \cdot (\operatorname{curl} \mathbf{F}) - \mathbf{F} \cdot (\operatorname{curl} \mathbf{G})$ (*n* = 3) Can you see with no computation why the formula in (4) couldn't be true with a "+"?

Exercise 33. Find all the C^2 vector fields $\mathbf{F} : U \to \mathbb{R}^3$ ($\emptyset \neq U \in \mathbb{R}^3$ open) such that curl $\mathbf{F}(x, y, z) = (x, y, z)$. (*Hint: think before trying to solve!*)

Exercise 34. Let $\mathbf{F} : U \to \mathbb{R}^3$ be a C^2 vector field ($U \subset \mathbb{R}^3$ open). Prove that $\operatorname{curl}(\operatorname{curl} \mathbf{F}) = \nabla(\operatorname{div} \mathbf{F}) - \Delta \mathbf{F}$. The vector Laplacian is usually used to lighten the writing of some physics equations by simplifying these double curls: for instance you derive the electromagnetic wave equations by applying curl to the two Maxwell equations involving a curl.

Exercise 35. Set $\mathbf{r}(x, y, z) = (x, y, z)$ and let $\mathbf{a} \in \mathbb{R}^3$. (1) Compute div \mathbf{r} , curl \mathbf{r} , and $\nabla(||\mathbf{r}||^2)$. (2) Prove the identities: curl $(\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$, div $((\mathbf{a} \cdot \mathbf{r})\mathbf{a}) = ||\mathbf{a}||^2$, div $((|\mathbf{a} \times \mathbf{r}) \times \mathbf{a}) = 2||\mathbf{a}||^2$, div $(||\mathbf{r}||^n (\mathbf{a} \times \mathbf{r})) = 0$

Exercise 36. Let $\mathbf{F} : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $\mathbf{F}(x, y) = (xy^2 + 3x^2y, x^3 + yx^2)$. For (3) use all the *C* from Exercise 21. (1) Quickly prove that there exists $f : \mathbb{R}^2 \to \mathbb{R} C^1$ such that $\mathbf{F} = \nabla f$. (2) Find a suitable *f*. (3) Compute $\int_C \mathbf{F} \cdot d\mathbf{x}$.

Exercise 37. According to Ex27(1), the vector field $\mathbf{F}(x, y) = \left(\frac{-y}{x^2+4y^2}, \frac{x}{x^2+4y^2}\right)$ is not conservative. But according to Ex27(2) it seems to satisfy the assumption of Poincaré Lemma. Why isn't there any contradiction?