Multivariable calculus!

Jean-Baptiste Campesato

Exercise 1. Let $S \subset \mathbb{R}^{n}$. Prove that S is Jordan-measurable if and only if there exists a rectangle R containing S such that $\chi_{S}: R \rightarrow \mathbb{R}$ is integrable. Then we define the volume of S by $v(S):=\int_{S} 1:=\int_{R} \chi_{S}$.
Exercise 2. Solve the questions p50 of
http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf
Exercise 3. Let $T \subset \mathbb{R}^{n}$ be a rectangle and $f: T \rightarrow \mathbb{R}$ be a non-negative integrable function.
Prove that $S=\{(x, y) \in T \times \mathbb{R}: 0 \leq y \leq f(x)\}$ is Jordan measurable and that $v(S)=\int_{T} f$.
Exercise 4. Compute $\int_{S} y \mathrm{~d} x \mathrm{~d} y$ where $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1, y \geq 0\right\}$:
(1) Using Fubini's theorem.
(2) Using a change of variables.

Exercise 5. Compute $\int_{[-1,1] \times[0,2]} \sqrt{\left|y-x^{2}\right|} \mathrm{d} x \mathrm{~d} y$
Exercise 6. Compute $\int_{A} x y \mathrm{~d} x \mathrm{~d} y$ where $A \subset \mathbb{R}^{2}$ is the set enclosed by $x^{2}+y^{2}=1$ and $2 x+y=1$ on the left.
Exercise 7. 1. Prove that $\Phi(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ defines a C^{1}-diffeomorphism from $U=\mathbb{R}_{>0} \times \mathbb{R}$ to $\mathbb{R}^{2} \backslash\{(x, 0), x \leq 0\}$. (Hint: compute $\|\Phi(x, y)\|$ or use polar coordinates).
2. Let $0<a \leq b$ and $S \subset \mathbb{R}^{2}$ be the set enclosed by $y=x, y^{2}-x^{2}=1, x y=a$ and $x y=b$.

Compute $\int_{S}\left(y^{2}-x^{2}\right)^{x y}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y$.
Exercise 8. Compute $\int_{0}^{\pi} \int_{0}^{\pi}|\cos (x+y)| \mathrm{d} x \mathrm{~d} y$. (Hint: $u=x+y, v=y$).
Exercise 9. 1. Give another proof of Leibniz rule by using Fubini's theorem:
Let $f: I \times[a, b] \rightarrow \mathbb{R}$ be continuous where I is an open interval and such that $\frac{\partial f}{\partial x}(x, y)$ exists and is continuous on $I \times[a, b]$. Then $\frac{\partial}{\partial x} \int_{a}^{b} f(x, y) \mathrm{d} y=\int_{a}^{b} \frac{\partial f}{\partial x}(x, y) \mathrm{d} y$.
2. Let $f: I \times J \rightarrow \mathbb{R}$ be continuous where I is an open interval and J is an interval. Assume that $\partial f / \partial x(x, y)$ exists and is continuous on $I \times J$. Let $\varphi_{1}, \varphi_{2}: I \rightarrow J$ be differentiable. Prove that

$$
\frac{\partial}{\partial x} \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) \mathrm{d} y=\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} \frac{\partial f}{\partial x}(x, y) \mathrm{d} y+\varphi_{2}^{\prime}(x) f\left(x, \varphi_{2}(x)\right)-\varphi_{1}^{\prime}(x) f\left(x, \varphi_{1}(x)\right)
$$

Exercise 10. Define $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ by $f(x, y)=y^{-2}$ if $0<x<y<1, f(x, y)=-x^{-2}$ if $0<y<x<1$ and $f(x, y)=0$ otherwise.

1. Prove that $f_{x}(y)=f(x, y)$ and $f_{y}(x)=f(x, y)$ are both integrable on [0, 1].
2. Prove that $\int_{0}^{1}\left(\int_{0}^{1} f(x, y) \mathrm{d} x\right) \mathrm{d} y$ and $\int_{0}^{1}\left(\int_{0}^{1} f(x, y) \mathrm{d} y\right) \mathrm{d} x$ exist and are unequal.
3. Is there a contradiction with Fubini's theorem?

Exercise 11 (An integral proof of Clairaut's theorem). Let $U \subset \mathbb{R}^{2}$ be an open subset and $f: U \rightarrow \mathbb{R}$ a C^{2} function. We want to prove Clairaut's theorem, i.e. $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.
We assume by contradiction that $\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)-\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)>0$ for some $\left(x_{0}, y_{0}\right) \in U$.
(1) Prove that there exists a rectangle $R \subset U$ such that $\int_{R}\left(\frac{\partial^{2} f}{\partial x \partial y}-\frac{\partial^{2} f}{\partial y \partial x}\right) \mathrm{d} x \mathrm{~d} y>0$. (2) Conclude!

Exercise 12. Define $F(x)=\int_{0}^{1} \ln \left(x^{2}+y^{2}\right) \mathrm{d} y$ for $x>0$. Compute $F^{\prime}(x)$.

Exercise 13. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Define $u(x)=\int_{0}^{x}(x-y) e^{x-y} f(y) \mathrm{d} y$. Prove that $u^{\prime \prime}-2 u^{\prime}+u=f$.
Exercise 14. Review the examples at pp.85-91 from
http://www.math.toronto.edu/campesat/ens/1920/winter-notes.pdf.
Exercise 15. 1. Compute $\int_{1}^{\infty}\left(\int_{1}^{\infty} \frac{y-x}{(x+y)^{3}} \mathrm{~d} x\right) \mathrm{d} y$ in the MAT137 (one-variable improper) sense.
2. Compute $\int_{1}^{\infty}\left(\int_{1}^{\infty} \frac{y-x}{(x+y)^{3}} \mathrm{~d} y\right) \mathrm{d} x$ in the MAT137 (one-variable improper) sense.
3. Conclude!

Exercise 16. Prove that $\int_{\mathbb{R}^{n}} e^{-\alpha\|\mathbf{x}\|^{2}} d \mathbf{x}=\left(\frac{\pi}{\alpha}\right)^{\frac{n}{2}}$ where $\alpha>0$ (improper integral).
Exercise 17. Compute the improper integral $\int_{x^{2}+y^{2}<1} \frac{\mathrm{~d} x \mathrm{~d} y}{\left(1-x^{2}-y^{2}\right)^{\alpha}}$ where $\alpha>0$.

Exercise 18.

1. Compute the improper integral $\int_{S} \frac{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z}{\left(1+x^{2} z^{2}\right)\left(1+y^{2} z^{2}\right)}$ where $S=\left\{(x, y, z) \in \mathbb{R}^{3}: 0<x<1,0<y<1, z>0\right\}$.
(Hint: compute $\left.\left(1+y^{2} z^{2}\right) x^{2}-\left(1+x^{2} z^{2}\right) y^{2}\right)$
2. Deduce that $\int_{0}^{\infty}\left(\frac{\arctan t}{t}\right)^{2} \mathrm{~d} t=\pi \ln 2$.

Exercise 19. Compute the arclength of C where:
(1) $\left.C=\left\{\left(e^{t} \cos t, e^{t} \sin t\right): t \in[0, \pi / 2]\right)\right\}$
(2) $C=\left\{\left(\ln t, 2 t, t^{2}\right): t \in[1, e]\right\}$

Exercise 20.

1. Compute $\int_{C}(x+y)$ where C is the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
2. Compute $\int_{C} z$ where $C=\{(t \cos t, t \sin t, t): t \in[0, a]\}$.

Exercise 21. Compute

1. $\int_{C} x e^{-y} \mathrm{~d} x+\sin (\pi x) \mathrm{d} y$ where C is the portion of the parabola $y=x^{2}$ starting at $(0,0)$ and ending at $(1,1)$.
2. $\int_{C} y^{2} \mathrm{~d} x-2 x \mathrm{~d} y$ where C is the triangle with vertices $(0,0),(1,0)$ and $(0,1)$ oriented clockwise.
3. $\int_{C} y \mathrm{~d} x+x \mathrm{~d} y$ where C is the portion of the parabola $y=x^{2}$ with start point $(0,0)$ and endpoint $(2,4)$.
4. $\int_{C} y|y| \mathrm{d} x+x|x| \mathrm{d} y$ where C is the boundary of $\left\{(x, y) \in \mathbb{R}^{2}:|x|+|y| \leq 1\right\}$ positively oriented.

Exercise 22. Let $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\mathbf{F}(x, y)=\left(x y^{2}+3 x^{2} y, x^{3}+y x^{2}\right)$.

1. Prove that there exists $f: \mathbb{R}^{2} \rightarrow \mathbb{R} C^{1}$ such that $F=\nabla f$.
2. Compute $\int_{C} \mathbf{F} \cdot \mathrm{dx}$ where C is the given by the portion of the parabola $y=x^{2}$ from $(0,0)$ to $(2,4)$ then the line segment from $(2,4)$ to $(4,4)$ and finally the line segment from $(4,4)$ to $(7,8)$.

Exercise 23. Let $\mathbf{F}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous vector field and $C \subset \mathbb{R}^{n}$ be a piecewise smooth curve. Prove that

$$
\left.\left|\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{x}\right| \leq\left(\max _{x \in C}\|\mathbf{F}(x)\|\right) \mathscr{L}(C) \quad \text { (where } \mathscr{L}(C) \text { is the arclength of } C\right)
$$

Exercise 24. 1. Compute $\iint_{S} z^{2}$ for $S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$
2. Compute $\iint_{S} \sqrt{x^{2}+y^{2}+1}$ for $S=\{(r \cos \theta, r \sin \theta, \theta): r \in[0,1], \theta \in[0,2 \pi]\}$ (helicoid, sketch it!)

Exercise 25. Assume that $C=\{(0, y(t), z(t)): t \in[a, b]\}$ is a curve in the $y z$-place where $y(t) \geq 0$. We denote by S the surface of revolution obtained by revolving C around the z-axis.

1. Find a parametrization of S.
2. Find an expression for $\iint_{S} f$ where $f: S \rightarrow \mathbb{R}$ is continuous.
3. Find the area of the cylinder of radius $r>0$ and height $h>0$.
4. Find the area of the cone of base radius $r>0$ and height $h>0$.
5. Find the area of the torus obtained by revolving the circle situated in the $x y$-plan whose center is on the positive part of the y-axis at distance b to the origin and of radius a where $0<a<b$.
Exercise 26. Compute $\iint_{S} \mathbf{F} \cdot \mathbf{n}$ where
6. $\mathbf{F}(x, y, z)=\left(x, y^{2}, z\right)$ and S is the triangle whose vertices are obtained by intersecting the plane $x+y+z=1$ with the axes and whose orientation is obtained by taking the normal vector pointing away from the origin.
7. $\mathbf{F}(x, y, z)=\left(x^{2}, z,-y\right)$ and S is the unit sphere whose orientation is obtained by the outward pointing normal unit vector.
8. $\mathbf{F}(x, y, z)=\left(x, y, z^{2}\right)$ where S is the cylinder $x^{2}+y^{2}=1$ for $0 \leq z \leq 1$ and including the top and the bottom always with the outward normal unit vector orientation.

Exercise 27.

1. Compute $\int_{C} \frac{-y}{x^{2}+4 y^{2}} \mathrm{~d} x+\frac{x}{x^{2}+4 y^{2}} \mathrm{~d} y$ where C is the unit circle with the counter-clockwise orientation.
2. Prove that $\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+4 y^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{-y}{x^{2}+4 y^{2}}\right)=0$.
3. Is there any contradiction with Green's theorem?

Exercise 28. 1. Compute $\int_{C}\left(1-x^{2}\right) y \mathrm{~d} x+\left(1+y^{2}\right) x \mathrm{~d} y$ where C is the circle centered at $\mathbf{0}$ of radius $a>0$ with the clockwise orientation.
2. Compute $\int_{C}\left(-x^{2} y\right) \mathrm{d} x+\left(x y^{2}\right) \mathrm{d} y$ where C is the boundary of the annulus centered at 0 of radii 1 and 2 positively oriented (draw C with its orientation first!).

Exercise 29.

1. Compute the area between the x-axis and one arch of the cycloid $\sigma(\theta)=(R(\theta-\sin \theta), R(1-\cos \theta))$.
2. Compute the area enclosed within the cardioid $\left(x^{2}+y^{2}-a x\right)^{2}=a^{2}\left(x^{2}+y^{2}\right)$ where $a>0$.
(Hint: find a polar equation $r(\theta)=\cdots$ in order to draw the cardioid and find a parametrization).

Exercise 30.

Prove that $\int_{C}\left(y x^{3}+x e^{y}\right) \mathrm{d} x+\left(x y^{3}+y e^{x}-2 y\right) \mathrm{d} y=0$ where C is any closed curve symmetric w.r.t. the origin.
Exercise 31. Let $\mathbf{F}(x, y, z)=\left(x^{2}, x y z, y z^{2}\right)$. Compute $\operatorname{div} \mathbf{F}, \operatorname{curl} \mathbf{F}$ and $\Delta \mathbf{F}$.
Exercise 32. Let $f, g: U \rightarrow \mathbb{R}$ and $\mathbf{F}, \mathbf{G}: U \rightarrow \mathbb{R}^{n}$ be C^{1} where $U \subset \mathbb{R}^{n}$ is open. Prove the following product rules.
(1) $\nabla(f g)=f \nabla g+g \nabla f$
(2) $\operatorname{div}(f \mathbf{G})=f \operatorname{div} \mathbf{G}+(\nabla f) \cdot \mathbf{G}$
(3) $\operatorname{curl}(f \mathbf{G})=f \operatorname{curl} \mathbf{G}+(\nabla f) \times \mathbf{G}(n=3)$
(4) $\operatorname{div}(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot(\operatorname{curl} \mathbf{F})-\mathbf{F} \cdot(\operatorname{curl} \mathbf{G})(n=3)$

Can you see with no computation why the formula in (4) couldn't be true with a " + "?
Exercise 33. Find all the C^{2} vector fields $\mathbf{F}: U \rightarrow \mathbb{R}^{3}\left(\varnothing \neq U \subset \mathbb{R}^{3}\right.$ open) such that $\operatorname{curl} \mathbf{F}(x, y, z)=(x, y, z)$.
(Hint: think before trying to solve!)
Exercise 34. Let $\mathbf{F}: U \rightarrow \mathbb{R}^{3}$ be a C^{2} vector field $\left(U \subset \mathbb{R}^{3}\right.$ open). Prove that $\operatorname{curl}(\operatorname{curl} \mathbf{F})=\nabla(\operatorname{div} \mathbf{F})-\Delta \mathbf{F}$.
The vector Laplacian is usually used to lighten the writing of some physics equations by simplifying these double curls: for instance you derive the electromagnetic wave equations by applying curl to the two Maxwell equations involving a curl.
Exercise 35. Set $\mathbf{r}(x, y, z)=(x, y, z)$ and let $\mathbf{a} \in \mathbb{R}^{3}$. (1) Compute div $\mathbf{r}, \operatorname{curl} \mathbf{r}$, and $\nabla\left(\|\mathbf{r}\|^{2}\right)$.
(2) Prove the identities: $\operatorname{curl}(\mathbf{a} \times \mathbf{r})=2 \mathbf{a}, \quad \operatorname{div}((\mathbf{a} \cdot \mathbf{r}) \mathbf{a})=\|\mathbf{a}\|^{2}, \quad \operatorname{div}((\mathbf{a} \times \mathbf{r}) \times \mathbf{a})=2\|\mathbf{a}\|^{2}, \quad \operatorname{div}\left(\|\mathbf{r}\|^{n}(\mathbf{a} \times \mathbf{r})\right)=0$

Exercise 36. Let $\mathbf{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $\mathbf{F}(x, y)=\left(x y^{2}+3 x^{2} y, x^{3}+y x^{2}\right)$. For (3) use all the C from Exercise 21. (1) Quickly prove that there exists $f: \mathbb{R}^{2} \rightarrow \mathbb{R} C^{1}$ such that $\mathbf{F}=\nabla f$. (2) Find a suitable f. (3) Compute $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{x}$.

Exercise 37. According to $\operatorname{Ex} 27(1)$, the vector field $\mathbf{F}(x, y)=\left(\frac{-y}{x^{2}+4 y^{2}}, \frac{x}{x^{2}+4 y^{2}}\right)$ is not conservative. But according to Ex27(2) it seems to satisfy the assumption of Poincaré Lemma. Why isn't there any contradiction?

