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1 Definitions of improper integrals
Definition 1.1. Let 𝑓 ∶ [𝑎, +∞) → ℝ be a function which is integrable on [𝑎, 𝑐] for any 𝑐 > 𝑎, then
we set

∫
+∞

𝑎
𝑓(𝑥)𝑑𝑥 ∶= lim

𝑐→+∞ ∫
𝑐

𝑎
𝑓(𝑥)𝑑𝑥

whenever it makes sense.
Definition 1.2. Let 𝑓 ∶ (−∞, 𝑏] → ℝ be a function which is integrable on [𝑐, 𝑏] for any 𝑐 < 𝑏, then
we set

∫
𝑏

−∞
𝑓(𝑥)𝑑𝑥 ∶= lim

𝑐→−∞ ∫
𝑏

𝑐
𝑓(𝑥)𝑑𝑥

whenever it makes sense.
Definition 1.3. Let 𝑓 ∶ [𝑎, 𝑏) → ℝ be a function which is integrable on any [𝑎, 𝑐] for 𝑐 ∈ (𝑎, 𝑏), then
we set

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ∶= lim

𝑐→𝑏− ∫
𝑐

𝑎
𝑓(𝑥)𝑑𝑥

whenever it makes sense.
Definition 1.4. Let 𝑓 ∶ (𝑎, 𝑏] → ℝ be a function which is integrable on any [𝑐, 𝑏] for 𝑐 ∈ (𝑎, 𝑏), then
we set

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ∶= lim

𝑐→𝑎+ ∫
𝑏

𝑐
𝑓(𝑥)𝑑𝑥

whenever it makes sense.
Definition 1.5. Let 𝑓 ∶ (𝑎, 𝑏) → ℝ be a function which is integrable on each subinterval [𝑐, 𝑑] ⊂
(𝑎, 𝑏) where 𝑎 ∈ ℝ or 𝑎 = −∞ and 𝑏 ∈ ℝ or 𝑏 = +∞.
We say that ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥 is convergent if there exists 𝑐 ∈ (𝑎, 𝑏) such that the improper integrals
∫𝑐

𝑎 𝑓(𝑥)𝑑𝑥 of 𝑓 ∶ (𝑎, 𝑐] → ℝ and ∫𝑏
𝑐 𝑓(𝑥)𝑑𝑥 of 𝑓 ∶ [𝑐, 𝑏) → ℝ are both convergent and then we

set

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = ∫

𝑐

𝑎
𝑓(𝑥)𝑑𝑥 + ∫

𝑏

𝑐
𝑓(𝑥)𝑑𝑥

Remark 1.6. In the above definition, you need to study the two bounds separately!
Note that if ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥 is convergent for some 𝑐 ∈ (𝑎, 𝑏) then it is for any 𝑐 ∈ (𝑎, 𝑏) and its value
doesn’t depend on the choice of 𝑐.

Example 1.7. The integral ∫
+∞

−∞
𝑥𝑑𝑥 is not convergent although lim

𝑐→+∞ ∫
𝑐

−𝑐
𝑥𝑑𝑥 = 0.
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2 The MCT for functions
The following result relies on the Dedekind-completeness of ℝ.

Theorem 2.1 (The MCT – Part 1: the bounded case).
Let 𝐹 ∶ [𝑎, 𝑏) → ℝ be a function where either 𝑏 ∈ ℝ>𝑎 or 𝑏 = +∞.
If 𝐹 is non-decreasing and bounded from above then lim

𝑥→𝑏− 𝐹 (𝑥) exists and moreover lim
𝑥→𝑏− 𝐹 (𝑥) = sup

[𝑎,𝑏)
𝐹 .

Proof. The set 𝑆 = {𝐹 (𝑥), 𝑥 ∈ [𝑎, 𝑏)} is not empty since it contains 𝐹 (𝑎), and, is bounded from
above since 𝐹 is.
Hence, by the “least upper bound principle”, it admits a supremum 𝑀 = sup(𝑆), i.e. there exists
𝑀 ∈ ℝ satisfying

{
∀𝑥 ∈ [𝑎, 𝑏), 𝐹 (𝑥) ≤ 𝑀
∀𝜀 > 0, ∃𝑥0 ∈ [𝑎, 𝑏), 𝑀 − 𝜀 < 𝐹 (𝑥0)

We want to show that lim
𝑥→+∞

𝐹 (𝑥) = 𝑀 , i.e.

∀𝜀 > 0, ∃𝐴 ∈ ℝ, ∀𝑥 ∈ [𝑎, +∞), (𝑥 > 𝐴 ⟹ |𝐹 (𝑥) − 𝑀| < 𝜀)

I am just doing the case 𝑏 = +∞, the other case is quite similar.

Let 𝜀 > 0.
We know there exists 𝑥0 ∈ [𝑎, +∞) such that 𝑀 − 𝜀 < 𝐹 (𝑥0).
Set 𝐴 = 𝑥0 and let 𝑥 ∈ [𝑎, +∞) satisfying 𝑥 > 𝐴.
Since 𝐹 is non-decreasing, we know that 𝑀 − 𝜀 < 𝐹 (𝑥0) = 𝐹 (𝐴) ≤ 𝐹 (𝑥). Hence 𝑀 − 𝐹 (𝑥) < 𝜀.
But since 𝑀 is an upper bound of 𝐹 , we also have that 𝐹 (𝑥) ≤ 𝑀 . Therefore 0 ≤ 𝑀 − 𝐹 (𝑥) < 𝜀
which implies |𝐹 (𝑥) − 𝑀| < 𝜀.
We proved that 𝑥 > 𝐴 ⟹ |𝐹 (𝑥) − 𝑀| < 𝜀 as wanted. ■

Theorem 2.2 (The MCT – Part 2: the non bounded case).
Let 𝐹 ∶ [𝑎, 𝑏) → ℝ be a function where either 𝑏 ∈ ℝ>𝑎 or 𝑏 = +∞.
If 𝐹 is non-decreasing and not bounded from above then lim

𝑥→𝑏− 𝐹 (𝑥) = +∞.

Proof. Again, I am just doing the case 𝑏 = +∞, the other case being quite similar.
We want to prove that lim

𝑥→𝑏− 𝐹 (𝑥) = +∞, i.e.

∀𝑀 ∈ ℝ, ∃𝑥0 ∈ ℝ, ∀𝑥 ∈ [𝑎, 𝑏), 𝑥 ≥ 𝑥0 ⟹ 𝐹 (𝑥) > 𝑀

Let 𝑀 ∈ ℝ. Since 𝑓 is not bounded from above, there exists 𝑥0 ∈ [𝑎, 𝑏) such that 𝐹 (𝑥0) > 𝑀 .
Let 𝑥 ∈ [𝑎, 𝑏). Assume that 𝑥 ≥ 𝑥0, then 𝑀 < 𝐹 (𝑥0) ≤ 𝐹 (𝑥) since 𝐹 is non-decreasing.
We prove that 𝑥 ≥ 𝑥0 ⟹ 𝐹 (𝑥) > 𝑀 as wanted. ■

Remark 2.3. In one statement, we proved that if 𝐹 ∶ [𝑎, 𝑏) → ℝ is a non-decreasing function where
either 𝑏 ∈ ℝ>𝑎 or 𝑏 = +∞, then either
• 𝐹 is bounded from above and then lim

𝑥→𝑏− 𝐹 (𝑥) = sup
[𝑎,𝑏)

𝐹 (particularly this limit exists), or

• 𝐹 is not bounded from above and then lim
𝑥→𝑏− 𝐹 (𝑥) = +∞.
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3 The BCT and the LCT
Theorem 3.1 (The BCT). Let 𝑓, 𝑔 ∶ [𝑎, 𝑏) → ℝ be two functions (either 𝑏 ∈ ℝ>𝑎 or 𝑏 = +∞) satisfying
(i) 𝑓 and 𝑔 are integrable on any subinterval [𝑎, 𝑐] ⊂ [𝑎, 𝑏), and,
(ii) ∀𝑥 ∈ [𝑎, 𝑏), 0 ≤ 𝑓(𝑥) ≤ 𝑔(𝑥).

The following statements hold under the above assumptions:
1. If ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥 is divergent then ∫𝑏
𝑎 𝑔(𝑥)𝑑𝑥 is divergent.

2. If ∫𝑏
𝑎 𝑔(𝑥)𝑑𝑥 is convergent then ∫𝑏

𝑎 𝑓(𝑥)𝑑𝑥 is convergent.

Proof.
For 𝑥 ∈ [𝑎, 𝑏), set 𝐹 (𝑥) = ∫𝑥

𝑎 𝑓(𝑡)𝑑𝑡 (which is well-defined since 𝑓 is integrable on [𝑎, 𝑥]), then 𝐹 is
non-decreasing: if 𝑥1 < 𝑥2 then 𝐹 (𝑥2) − 𝐹 (𝑥1) = ∫𝑥2

𝑥1
𝑓(𝑡)𝑑𝑡 ≥ 0.

Hence, according to the MCT, either 𝐹 is bounded from above and then ∫
𝑏

𝑎
𝑓(𝑡)𝑑𝑡 = lim

𝑥→𝑏− 𝐹 (𝑥)

exists, or it is not bounded from above and then lim
𝑥→𝑏− 𝐹 (𝑥) = +∞ and ∫

𝑏

𝑎
𝑓(𝑡)𝑑𝑡 is divergent.

The same result holds for 𝐺 = ∫𝑥
𝑎 𝑔(𝑡)𝑑𝑡.

First case: assume that ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 is divergent.

Since 𝑓(𝑥) ≤ 𝑔(𝑥), we have ∫𝑥
𝑎 𝑓(𝑡)𝑑𝑡 ≤ ∫𝑥

𝑎 𝑔(𝑡)𝑑𝑡.
Since the limit of the LHS of the inequality is +∞ (by the above remark), then the limit of the RHS
is also +∞.

Second case: assume that ∫𝑏
𝑎 𝑔(𝑥)𝑑𝑥 is convergent.

Therefore 𝐺 is bounded from above by some 𝑀 ∈ ℝ.
Hence, for any 𝑥 ∈ [𝑎, 𝑏), 𝐹 (𝑥) = ∫𝑥

𝑎 𝑓(𝑡)𝑑𝑡 ≤ ∫𝑥
𝑎 𝑔(𝑡)𝑑𝑡 = 𝐺(𝑥) ≤ 𝑀 .

Therefore 𝐹 (𝑥) is non-decreasing and admits an upper bound.

We deduce from the MCT that ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = lim

𝑥→𝑏− 𝐹 (𝑥) is convergent. ■

Exercise 3.2. Let 𝑓, 𝑔 ∶ [𝑎, 𝑏) → ℝ be two functions (either 𝑏 ∈ ℝ>𝑎 or 𝑏 = +∞) satisfying
(i) 𝑓 and 𝑔 are integrable on any subinterval [𝑎, 𝑐] ⊂ [𝑎, 𝑏), and,
(ii) ∃𝛼, 𝛽 > 0, ∀𝑥 ∈ [𝑎, 𝑏), 0 ≤ 𝛼𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝛽𝑓(𝑥).

Prove that ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 and ∫𝑏

𝑎 𝑔(𝑥)𝑑𝑥 are either both convergent or both divergent.

Theorem 3.3 (The LCT). Let 𝑓, 𝑔 ∶ [𝑎, 𝑏) → ℝ be two functions (either 𝑏 ∈ ℝ>𝑎 or 𝑏 = +∞) satisfying
(i) 𝑓 and 𝑔 are integrable on any subinterval [𝑎, 𝑐] ⊂ [𝑎, 𝑏) (for instance they are continuous),
(ii) ∀𝑥 ∈ [𝑎, 𝑏), 𝑓 (𝑥) ≥ 0,
(iii) ∀𝑥 ∈ [𝑎, 𝑏), 𝑔(𝑥) > 0, and,
(iv) lim

𝑥→𝑏−
𝑓(𝑥)
𝑔(𝑥) = 𝜆 > 0 exists and is positive.

Then ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 and ∫𝑏

𝑎 𝑔(𝑥)𝑑𝑥 are either both convergent or both divergent.

Proof. I’m explaining the case 𝑏 = +∞, the other case is exactly the same.
By definition of the limit (applied to 𝜀 = 𝜆

2 > 0), there exists a 𝑀 ∈ ℝ such that ∀𝑥 ∈ [𝑎, 𝑏),

𝑥 > 𝑀 ⟹ |
𝑓(𝑥)
𝑔(𝑥) − 𝜆| < 𝜆

2

We may rewrite the conclusion as

𝜆 − 𝜆
2 < 𝑓(𝑥)

𝑔(𝑥) < 𝜆 + 𝜆
2
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which implies that

0 < 𝜆
2 𝑔(𝑥) < 𝑓(𝑥) < 3𝜆

2 𝑔(𝑥)

The end of the proof now derives from the above exercise. ■

Remark 3.4. The above results hold for improper integrals of functions of the form 𝑓 ∶ (𝑎, 𝑏] → ℝ
(i.e. when the integral is improper at the lower bound).
Indeed, if 0 ≤ 𝑓(𝑥) ≤ 𝑔(𝑥) on (𝑎, 𝑏] then 𝐹 (𝑥) = ∫𝑏

𝑥 𝑓(𝑡)𝑑𝑡 and 𝐺(𝑥) = ∫𝑏
𝑥 𝑔(𝑡)𝑑𝑡 are non-increasing.

Therefore either 𝐹 is bounded from above and lim
𝑥→𝑎+

𝐹 (𝑥) exists or lim
𝑥→𝑎+

𝐹 (𝑥) = +∞ (and the same
result holds for 𝐺).
Hence the above proofs work with slight changes.

Remark 3.5. Notice that ∫𝑏
𝑎 𝑓(𝑥)𝑑𝑥 is convergent if and only if ∫𝑏

𝑎 −𝑓(𝑥)𝑑𝑥 is.
Hence, when you want to compare two functions that are both negative, you can multiply them
by −1 and then apply the above results.

4 Absolute convergence
Definition 4.1. Let 𝑓 ∶ 𝐼 → ℝ be a function defined on 𝐼 = (𝑎, 𝑏] (𝑎 may be −∞) or [𝑎, 𝑏) (𝑏 may
be +∞).

We say that ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 is absolutely convergent if ∫

𝑏

𝑎
|𝑓 (𝑥)|𝑑𝑥 is convergent.

The absolute convergence implies the convergence.

Theorem 4.2. If ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 is absolutely convergent then ∫

𝑏

𝑎
𝑓(𝑥)𝑑𝑥 is convergent.

Proof. We may assume that 𝐼 = [𝑎, 𝑏), the other cases being similar.
Notice that ∀𝑥 ∈ 𝐼, 0 ≤ 𝑓(𝑥) + |𝑓(𝑥)| ≤ 2|𝑓(𝑥)|.

By assumption, ∫
𝑏

𝑎
|𝑓 (𝑥)|𝑑𝑥 is convergent, hence by the BCT ∫

𝑏

𝑎
(𝑓 (𝑥) + |𝑓(𝑥)|) 𝑑𝑥 is convergent.

For 𝑐 ∈ [𝑎, 𝑏), we have ∫
𝑐

0
𝑓(𝑥)𝑑𝑥 = ∫

𝑐

0
(𝑓 (𝑥) + |𝑓(𝑥)|)𝑑𝑥 − ∫

𝑐

𝑎
|𝑓 (𝑥)|𝑑𝑥.

Then lim
𝑐→𝑏− ∫

𝑐

0
𝑓(𝑥)𝑑𝑥 exists since lim

𝑐→𝑏− ∫
𝑐

0
(𝑓 (𝑥) + |𝑓(𝑥)|)𝑑𝑥 and lim

𝑐→𝑏− ∫
𝑐

0
|𝑓 (𝑥)|𝑑𝑥 exist. ■

Remark 4.3. The converse is false!!! See the following example!

Example 4.4. Define 𝑓 ∶ [1, +∞) → ℝ by 𝑓(𝑥) = sin(𝑥)
𝑥 then ∫

+∞

1
𝑓(𝑥)𝑑𝑥 is convergent but

∫
+∞

1
|𝑓 (𝑥)|𝑑𝑥 is divergent.

Indeed ∫
𝑐

1

sin(𝑥)
𝑥 𝑑𝑥 = [−cos(𝑥)

𝑥 ]
𝑐

1
+ ∫

𝑐

1

cos(𝑥)
𝑥2 𝑑𝑥 = cos(1) − cos(𝑐)

𝑐 + ∫
𝑐

1

cos(𝑥)
𝑥2 𝑑𝑥.

The last integral is convergent since it is absolutely convergent (use that 0 ≤ |
cos(𝑥)

𝑥2 | ≤ 1
𝑥2 ) and

lim
𝑐→+∞

cos(𝑐)
𝑐 = 0, hence ∫

+∞

1
𝑓(𝑥)𝑑𝑥 is convergent.
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Let’s prove that 𝑓 is not absolutely convergent:

∫
(𝑛+1)𝜋

𝜋 |
sin(𝑥)

𝑥 | 𝑑𝑥 =
𝑛

∑
𝑘=1 ∫

(𝑘+1)𝜋

𝑘𝜋 |
sin(𝑥)

𝑥 | 𝑑𝑥

=
𝑛

∑
𝑘=1 ∫

𝜋

0 |
sin(𝑠 + 𝑘𝜋)

𝑠 + 𝑘𝜋 | 𝑑𝑠

≥
𝑛

∑
𝑘=1

1
(𝑘 + 1)𝜋 ∫

𝜋

0
sin(𝑠)𝑑𝑠

= 2
𝜋

𝑛

∑
𝑘=1

1
(𝑘 + 1) −−−−−→

𝑛→+∞
+∞

5 Some counter-examples
Example 5.1. Let 𝑓 ∶ [𝑎, +∞) → ℝ.

Then ∫
+∞

𝑎
𝑓(𝑥)𝑑𝑥 is convergent doesNOT imply that lim

𝑥→+∞
𝑓(𝑥) exists, even if 𝑓 is non-negative.

Indeed, let 𝑓 be the function whose graph joins (𝑛 − 1
𝑛3 , 0), (𝑛, 𝑛) and (𝑛 + 1

𝑛3 , 0) by segment lines
for 𝑛 ∈ ℕ≥2 (and 0 otherwise).
Sketch the graph! It helps computing the partial integrals: we sum areas of triangles.
Define 𝐹 (𝑥) = ∫𝑥

0 𝑓(𝑡)𝑑𝑡 then 𝐹 is obviously non-decreasing and

𝐹 (𝑥) ≤ 𝐹 (𝑛 + 1
𝑛3 ) =

𝑛

∑
𝑘=2

1
2𝑘 2

𝑘3 ≤
+∞

∑
𝑘=1

1
𝑘2

The last series is convergent. Hence 𝐹 is non-decreasing and bounded from above. Therefore 𝐹

admits a limit by the MCT and ∫
+∞

𝑎
𝑓(𝑥)𝑑𝑥 is convergent.

Nevertheless lim
𝑥→+∞

𝑓(𝑥) doesn’t exist.

However, we have the following result:

Exercise 5.2. If lim
𝑥→+∞

𝑓(𝑥) = ℓ exists and ∫
+∞

𝑎
𝑓(𝑥)𝑑𝑥 is convergent then ℓ = 0.

Example 5.3. Let 𝑓 ∶ [𝑎, 𝑏) → ℝ.

Then ∫
+∞

𝑎
𝑓(𝑥)𝑑𝑥 is divergent does NOT imply that lim

𝑥→𝑏− 𝑓(𝑥) = +∞, even if 𝑓 is non-negative.

Indeed, let 𝑓 the functiondefinedon (0, 1]whose graph joins(
1
2𝑝 − 1

𝑝2𝑝 , 0), (
1
2𝑝 , 2𝑝

) and(
1
2𝑝 + 1

𝑝2𝑝 , 0)
by segment lines for 𝑝 ∈ ℕ≥3.
Sketch the graph! It helps computing the partial integrals: we sum areas of triangles.
The area of one triangle is 1

2 2 1
𝑝2𝑝 2𝑝 = 1

𝑝 hence the integral ∫1
0 𝑓(𝑥)𝑑𝑥 is divergent since ∑

𝑝≥1

1
𝑝 is

divergent.
But lim𝑥→0+ 𝑓(𝑥) ≠ +∞ since 𝑓 (

1
2𝑝 − 1

𝑝2𝑝 ) = 0.
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6 Exercises
Exercise 6.1 (Riemann’s integrals).

1. Prove that ∫
+∞

1

1
𝑥𝛼 𝑑𝑥 is convergent if and only if 𝛼 > 1.

2. Prove that ∫
1

→0

1
𝑥𝛼 𝑑𝑥 is convergent if and only if 𝛼 < 1.

Exercise 6.2. Let 𝑓 ∶ [𝑎, +∞) → ℝ be a non-negative function which is integrable on any [𝑎, 𝑐] for 𝑐 > 𝑎.

1. Prove that if there exists 𝛼 > 1 such that 𝑥𝛼𝑓(𝑥) −−−−−→
𝑥→+∞

0 then ∫
+∞

𝑎
𝑓(𝑥)𝑑𝑥 is convergent.

2. Prove that if there exists 𝛼 ≤ 1 such that 𝑥𝛼𝑓(𝑥) −−−−−→
𝑥→+∞

+∞ then ∫
+∞

𝑎
𝑓(𝑥)𝑑𝑥 is divergent.

Exercise 6.3 (Bertrand’s integral).

Prove that ∫
+∞

2

1
𝑥𝛼(ln 𝑥)𝛽 𝑑𝑥 is convergent if and only if

⎧⎪
⎨
⎪⎩

𝛼 > 1
or
𝛼 = 1 and 𝛽 > 1
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