University of Toronto - MAT137Y1 - LEC0501

Calculus!

Improper integrals in one variable

(Updated for review purposes in MAT237 - February 27, 2020)

Jean-Baptiste Campesato

February $27^{\text {th }}, 2019$

1 Definitions of improper integrals

Definition 1.1. Let $f:[a,+\infty) \rightarrow \mathbb{R}$ be a function which is integrable on $[a, c]$ for any $c>a$, then we set

$$
\int_{a}^{+\infty} f(x) d x:=\lim _{c \rightarrow+\infty} \int_{a}^{c} f(x) d x
$$

whenever it makes sense.
Definition 1.2. Let $f:(-\infty, b] \rightarrow \mathbb{R}$ be a function which is integrable on $[c, b]$ for any $c<b$, then we set

$$
\int_{-\infty}^{b} f(x) d x:=\lim _{c \rightarrow-\infty} \int_{c}^{b} f(x) d x
$$

whenever it makes sense.
Definition 1.3. Let $f:[a, b) \rightarrow \mathbb{R}$ be a function which is integrable on any $[a, c]$ for $c \in(a, b)$, then we set

$$
\int_{a}^{b} f(x) d x:=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

whenever it makes sense.
Definition 1.4. Let $f:(a, b] \rightarrow \mathbb{R}$ be a function which is integrable on any $[c, b]$ for $c \in(a, b)$, then we set

$$
\int_{a}^{b} f(x) d x:=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

whenever it makes sense.
Definition 1.5. Let $f:(a, b) \rightarrow \mathbb{R}$ be a function which is integrable on each subinterval $[c, d] \subset$ (a, b) where $a \in \mathbb{R}$ or $a=-\infty$ and $b \in \mathbb{R}$ or $b=+\infty$.
We say that $\int_{a}^{b} f(x) d x$ is convergent if there exists $c \in(a, b)$ such that the improper integrals $\int_{a}^{c} f(x) d x$ of $f:(a, c] \rightarrow \mathbb{R}$ and $\int_{c}^{b} f(x) d x$ of $f:[c, b) \rightarrow \mathbb{R}$ are both convergent and then we set

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Remark 1.6. In the above definition, you need to study the two bounds separately!
Note that if $\int_{a}^{b} f(x) d x$ is convergent for some $c \in(a, b)$ then it is for any $c \in(a, b)$ and its value doesn't depend on the choice of c.
Example 1.7. The integral $\int_{-\infty}^{+\infty} x d x$ is not convergent although $\lim _{c \rightarrow+\infty} \int_{-c}^{c} x d x=0$.

2 The MCT for functions

The following result relies on the Dedekind-completeness of \mathbb{R}.
Theorem 2.1 (The MCT - Part 1: the bounded case).
Let $F:[a, b) \rightarrow \mathbb{R}$ be a function where either $b \in \mathbb{R}_{>a}$ or $b=+\infty$.
If F is non-decreasing and bounded from above then $\lim _{x \rightarrow b^{-}} F(x)$ exists and moreover $\lim _{x \rightarrow b^{-}} F(x)=\sup _{[a, b)} F$.
Proof. The set $S=\{F(x), x \in[a, b)\}$ is not empty since it contains $F(a)$, and, is bounded from above since F is.
Hence, by the "least upper bound principle", it admits a supremum $M=\sup (S)$, i.e. there exists $M \in \mathbb{R}$ satisfying

$$
\left\{\begin{array}{l}
\forall x \in[a, b), F(x) \leq M \\
\forall \varepsilon>0, \exists x_{0} \in[a, b), M-\varepsilon<F\left(x_{0}\right)
\end{array}\right.
$$

We want to show that $\lim _{x \rightarrow+\infty} F(x)=M$, i.e.

$$
\forall \varepsilon>0, \exists A \in \mathbb{R}, \forall x \in[a,+\infty),(x>A \Longrightarrow|F(x)-M|<\varepsilon)
$$

I am just doing the case $b=+\infty$, the other case is quite similar.
Let $\varepsilon>0$.
We know there exists $x_{0} \in[a,+\infty)$ such that $M-\varepsilon<F\left(x_{0}\right)$.
Set $A=x_{0}$ and let $x \in[a,+\infty)$ satisfying $x>A$.
Since F is non-decreasing, we know that $M-\varepsilon<F\left(x_{0}\right)=F(A) \leq F(x)$. Hence $M-F(x)<\varepsilon$.
But since M is an upper bound of F, we also have that $F(x) \leq M$. Therefore $0 \leq M-F(x)<\varepsilon$ which implies $|F(x)-M|<\varepsilon$.
We proved that $x>A \Longrightarrow|F(x)-M|<\varepsilon$ as wanted.
Theorem 2.2 (The MCT - Part 2: the non bounded case).
Let $F:[a, b) \rightarrow \mathbb{R}$ be a function where either $b \in \mathbb{R}_{>a}$ or $b=+\infty$.
If F is non-decreasing and not bounded from above then $\lim _{x \rightarrow b^{-}} F(x)=+\infty$.
Proof. Again, I am just doing the case $b=+\infty$, the other case being quite similar.
We want to prove that $\lim _{x \rightarrow b^{-}} F(x)=+\infty$, i.e.

$$
\forall M \in \mathbb{R}, \exists x_{0} \in \mathbb{R}, \forall x \in[a, b), x \geq x_{0} \Longrightarrow F(x)>M
$$

Let $M \in \mathbb{R}$. Since f is not bounded from above, there exists $x_{0} \in[a, b)$ such that $F\left(x_{0}\right)>M$. Let $x \in[a, b)$. Assume that $x \geq x_{0}$, then $M<F\left(x_{0}\right) \leq F(x)$ since F is non-decreasing. We prove that $x \geq x_{0} \Longrightarrow F(x)>M$ as wanted.

Remark 2.3. In one statement, we proved that if $F:[a, b) \rightarrow \mathbb{R}$ is a non-decreasing function where either $b \in \mathbb{R}_{>a}$ or $b=+\infty$, then either

- F is bounded from above and then $\lim _{x \rightarrow b^{-}} F(x)=\sup _{[a, b)} F$ (particularly this limit exists), or
- F is not bounded from above and then $\lim _{x \rightarrow b^{-}} F(x)=+\infty$.

3 The BCT and the LCT

Theorem 3.1 (The BCT). Let $f, g:[a, b) \rightarrow \mathbb{R}$ be two functions (either $b \in \mathbb{R}_{>a}$ or $b=+\infty$) satisfying
(i) f and g are integrable on any subinterval $[a, c] \subset[a, b)$, and,
(ii) $\forall x \in[a, b), 0 \leq f(x) \leq g(x)$.

The following statements hold under the above assumptions:

1. If $\int_{a}^{b} f(x) d x$ is divergent then $\int_{a}^{b} g(x) d x$ is divergent.
2. If $\int_{a}^{b} g(x) d x$ is convergent then $\int_{a}^{b} f(x) d x$ is convergent.

Proof.
For $x \in[a, b)$, set $F(x)=\int_{a}^{x} f(t) d t$ (which is well-defined since f is integrable on $[a, x]$), then F is non-decreasing: if $x_{1}<x_{2}$ then $F\left(x_{2}\right)-F\left(x_{1}\right)=\int_{x_{1}}^{x_{2}} f(t) d t \geq 0$.

Hence, according to the MCT, either F is bounded from above and then $\int_{a}^{b} f(t) d t=\lim _{x \rightarrow b^{-}} F(x)$ exists, or it is not bounded from above and then $\lim _{x \rightarrow b^{-}} F(x)=+\infty$ and $\int_{a}^{b} f(t) d t$ is divergent.
The same result holds for $G=\int_{a}^{x} g(t) d t$.
First case: assume that $\int_{a}^{b} f(x) d x$ is divergent.
Since $f(x) \leq g(x)$, we have $\int_{a}^{x} f(t) d t \leq \int_{a}^{x} g(t) d t$.
Since the limit of the LHS of the inequality is $+\infty$ (by the above remark), then the limit of the RHS is also $+\infty$.

Second case: assume that $\int_{a}^{b} g(x) d x$ is convergent.
Therefore G is bounded from above by some $M \in \mathbb{R}$.
Hence, for any $x \in[a, b), F(x)=\int_{a}^{x} f(t) d t \leq \int_{a}^{x} g(t) d t=G(x) \leq M$.
Therefore $F(x)$ is non-decreasing and admits an upper bound.
We deduce from the MCT that $\int_{a}^{b} f(x) d x=\lim _{x \rightarrow b^{-}} F(x)$ is convergent.
Exercise 3.2. Let $f, g:[a, b) \rightarrow \mathbb{R}$ be two functions (either $b \in \mathbb{R}_{>a}$ or $b=+\infty$) satisfying
(i) f and g are integrable on any subinterval $[a, c] \subset[a, b)$, and,
(ii) $\exists \alpha, \beta>0, \forall x \in[a, b), 0 \leq \alpha f(x) \leq g(x) \leq \beta f(x)$.

Prove that $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ are either both convergent or both divergent.
Theorem 3.3 (The LCT). Let $f, g:[a, b) \rightarrow \mathbb{R}$ be two functions (either $b \in \mathbb{R}_{>a}$ or $b=+\infty$) satisfying
(i) f and g are integrable on any subinterval $[a, c] \subset[a, b)$ (for instance they are continuous),
(ii) $\forall x \in[a, b), f(x) \geq 0$,
(iii) $\forall x \in[a, b), g(x)>0$, and,
(iv) $\lim _{x \rightarrow b^{-}} \frac{f(x)}{g(x)}=\lambda>0$ exists and is positive.

Then $\int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ are either both convergent or both divergent.
Proof. I'm explaining the case $b=+\infty$, the other case is exactly the same.
By definition of the limit (applied to $\varepsilon=\frac{\lambda}{2}>0$), there exists a $M \in \mathbb{R}$ such that $\forall x \in[a, b)$,

$$
x>M \Longrightarrow\left|\frac{f(x)}{g(x)}-\lambda\right|<\frac{\lambda}{2}
$$

We may rewrite the conclusion as

$$
\lambda-\frac{\lambda}{2}<\frac{f(x)}{g(x)}<\lambda+\frac{\lambda}{2}
$$

which implies that

$$
0<\frac{\lambda}{2} g(x)<f(x)<\frac{3 \lambda}{2} g(x)
$$

The end of the proof now derives from the above exercise.

Remark 3.4. The above results hold for improper integrals of functions of the form $f:(a, b] \rightarrow \mathbb{R}$ (i.e. when the integral is improper at the lower bound).

Indeed, if $0 \leq f(x) \leq g(x)$ on $(a, b]$ then $F(x)=\int_{x}^{b} f(t) d t$ and $G(x)=\int_{x}^{b} g(t) d t$ are non-increasing. Therefore either F is bounded from above and $\lim _{x \rightarrow a^{+}} F(x)$ exists or $\lim _{x \rightarrow a^{+}} F(x)=+\infty$ (and the same result holds for G).
Hence the above proofs work with slight changes.
Remark 3.5. Notice that $\int_{a}^{b} f(x) d x$ is convergent if and only if $\int_{a}^{b}-f(x) d x$ is.
Hence, when you want to compare two functions that are both negative, you can multiply them by -1 and then apply the above results.

4 Absolute convergence

Definition 4.1. Let $f: I \rightarrow \mathbb{R}$ be a function defined on $I=(a, b]$ (a may be $-\infty$) or $[a, b)(b$ may be $+\infty$).
We say that $\int_{a}^{b} f(x) d x$ is absolutely convergent if $\int_{a}^{b}|f(x)| d x$ is convergent.
The absolute convergence implies the convergence.
Theorem 4.2. If $\int_{a}^{b} f(x) d x$ is absolutely convergent then $\int_{a}^{b} f(x) d x$ is convergent.
Proof. We may assume that $I=[a, b)$, the other cases being similar.
Notice that $\forall x \in I, 0 \leq f(x)+|f(x)| \leq 2|f(x)|$.
By assumption, $\int_{a}^{b}|f(x)| d x$ is convergent, hence by the BCT $\int_{a}^{b}(f(x)+|f(x)|) d x$ is convergent.
For $c \in[a, b)$, we have $\int_{0}^{c} f(x) d x=\int_{0}^{c}(f(x)+|f(x)|) d x-\int_{a}^{c}|f(x)| d x$.
Then $\lim _{c \rightarrow b^{-}} \int_{0}^{c} f(x) d x$ exists since $\lim _{c \rightarrow b^{-}} \int_{0}^{c}(f(x)+|f(x)|) d x$ and $\lim _{c \rightarrow b^{-}} \int_{0}^{c}|f(x)| d x$ exist.

Remark 4.3. The converse is false!!! See the following example!
Example 4.4. Define $f:[1,+\infty) \rightarrow \mathbb{R}$ by $f(x)=\frac{\sin (x)}{x}$ then $\int_{1}^{+\infty} f(x) d x$ is convergent but $\int_{1}^{+\infty}|f(x)| d x$ is divergent.
Indeed $\int_{1}^{c} \frac{\sin (x)}{x} d x=\left[-\frac{\cos (x)}{x}\right]_{1}^{c}+\int_{1}^{c} \frac{\cos (x)}{x^{2}} d x=\cos (1)-\frac{\cos (c)}{c}+\int_{1}^{c} \frac{\cos (x)}{x^{2}} d x$.
The last integral is convergent since it is absolutely convergent (use that $0 \leq\left|\frac{\cos (x)}{x^{2}}\right| \leq \frac{1}{x^{2}}$) and $\lim _{c \rightarrow+\infty} \frac{\cos (c)}{c}=0$, hence $\int_{1}^{+\infty} f(x) d x$ is convergent.

Let's prove that f is not absolutely convergent:

$$
\begin{aligned}
\int_{\pi}^{(n+1) \pi}\left|\frac{\sin (x)}{x}\right| d x & =\sum_{k=1}^{n} \int_{k \pi}^{(k+1) \pi}\left|\frac{\sin (x)}{x}\right| d x \\
& =\sum_{k=1}^{n} \int_{0}^{\pi}\left|\frac{\sin (s+k \pi)}{s+k \pi}\right| d s \\
& \geq \sum_{k=1}^{n} \frac{1}{(k+1) \pi} \int_{0}^{\pi} \sin (s) d s \\
& =\frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{(k+1)} \xrightarrow[n \rightarrow+\infty]{ }+\infty
\end{aligned}
$$

5 Some counter-examples

Example 5.1. Let $f:[a,+\infty) \rightarrow \mathbb{R}$.
Then $\int_{a}^{+\infty} f(x) d x$ is convergent does NOT imply that $\lim _{x \rightarrow+\infty} f(x)$ exists, even if f is non-negative. Indeed, let f be the function whose graph joins $\left(n-\frac{1}{n^{3}}, 0\right),(n, n)$ and $\left(n+\frac{1}{n^{3}}, 0\right)$ by segment lines for $n \in \mathbb{N}_{\geq 2}$ (and 0 otherwise).
Sketch the graph! It helps computing the partial integrals: we sum areas of triangles.
Define $F(x)=\int_{0}^{x} f(t) d t$ then F is obviously non-decreasing and

$$
F(x) \leq F\left(n+\frac{1}{n^{3}}\right)=\sum_{k=2}^{n} \frac{1}{2} k \frac{2}{k^{3}} \leq \sum_{k=1}^{+\infty} \frac{1}{k^{2}}
$$

The last series is convergent. Hence F is non-decreasing and bounded from above. Therefore F admits a limit by the MCT and $\int_{a}^{+\infty} f(x) d x$ is convergent.
Nevertheless $\lim _{x \rightarrow+\infty} f(x)$ doesn't exist.
However, we have the following result:
Exercise 5.2. If $\lim _{x \rightarrow+\infty} f(x)=\ell$ exists and $\int_{a}^{+\infty} f(x) d x$ is convergent then $\ell=0$.
Example 5.3. Let $f:[a, b) \rightarrow \mathbb{R}$.
Then $\int_{a}^{+\infty} f(x) d x$ is divergent does NOT imply that $\lim _{x \rightarrow b^{-}} f(x)=+\infty$, even if f is non-negative.
Indeed, let f the function defined on (0,1$]$ whose graph joins $\left(\frac{1}{2^{p}}-\frac{1}{p^{2}}, 0\right),\left(\frac{1}{2^{p}}, 2^{p}\right)$ and $\left(\frac{1}{2^{p}}+\frac{1}{p 2^{p}}, 0\right)$ by segment lines for $p \in \mathbb{N}_{\geq 3}$.
Sketch the graph! It helps computing the partial integrals: we sum areas of triangles.
The area of one triangle is $\frac{1}{2} 2 \frac{1}{p 2^{p}} 2^{p}=\frac{1}{p}$ hence the integral $\int_{0}^{1} f(x) d x$ is divergent since $\sum_{p \geq 1} \frac{1}{p}$ is divergent.
But $\lim _{x \rightarrow 0^{+}} f(x) \neq+\infty$ since $f\left(\frac{1}{2^{p}}-\frac{1}{p 2^{p}}\right)=0$.

6 Exercises

Exercise 6.1 (Riemann's integrals).

1. Prove that $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} d x$ is convergent if and only if $\alpha>1$.
2. Prove that $\int_{\rightarrow 0}^{1} \frac{1}{x^{\alpha}} d x$ is convergent if and only if $\alpha<1$.

Exercise 6.2. Let $f:[a,+\infty) \rightarrow \mathbb{R}$ be a non-negative function which is integrable on any $[a, c]$ for $c>a$.

1. Prove that if there exists $\alpha>1$ such that $x^{\alpha} f(x) \xrightarrow[x \rightarrow+\infty]{ } 0$ then $\int_{a}^{+\infty} f(x) d x$ is convergent.
2. Prove that if there exists $\alpha \leq 1$ such that $x^{\alpha} f(x) \xrightarrow[x \rightarrow+\infty]{ }+\infty$ then $\int_{a}^{+\infty} f(x) d x$ is divergent.

Exercise 6.3 (Bertrand's integral).
Prove that $\int_{2}^{+\infty} \frac{1}{x^{\alpha}(\ln x)^{\beta}} d x$ is convergent if and only if $\left\{\begin{array}{l}\alpha>1 \\ \text { or } \\ \alpha=1 \text { and } \beta>1\end{array}\right.$

