# University of Toronto - MAT237Y1 - LEC5201 <br> Multivariable calculus! 

Jean-Baptiste Campesato

February $4^{\text {th }}, 2019$

Exercise 1. Prove that $f$ admits a maximum and a minimum on $K$ and find them for the following data:

1. $f(x, y)=x y(1-x-y), K=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0, x+y \leq 1\right\}$
2. $f(x, y)=y^{2}-x^{2} y+x^{2}, K=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-1 \leq y \leq 1-x^{2}\right\}$
3. $f(x, y, z)=x+2 y+3 z, K=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=1, y-z=2\right\}$

Exercise 2. Show that the point of the line $2 x-y=16$ which is the closest to the origin is well-defined and find it.
Exercise 3. Prove that the level set $x^{4}+x^{3} y^{2}-y+y^{2}+y^{3}=1$ defines a $C^{1}$ function $y=\varphi(x)$ in a neighborhood of $(-1,1)$. Compute $\frac{\partial \varphi}{\partial x}(-1)$.

Exercise 4. Prove that the level set $x+y+z+\sin (x y z)=0$ defines a $C^{1}$ function $y=\varphi(x, z)$ in a neighborhood of $(0,0,0)$. Compute $\frac{\partial \varphi}{\partial x}(0,0)$ and $\frac{\partial \varphi}{\partial z}(0,0)$. Compute $D \varphi(0)$.

Exercise 5. Prove that the level set $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}-y^{2}+2 z^{2}=2, x y z=1\right\}$ defines a $C^{1}$ function $(x, z)=\varphi(y)$ in a neighborhood of $(1,1,1)$ (i.e. $x=\varphi_{1}(y)$ and $\left.z=\varphi_{2}(y)\right)$.
Compute $\frac{\partial \varphi_{1}}{\partial y}(1)$ and $\frac{\partial \varphi_{2}}{\partial y}(1)$. Compute $D \varphi(1)$.
Exercise 6 (Difficult).

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Prove that if $\forall x \in \mathbb{R}, f^{\prime}(x) \neq 0$ then $f: \mathbb{R} \rightarrow f(\mathbb{R})$ is a homeomorphism and $f^{-1}: f(\mathbb{R}) \rightarrow \mathbb{R}$ is differentiable..
2. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{cl}x+x^{2} \sin (\pi / x) & \text { if } x \neq 0 \\ 0 & \text { otherwise }\end{array}\right.$

Prove that $f^{\prime}(0)$ exists and is not 0 but that $f$ is not invertible in any neighborhood of the origin.
What's the difference with the previous question? Is there any contradiction with the inverse mapping theorem?
3. Define $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $F(x, y)=\left\{\begin{array}{cl}\frac{y^{3}-x^{8} y}{x^{6}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { otherwise }\end{array}\right.$.

We may prove (you don't have to do it) that $F$ is every differentiable, that $\frac{\partial F}{\partial y}(0,0) \neq 0$ but that the level set $\left\{(x, y) \in \mathbb{R}^{2}: F(x, y)=F(0,0)\right\}$ can't be described as the graph of a $C^{1}$-function $y=\varphi(x)$ locally around $(0,0)$. Is there any contradiction with the implicit function theorem?
Exercise 7 (Bernoulli's lemniscate, very difficult). We define $C=\left\{(x, y) \in \mathbb{R}^{2}:(x-y)(x+y)=1\right\}$.

1. Draw C.
2. Prove that $\varphi: \mathbb{R}^{2} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ defined by $\varphi(\mathbf{v})=\frac{\mathbf{v}}{\|\mathbf{v}\|^{2}}$ is a $C^{1}$-diffeomorphism. Find $\varphi^{-1}$.

What is the geometric interpretation of $\varphi$ ?
3. Find an equation for $\tilde{C}=\overline{\varphi(C)}$. Intuitively, how do we pass from $C$ to $\tilde{C}$ ?
4. Using polar coordinates, find a $C^{1}$ parametrization of $\tilde{C}$.
5. Sketch $\tilde{C}$.
6. Study the singular points of $\tilde{C}$.

Exercise 8 (Another lemniscate). Define $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\sigma(t)=\left(\frac{t^{3}}{1+t^{4}}, \frac{t}{1+t^{4}}\right)$.

1. Prove that $\sigma$ is injective. 2. Prove that $\forall t \in \mathbb{R}, \sigma^{\prime}(t) \neq \mathbf{0}$. 3. Is $C=\{\sigma(t): t \in \mathbb{R}\}$ regular?

Exercise 9 (Ordinary cusp). Let $C=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}-y^{3}=0\right\}$.

1. Find a $C^{1}$ parametrization of $C$.
2. Sketch $C$. 3. Study the singularities of $C$.

Exercise 10. Study the singular points of $M=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(x^{2}+y^{2}+z^{2}-1\right)^{2}=0\right\}$
Exercise 11. Prove that the following sets are singular at the origin.

1. $C_{1}=\left\{(x, y) \in \mathbb{R}^{2}: y=|x|\right\}$
2. $C_{2}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}=y^{2}\right\}$
3. $C_{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=z^{2}\right\}$
4. $C_{4}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{3}=y^{2}\right\}$

Exercise 12. Let $C=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=R^{2}, x^{2}+y^{2}-2 x=0\right\}$ where $R>0$.

1. Prove that $C$ is non-singular for $R \neq 2$. 2. Study $C$ when $R=2$.

Exercise 13. Let $M \subset \mathbb{R}^{N}$ and $\mathbf{a} \in M$.

1. Prove that $\mathbf{a}$ is a regular point of dimension $d$ of $M$ if and only if there exists $U \subset \mathbb{R}^{N}$ an open subset containing a and $\mathbf{F}: U \rightarrow \mathbb{R}^{N-d}$ a $C^{1}$ function such that $\operatorname{rank}(D \mathbf{F}(a))=N-d$ and $U \cap M=\{\mathbf{x} \in U: \mathbf{F}(\mathbf{x})=\mathbf{0}\}$.
2. Now, we assume that $a$ is regular of dimension $d$ and we define the tangent space of $M$ at $a$ by
$T_{\mathbf{a}} M=\left\{\gamma^{\prime}(0) \mid \gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{N} C^{1}, \forall t \in(-\varepsilon, \varepsilon), \gamma(t) \in M, \gamma(0)=\mathbf{a}\right\}$.
(a) Let $\mathbf{F}$ be as in the previous question. Prove that $T_{\mathbf{a}} M=\operatorname{ker} D \mathbf{F}(\mathbf{a})$.
(b) Deduce that $T_{\mathbf{a}} M$ is a vector space of dimension $d$.
(c) Assume that $M$ is locally a graph $\left(x_{d+1}, \ldots, x_{N}\right)=\varphi\left(x_{1}, \ldots, x_{d}\right)$ around $\mathbf{a}$.

Prove that $T_{\mathbf{a}} M$ is the graph of $D \varphi\left(a_{1}, \ldots, a_{d}\right)$.
Exercise 14. Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $\mathbf{f}(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$.

1. For which points in $\mathbb{R}^{2}$ are the assumptions of the inverse function theorem satisfied? What can we conclude?

Is $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{f}\left(\mathbb{R}^{2}\right)$ a global $C^{1}$-diffeomorphism?
2. Prove that $U=\left\{(x, y) \in \mathbb{R}^{2}: y \in(0,2 \pi)\right\}$ is open.
3. Prove that $\mathbf{f}(U)$ is open and that $\mathbf{f}: U \rightarrow \mathbf{f}(U)$ is a $C^{1}$-diffeomorphism. What is $f(U)$ ?
4. If we denote $\mathbf{g}=\mathbf{f}^{-1}: f(\boldsymbol{U}) \rightarrow \mathbf{U}$, compute $\operatorname{Dg}(0,1)$.

Exercise 15. Let $R \subset \mathbb{R}^{n}$ be a rectangle (or segment line for $n=1$ ) and $f: R \rightarrow \mathbb{R}$.

1. Prove that if $f$ is integrable then its graph $\Gamma_{f}=\{(x, f(x)): x \in R\} \subset \mathbb{R}^{n+1}$ has zero content.
2. Prove that the converse is false.

Exercise 16. Prove that $\left\{\left(x, \sin \frac{1}{x}\right): x \in(0,5]\right\}$ has zero content.
Exercise 17. 1. Prove that $\mathbb{N}$ doesn't have zero content.
2. Prove that $[0,1]$ doesn't have zero content.
3. Prove that $\mathbb{Q} \cap[0,1]$ doesn't have zero content.
4. Prove that $[0,1] \times\{0\}$ has zero content.

Exercise 18. Prove that $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$ has zero content.
Exercise 19. Prove that $\left\{\frac{1}{n}: n \in \mathbb{N}_{>0}\right\}$ has zero content (even if it is not finite).
Exercise 20 (Thomae's function, difficult). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}\frac{1}{q} & \text { if } x=\frac{p}{q}, p \in \mathbb{Z} \backslash\{0\}, q \in \mathbb{N}_{>0}, \operatorname{gcd}(p, q)=1 \\ 1 & \text { if } x=0 \\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

1. Prove that $f$ is discontinuous at all the rational points but is continuous at all irrational numbers.
2. Prove that $f$ is integrable on $[0,1]$ using the definition of integrability.
3. Prove that $[0,1] \cap \mathbb{Q}$ doesn't have zero content (hint: compute $\overline{[0,1] \cap \mathbb{Q}}$ ).
4. We know that if the discontinuity set of a function $f:[a, b] \rightarrow \mathbb{R}$ has zero content then $f$ is integrable. Is the converse true?
Exercise 21 (Dirichlet's function). Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}$
5. Prove that $f$ is nowhere continuous.
6. Prove that $f$ is not integrable on $[0,1]$ using the definition of integrability.

Exercise 22 (Uniform continuity).
Solve the questions from $\S B$ of http://www.math.toronto.edu/campesat/ens/1920/darboux.pdf You'll find the solutions at http://www.math.toronto.edu/campesat/ens/1920/0121-notes.pdf Beware: Uniform continuity is more subtle than what it looks like at first glance...
I think it is very important to practice these questions to develop your intuition about uniform continuity.

