University of Toronto – MAT237Y1 – LEC5201 Multivariable calculus!

Jean-Baptiste Campesato

February 4th, 2019

Exercise 1. Prove that f admits a maximum and a minimum on K and find them for the following data:

- 1. $f(x, y) = xy(1 x y), K = \{(x, y) \in \mathbb{R}^2 : x \ge 0, y \ge 0, x + y \le 1\}$ 2. $f(x, y) = y^2 x^2y + x^2, K = \{(x, y) \in \mathbb{R}^2 : x^2 1 \le y \le 1 x^2\}$ 3. $f(x, y, z) = x + 2y + 3z, K = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, y z = 2\}$

Exercise 2. Show that the point of the line 2x - y = 16 which is the closest to the origin is well-defined and find it.

Exercise 3. Prove that the level set $x^4 + x^3y^2 - y + y^2 + y^3 = 1$ defines a C^1 function $y = \varphi(x)$ in a neighborhood of (-1, 1). *Compute* $\frac{\partial \varphi}{\partial x}(-1)$.

Exercise 4. Prove that the level set x + y + z + sin(xyz) = 0 defines a C^1 function $y = \varphi(x, z)$ in a neighborhood of (0, 0, 0). Compute $\frac{\partial \varphi}{\partial x}(0,0)$ and $\frac{\partial \varphi}{\partial z}(0,0)$. Compute $D\varphi(0)$.

Exercise 5. Prove that the level set $\{(x, y, z) \in \mathbb{R}^3 : x^2 - y^2 + 2z^2 = 2, xyz = 1\}$ defines a C^1 function $(x, z) = \varphi(y)$ in a neighborhood of (1, 1, 1) (i.e. $x = \varphi_1(y)$ and $z = \varphi_2(y)$). Compute $\frac{\partial \varphi_1}{\partial y}(1)$ and $\frac{\partial \varphi_2}{\partial y}(1)$. Compute $D\varphi(1)$.

Exercise 6 (Difficult).

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Prove that if $\forall x \in \mathbb{R}$, $f'(x) \neq 0$ then $f : \mathbb{R} \to f(\mathbb{R})$ is a homeomorphism and $f^{-1}: f(\mathbb{R}) \to \mathbb{R}$ is differentiable..
- 2. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \begin{cases} x + x^2 \sin(\pi/x) & \text{if } x \neq 0 \\ 0 & \text{otherwise} \end{cases}$.

Prove that f'(0) exists and is not 0 but that f is not invertible in any neighborhood of the origin. What's the difference with the previous question? Is there any contradiction with the inverse mapping theorem?

3. Define
$$F : \mathbb{R}^2 \to \mathbb{R}$$
 by $F(x, y) = \begin{cases} \frac{y^3 - x^8 y}{x^6 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$

We may prove (you don't have to do it) that F is every differentiable, that $\frac{\partial F}{\partial y}(0,0) \neq 0$ but that the level set $\{(x, y) \in \mathbb{R}^2 : F(x, y) = F(0, 0)\}$ can't be described as the graph of a C^1 -function $y = \varphi(x)$ locally around (0, 0). *Is there any contradiction with the implicit function theorem?*

Exercise 7 (Bernoulli's lemniscate, very difficult). We define $C = \{(x, y) \in \mathbb{R}^2 : (x - y)(x + y) = 1\}$.

- 1. Draw C.
- 2. Prove that $\varphi : \mathbb{R}^2 \setminus \{\mathbf{0}\} \to \mathbb{R}^2 \setminus \{\mathbf{0}\}$ defined by $\varphi(\mathbf{v}) = \frac{\mathbf{v}}{\|\mathbf{v}\|^2}$ is a C^1 -diffeomorphism. Find φ^{-1} . *What is the geometric interpretation of* φ *?*
- 3. Find an equation for $\tilde{C} = \overline{\varphi(C)}$. Intuitively, how do we pass from C to \tilde{C} ?
- 4. Using polar coordinates, find a C^1 parametrization of \tilde{C} .
- 5. Sketch \tilde{C} .
- 6. Study the singular points of \tilde{C} .

Exercise 8 (Another lemniscate). *Define* $\sigma : \mathbb{R} \to \mathbb{R}^2$ *by* $\sigma(t) = \left(\frac{t^3}{1+t^4}, \frac{t}{1+t^4}\right)$.

1. Prove that
$$\sigma$$
 is injective. 2. Prove that $\forall t \in \mathbb{R}, \sigma'(t) \neq 0$. 3. Is $C = \{\sigma(t) : t \in \mathbb{R}\}$ regular?

Exercise 9 (Ordinary cusp). Let $C = \{(x, y) \in \mathbb{R}^2 : x^2 - y^3 = 0\}.$ 1. Find a C^1 parametrization of C. 2. Sketch C. 3. Study the singularities of C. **Exercise 10.** Study the singular points of $M = \{(x, y, z) \in \mathbb{R}^3 : (x^2 + y^2 + z^2 - 1)^2 = 0\}$

Exercise 11. Prove that the following sets are singular at the origin.1. $C_1 = \{(x, y) \in \mathbb{R}^2 : y = |x|\}$ 2. $C_2 = \{(x, y) \in \mathbb{R}^2 : x^2 = y^2\}$ 3. $C_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$ 4. $C_4 = \{(x, y, z) \in \mathbb{R}^3 : x^3 = y^2\}$

Exercise 12. Let $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = R^2, x^2 + y^2 - 2x = 0\}$ where R > 0. 1. Prove that *C* is non-singular for $R \neq 2$. 2. Study *C* when R = 2.

Exercise 13. Let $M \subset \mathbb{R}^N$ and $\mathbf{a} \in M$.

- 1. Prove that **a** is a regular point of dimension *d* of *M* if and only if there exists $U \subset \mathbb{R}^N$ an open subset containing **a** and **F** : $U \to \mathbb{R}^{N-d}$ a C^1 function such that rank $(D\mathbf{F}(a)) = N d$ and $U \cap M = \{\mathbf{x} \in U : \mathbf{F}(\mathbf{x}) = \mathbf{0}\}$.
- 2. Now, we assume that a is regular of dimension d and we define the tangent space of M at a by $T_{\mathbf{a}}M = \{\gamma'(0) \mid \gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^N C^1, \forall t \in (-\varepsilon, \varepsilon), \gamma(t) \in M, \gamma(0) = \mathbf{a}\}.$
 - (a) Let **F** be as in the previous question. Prove that $T_{\mathbf{a}}M = \ker D\mathbf{F}(\mathbf{a})$.
 - (b) Deduce that $T_{\mathbf{a}}M$ is a vector space of dimension d.
 - (c) Assume that *M* is locally a graph $(x_{d+1}, ..., x_N) = \varphi(x_1, ..., x_d)$ around **a**. Prove that $T_{\mathbf{a}}M$ is the graph of $D\varphi(a_1, ..., a_d)$.

Exercise 14. Let $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $\mathbf{f}(x, y) = (e^x \cos y, e^x \sin y)$.

- 1. For which points in \mathbb{R}^2 are the assumptions of the inverse function theorem satisfied? What can we conclude? Is $\mathbf{f} : \mathbb{R}^2 \to \mathfrak{f}(\mathbb{R}^2)$ a global C^1 -diffeomorphism?
- 2. Prove that $U = \{(x, y) \in \mathbb{R}^2 : y \in (0, 2\pi)\}$ is open.
- 3. Prove that $\mathbf{f}(U)$ is open and that $\mathbf{f}: U \to \mathbf{f}(U)$ is a C^1 -diffeomorphism. What is f(U)?
- 4. If we denote $\mathbf{g} = \mathbf{f}^{-1}$: $f(U) \to \mathbf{U}$, compute $D\mathbf{g}(0, 1)$.

Exercise 15. Let $R \subset \mathbb{R}^n$ be a rectangle (or segment line for n = 1) and $f : R \to \mathbb{R}$.

- 1. Prove that if f is integrable then its graph $\Gamma_f = \{(x, f(x)) : x \in R\} \subset \mathbb{R}^{n+1}$ has zero content.
- 2. Prove that the converse is false.

Exercise 16. Prove that $\left\{ \left(x, \sin \frac{1}{x} \right) : x \in (0, 5] \right\}$ has zero content.

Exercise 17. 1. Prove that \mathbb{N} doesn't have zero content.

- 2. Prove that [0, 1] doesn't have zero content.
- *3. Prove that* $\mathbb{Q} \cap [0, 1]$ *doesn't have zero content.*
- 4. *Prove that* $[0, 1] \times \{0\}$ *has zero content.*

Exercise 18. Prove that $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ has zero content.

Exercise 19. Prove that $\left\{\frac{1}{n} : n \in \mathbb{N}_{>0}\right\}$ has zero content (even if it is not finite).

Exercise 20 (Thomae's function, difficult). Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{q} & \text{if } x = \frac{p}{q}, \ p \in \mathbb{Z} \setminus \{0\}, \ q \in \mathbb{N}_{>0}, \ \gcd(p,q) = 1\\ 1 & \text{if } x = 0\\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

- 1. Prove that *f* is discontinuous at all the rational points but is continuous at all irrational numbers.
- 2. Prove that *f* is integrable on [0, 1] using the definition of integrability.
- 3. Prove that $[0,1] \cap \mathbb{Q}$ doesn't have zero content (hint: compute $\overline{[0,1] \cap \mathbb{Q}}$).
- 4. We know that if the discontinuity set of a function $f : [a, b] \rightarrow \mathbb{R}$ has zero content then f is integrable. *Is the converse true?*

Exercise 21 (Dirichlet's function). Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{otherwise} \end{cases}$

- 1. Prove that *f* is nowhere continuous.
- 2. Prove that f is not integrable on [0, 1] using the definition of integrability.

Exercise 22 (Uniform continuity).

Solve the questions from §B of http://www.math.toronto.edu/campesat/ens/1920/darboux.pdf You'll find the solutions at http://www.math.toronto.edu/campesat/ens/1920/0121-notes.pdf Beware: Uniform continuity is more subtle than what it looks like at first glance...

I think it is very important to practice these questions to develop your intuition about uniform continuity.