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Structure of the Exam: this exam consists of five parts, Parts A through E, spread over
eight Assignments on Quercus:

1. Part A: Multiple Choice, which consists of 20 multiple choice questions, worth 2 marks
each. Once you start Part A: Multiple Choice you have 60 minutes to finish it. You
can only attempt each question once; and once you’ve done a question you cannot go
back to it. Total marks for Part A: Multiple Choice: 40.

2. Part B: True or False, which consists of fifteen True or False questions, worth 1 mark
each. Once you start Part B: True or False, you have 30 minutes to complete it. Total
marks for Part B: True or False: 15.

You also have to submit your counterexamples for all the True or False questions you
chose as False. You can do that through the Quercus Assignment Part B: Submission.

3. Part B: Submission. This is the Assignment on Quercus to which you can submit your
counterexamples for all the True or False questions that you chose as False. You can
also submit your work to Crowdmark. Total marks for Part B: Submission: 5.

4. Part C: Multiple Answer Questions, which consists of five questions that require you
to match up to 10 statements/questions with items/answers from a tear-down menu.
Each question is worth 4 marks. Once you start Part C: Multiple Answer Questions,
you have 20 minutes to finish it. You can only attempt each question once; and once
you’ve done a question you cannot go back to it. Total marks for Part C: Multiple
Answer Questions: 20.

5. Part D: Three Short Proofs, which will give you three statements to prove. You have
10 minutes to view them and to write them down. You will get one mark per question
for viewing it. Total marks for Part D: Three Short Proofs: 3.

Once you have written up your proofs you should submit them in Part D: Submission.

6. Part D: Submission. This is the Assignment on Quercus to which you can submit your
three short proofs. Your proofs should be hand written; you can take a picture of them
to submit. You can also submit your work to Crowdmark. Each short proof will be
marked out of 4. Total marks for Part D: Submission: 12.

7. Part E: Long Question, which will give you one long, involved question to solve. You
can only view the question for 10 minutes. You should copy it down. You will get 1
mark for viewing the question. The Long Question will be presented in two formats:
math notation using text, like G x H; and also as an inserted image which presents the
whole question in proper mathematical notation, like G⊕H. Total marks for Part E:
Long Question: 1.



8. Part E: Submission. Once you have written up your solution to the long question—
hand written please—you can upload it to Part E: Submission as a jpg, pdf or png
file. Or you can submit it to Crowdmark. The long question is worth 24 marks and
the part marks for each part will be indicated in the question. Total marks for Part E:
Submission: 24.

Order of the Exam and Timing: you must complete Parts A, B and C before you attempt
Parts D and E. You can do Parts A, B and C in any order you wish; and you can do Parts
D and E in any order you wish.

1. The quizzes in Parts A, B and C have time limits, so you can spend at most 110
minutes on them. That leaves you at least 100 minutes to do the rest of the exam,
including writing up your solutions and submitting them. You will probably need at
least 30 min to do the long question from Part E.

2. Once you start the exam, you have 3.5 hours to finish the whole thing.

3. Through Quercus (and Crowdmark, for that matter) we have complete records of which
time you started a quiz, when you submitted an answer or a file, when you finished
a quiz, etc. Thus we will know the precise instant when you started the exam, and
whether or not you completed Parts A, B and C before you started Part D or E. We
will also be able to determine if anything you submitted was late—i.e. 3.5 hours after
you started. Late submissions will not be graded.

Submitting Your Files: for the questions that require you to show your work, you could
submit your solutions to Quercus through Part B: Submission, Part D: Submission, and
Part E: Submission. But we have created a Crowdmark assignment as well, called Exam
Submissions, through which you can also submit your solutions to the written questions for
Parts B, D and E. We would actually prefer if you submitted your solutions to the written
questions in Parts B, D and E via Crowdmark. If you submit something to both Quercus
and Crowdmark what you submit to each must be identical. If not, we will only mark the
solution that was submitted first. No corrections or alterations to previously submitted work
permitted.

Showing Your Work and Not Showing Your Work: approximately two thirds of the
exam does not require you to show your work. In the one third of the exam that requires you
to show your work, in particular in Parts D and E, you must, must explain your work. We
will mark these parts very strictly: if you do not explain what you are doing, we will not try
to figure it out—you will just lose marks. What you submit must be legible and coherent,
making use of correct logic and correct mathematical notation. If something doesn’t make
sense we will just skip it. Moreover, what you submit should be your own work. We will
watch out for solutions that are identical, or solutions that are copied verbatim from books
or websites. Any such academic offence will seriously jeopardize your exam!



Notation: typing mathematical expressions into Quercus using fancy mathematical format-
ting is not always reliable, so for the most part the questions on Quercus will be typed up
using standard-text mathematical notation. That is,

General Advice: put aside a 3.5-hour time slot in which you can focus on the exam
and work without distractions or interruptions. The structure of the exam requires you to
organize your time and to pay attention to one question at a time. Don’t let yourself get
bogged down with one question. No question in Part A, B, C or D is worth very much
by itself, so skipping any one of those questions is not serious. There are no penalties for
guessing in Parts A or C, so if you have narrowed a question down to two choices you can
just follow your mathematical intuition and guess.

Technical Issues: there is not much we can do if technical issues should arise. There have
been no technical issues during all the quizzes and assignments we have run through Quercus
this year, nor have there been any technical issues in all the assignments we have run through
Crowdmark this year. So with a little luck there won’t be any technical issues during this
Exam either. However, should some issue arise, try to document it in some way.

Questions During the Exam: since students may be writing the exam during a continuous
24-hour period, there is no way we can be available to everybody to answer any question
that may arise during the exam. So we won’t answer any. If there is something you are not
clear about, you can always look it up in the book! If that doesn’t help, then you can state
any assumption you are making so that you can continue with the question.

Final Thoughts: this exam can potentially count for 60% of your final grade, so it is worth
your effort to cooperate with the instructions, try to do as well as possible on this exam,
and get it over with. Considering that the term test and the tutorial quizzes could count as
little as 25% of your final grade, you are being given a chance to complete a math course in
which as much as 75% of your final grade is based on work you do at home. Don’t blow it!



PART A: Twenty multiple choice questions, selected from the following 26. (avg: 27.6/40)

1. What is the order of the group U(18)⊕D3?

(a) 18

(b) 54

(c) 36

(d) 108

(e) 72

2. What is the order of the element (4, 5) in the group Z9 ⊕ U(12)?

(a) 2

(b) 9

(c) 12

(d) 18

(e) 3

3. The following are all Abelian groups of order 900. Which two are isomorphic to each
other?

(a) Z4 ⊕ Z3 ⊕ Z3 ⊕ Z5 ⊕ Z5

(b) Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z25

(c) Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z5 ⊕ Z5

(d) Z2 ⊕ Z2 ⊕ Z75 ⊕ Z3

(e) Z4 ⊕ Z3 ⊕ Z3 ⊕ Z25

4. What is the class equation of D8?

(a) 16 = 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2

(b) 16 = 2 + 2 + 2 + 2 + 4 + 4

(c) 16 = 2 + 2 + 4 + 4 + 4

(d) 16 = 4 + 4 + 4 + 4

(e) 16 = 1 + 1 + 2 + 2 + 2 + 4



5. Let G be a finite group with operation multiplication and identity element e. Let a be a
non-identity element of G with |a| = n. Which of the following statements is not true?

(a) C(a) ≤ C(a2)

(b) C(an) = G

(c) cl (a) = cl (a−1)

(d) |cl (a)| = |cl (a−1)|
(e) C(a) = C(a−1)

6. How many homomorphisms are there from D6 to Z5.

(a) 0

(b) 1

(c) 2

(d) 3

(e) 4

7. How many homomorphisms are there from Z10 to D5.

(a) 2

(b) 4

(c) 6

(d) 8

(e) 10

8. Which of the following statements is not true?

(a) If f : G −→ H is a homomorphism then ker(f) CG.

(b) If H is a normal subgroup of G then there is a homomorphism f defined on G
such that ker(f) = H.

(c) If H and K are subgroups of G such that H CK and K CG, then H CG.

(d) If f : G −→ H is a homomorphism and f(x) = f(y), then xy−1 ∈ ker(f).

(e) If f : G −→ H is a homomorphism then there is a subgroup K of H such that

G/ ker(f) ≈ K.



9. Which of the following groups is not isomorphic to U(144)?

(a) U(9)⊕ U(16)

(b) Z2 ⊕ Z4 ⊕ Z6

(c) Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2 ⊕ Z3

(d) Aut (Z144)

(e) Z2 ⊕ Z2 ⊕ Z12

10. What is the class equation of D5?

(a) 10 = 1 + 1 + 2 + 2 + 2 + 2

(b) 10 = 5 + 5

(c) 10 = 1 + 4 + 5

(d) 10 = 2 + 2 + 2 + 2 + 2

(e) 10 = 1 + 2 + 2 + 5

11. Which of the following permutations α ∈ S5 satisfies α ((125)(34))α−1 = (354)(12)?

(a) α = (13)(254)

(b) α = (1432)

(c) α = (42)(135)

(d) α = (43)(152)

(e) α = (15342)

12. How many elements in S7 are in the conjugacy class of (1435)(257)(64)?

(a) 720

(b) 5040

(c) 210

(d) 630

(e) 420

13. How may symmetries does the solid
shown to the right have?

(a) 16

(b) 8

(c) 48

(d) 20

(e) 24



14. How may symmetries does the solid
shown to the right have?

(a) 16

(b) 10

(c) 20

(d) 40

(e) 5

15. How may symmetries does the solid
shown to the right have?

(a) 20

(b) 120

(c) 60

(d) 40

(e) 30

16. How may symmetries does the solid
shown to the right have?

(a) 28

(b) 42

(c) 48

(d) 14

(e) 24

17. Suppose A and B are rotations of 180◦ about the points (a1, a2) and (b1, b2), respectively.
Which statement best describes the combined effect of A followed by B on an arbitrary
point (x1, x2) in the plane?

(a) A reflection in the line passing through the two points (a1, a2) and (b1, b2).

(b) A reflection in the perpendicular bisector of the line segment joining the two
points (a1, a2) and (b1, b2).

(c) A rotation about the midpoint of the line segment joining the two points (a1, a2)
and (b1, b2).

(d) A translation along a line parallel to the line joining the two points (a1, a2) and (b1, b2).

(e) A translation along a line perpendicular to the line joining the two points (a1, a2)
and (b1, b2).



18. What is the class equation of S(D), the symmetry group of the dodecahedron?

(a) 120 = 2 + 20 + 12 + 12 + 15 + 20 + 12 + 12 + 15

(b) 120 = 2 + 40 + 24 + 24 + 30

(c) 120 = 2 + 20 + 24 + 24 + 20 + 30

(d) 120 = 2 + 40 + 24 + 24 + 15 + 15

(e) 120 = 2 + 40 + 48 + 30

19. What is the order of the group Z3 ⊕ U(15)/〈(2, 4)〉?

(a) 2

(b) 4

(c) 6

(d) 8

(e) 12

20. Which of the following is not isomorphic to U(105)?

(a) U(7)⊕ U(16)

(b) U(3)⊕ U(5)⊕ U(7)

(c) U(21)⊕ U(5)

(d) U(15)⊕ U(7)

(e) U(35)⊕ U(3)

21. How many elements of order 3 are there in A7?

(a) 70

(b) 105

(c) 280

(d) 350

(e) 560

22. What is the order of the permutation (135)(26143) in S6?

(a) 3

(b) 6

(c) 9

(d) 12

(e) 15



23. What is the inverse of the permutation (1435) in S5?

(a) (1354)

(b) (1534)

(c) (5431)

(d) (1435)

(e) (1345)

24. What is the index of the subgroup {1, 7, 11} in U(19)?

(a) 6

(b) 3

(c) 7

(d) 11

(e) 9

25. Let A and B be two conjugate matrices in GL(n,R). Which of the following statements
is not true?

(a) AB = BA

(b) A ∈ cl(B)

(c) A and B are similar matrices.

(d) The order of A is the same as the order of B.

(e) det(A) = det(B)

26. Which of the following symmetries does the
wallpaper pattern to the right have? Indi-
cate all answers that apply.

(a) A reflection in a horizontal axis

(b) A reflection in a vertical axis

(c) A rotation of order 2

(d) A rotation of order 4

(e) A non-trivial glided reflection



PART B: Fifteen True or False questions selected from the following 20 statements. If the
statement is False give a counterexample to show that it is False. Students submit their
counterexamples separately. True or False avg: 11.4/15; Counter examples avg: 2.4/5

1. If G is non-Abelian then Aut (G) is not cyclic. True

2. D13 ≈ Inn (D13) True

3. The group of all n× n diagonal matrices with every diagonal entry ±1 is isomorphic to

Z2 ⊕ Z2 ⊕ · · · ⊕ Z2︸ ︷︷ ︸
n times

.

True

4. If G is an Abelian group of order 16 which has at least one element of order 8 and at
least two elements of order 2, then G ≈ Z8 ⊕ Z2. True

5. Every Abelian group of order 78 is cyclic. True

6. If G is non-Abelian and H is a normal subgroup of G, then the factor group G/H is also
non-Abelian.

False: S4/A4 ≈ Z2

7. The group G is Abelian if and only if G is cyclic.

False: Z2 ⊕ Z2 is Abelian but not cyclic. The other implication is True.

8. The group G is Abelian if and only if f : G −→ G defined by f(x) = x2 is a group
homomorphism. True

9. The finite group G is Abelian if and only if G/Z(G) is cyclic. True

10. The group G is Abelian if and only if the order of every non-identity element of G is 2.

False: Z3 is Abelian but has elements of order 3. The other implication is True.

11. The finite group G is Abelian if and only if |G| = p, for some prime number p.

False: Z6 is Abelian but 6 is not a prime. The other implication is True.

12. The group G is Abelian if and only if f : G −→ G defined by f(x) = x−1 is a group
homomorphism. True

13. The group G is Abelian if and only if Z(G) = G. True

14. The group G is Abelian if and only if every subgroup of G is normal in G.

False: in the Quaternions, Q, the only subgroup of order 2 is the center, which is
normal in Q. The other non-trivial subgroups have order 4 and index 2, so are normal
in Q. But Q is not Abelian. The other implication is True.

15. The finite group G is Abelian if and only if G is an external direct product of cyclic
groups. True



16. The finite group G is Abelian if and only if every non-identity element a ∈ G such that
a−1 is in cl (a) has order 2.

False: in A4, the conjugacy classes are

{(1)}, {(12)(34), (13)(24), (14)(23)}, {(123), (243), (142), (134)}, {(132), (234), (124), (143)}.

So α−1 ∈ cl(α) only if α has order 2. But A4 is not Abelian.

The other implication is True.

17. The group G is Abelian if and only if C(a) = G for every a ∈ G. True

18. If G is a group with order 2p, for some prime number p, then G is Abelian.

False: D3 has order 6 = 2 · 3 but D3 is not Abelian.

19. The group G is Abelian if and only if for every x ∈ G there is a y ∈ G such that x = y2.

False: in Z6 the ‘squares’ y2 are 2y. And for y ∈ Z6 the ‘squares’ are

2 · 0 = 0, 2 · 1 = 2, 2 · 2 = 4, 2 · 3 = 0, 2 · 4 = 2, 2 · 5 = 4.

So no odd number in Z6 is a square. But Z6 is Abelian. The other implication is True.

20. If G is a group of order p2, for some prime number p, then G is Abelian. True



PART C: multiple-answer questions, from a tear-down menu. Five of the following seven
questions are selected, with 10 matches to make in each question. (avg: 13.2/20)

1. For each of the following statements pick from the given list of Theorems the Theorem
that best matches the statement.

Statements:

• If G is a finite group and H is a subgroup of G then the order of H divides the
order of G. Ans: (a)

• Every finite Abelian group is the direct product of cyclic groups of prime-power
order. Ans: (b)

• Every group is isomorphic to a group of permutations. Ans: (c)

• If f is a homomorphism from the group G to the group H then the image of f is
isomorphic to the factor group of G by the kernel of f. Ans: (d)

• In any group the inverse of a product of two elements is the product of the inverses
of the two elements, but in reverse order. Ans: (e)

• Every subgroup of a finite cyclic group G is cyclic and for each divisor of the order
of G there is exactly one subgroup of G with order equal to that divisor. Ans: (f)

• If G is a finite group and p is a prime that divides the order of G, then G has an
element of order p. Ans: (g)

• If the factor group of G by its center is cyclic then G is Abelian. Ans: (h)

• If G is a finite Abelian group and the prime number p divides the order of the
group G, then G has an element of order p. Ans: (i)

• If G is a finite group of permutations of a set and x is any element in the set,
then the order of G is the product of the number of elements in the stabilizer of
x and the number of elements in the orbit of x. Ans: (j)

Theorems:

(a) Lagrange’s Theorem

(b) The Fundamental Theorem of Finite Abelian Groups

(c) Cayley’s Theorem

(d) The First Isomorphism Theorem

(e) Socks-Shoes Property

(f) The Fundamental Theorem of Cyclic Groups

(g) Cauchy’s Theorem

(h) The G/Z Theorem

(i) Cauchy’s Theorem for Abelian Groups

(j) Orbit-Stabilizer Theorem

Plus some ‘distractors’



Q2. Q3. Q4.

Does the given wall paper pattern have a symmetry of the following type?

type of symmetry Q2. Q3. Q4.
a rotation of order 2 Yes No Yes
a rotation of order 3 No Yes No
a rotation of order 4 Yes No Yes
a rotation of order 5 No No No
a rotation of order 6 No No No
a reflection in a horizontal axis No Yes No
a reflection in a vertical axis No No No
a reflection in a diagonal axis No Yes Yes
a non-trivial glide reflection No Yes Yes
a translation Yes Yes Yes

5. How many elements of each possible order are there in the group Z8 ⊕ Z3?

6. How many elements of each possible order are there in the group Z12 ⊕ U(4)?

7. How many elements of each possible order are there in the group Aut (Z45)?

order Z8 ⊕ Z3 Z12 ⊕ U(4) Aut (Z45) ≈ U(45) ≈ U(9)⊕ U(5)
≈ Z24 ≈ Z12 ⊕ Z2 ≈ Z6 ⊕ Z4 ≈ Z2 ⊕ Z3 ⊕ Z4 ≈ Z2 ⊕ Z12

1 1 1 1
2 1 3 3
3 2 2 2
4 2 4 4
5 0 0 0
6 2 6 6
7 0 0 0
8 4 0 0
12 4 8 8
24 8 0 0

Total 24 24 24



PART D: Three Short Proofs. Each student is given three of the following seven statements
to prove. They then submit their hand-written solutions to be marked. (avg: 9.4/15)

1. If H and K are normal subgroups of G and H ∩ K = {e}, then G is isomorphic to a
subgroup of G/H ⊕G/K.
Proof: define φ : G −→ G/H ⊕G/K by φ(x) = (xH, xK). Then

φ(xy) = (xyH, xyK) = (xH yH, xK yK) = (xH, xK)(yH, yK) = φ(x)φ(y), and

ker(φ) = {x ∈ G | xH = H and xK = K} = {x ∈ G | x ∈ H, x ∈ K} = H ∩K = {e}.
Thus φ is a one-to-one homomorphism. Then by the First Isomorphism Theorem,

G ≈ G/ ker(φ) ≈ im (φ) ≤ G/H ⊕G/K.

2. If m and n are positive positive integers then the mapping f : Zm −→ Zn defined by
f(x) = x mod n is a homomorphism if and only if n divides m.

Proof: let f : Zm −→ Zn be defined by f(x) = x.

Note that in Zm, 1 + 1 + · · ·+ 1︸ ︷︷ ︸
m times

= m ≡ 0 mod m. If φ is a homomorphism, then

0 = f(0) = φ(1 + 1 + · · ·+ 1︸ ︷︷ ︸
m times

) = mφ(1) = m · 1 = m;

that is, m ≡ 0 mod n; so n divides m. Conversely, if n divides m, then m = kn, for
some positive integer k. Then

x+ y ≡ q mod m⇒ kn divides x+ y − q ⇒ n divides x+ y − q.

Thus x + y ≡ q mod m ⇒ x + y ≡ q mod n, and so f(x + y) = f(x) + f(y), which
means that f is a homomorphism.

3. Every subgroup of Dn of odd order is cyclic.

Proof: Dn consists of n rotations, which form a cyclic subgroup of Dn of order n; and
n reflections, which all have order 2. Thus any subgroup G of Dn that has odd order
contains no reflections, else 2 divides an odd number. Thus the subgroup G consists
solely of rotations. That means G is a subgroup of a cyclic group, so is cyclic.

4. If H is a subgroup of Sn and the order of H is an odd number, then H ≤ An.

Proof: let h ∈ H. Since |H| is odd, the order of h is also odd. If h is written as a
product of disjoint cycles in Sn, then each cycle must have odd order, since only the
lowest common multiple of odd numbers can be odd. But each cycle of length an odd
number is an even permutation. Thus h ∈ An.



5. If G is a group of order n and k is an integer relatively prime to n, then the mapping
φ : G −→ G defined by φ(g) = gk is one-to-one.

Proof: since gcd(n, k) = 1 there are integers a and b such that

1 = ak + bn⇔ ak = 1− bn.

Thus, for x, y ∈ G : φ(x) = φ(y) ⇒ xk = yk

⇒ (xk)a = (yk)a

⇒ xak = yak

⇒ x1−bn = y1−bn

⇒ x x−bn = y y−bn

⇒ x (xn)−b = y (yn)−b

(since |G| = n) ⇒ x e−b = y e−b

⇒ x e = y e

⇒ x = y,

and φ is one-to-one. Note: φ is not necessarily a homomorphism.

6. For n ≥ 3, Z(Sn) = {ε}.
Proof: suppose σ ∈ Sn and σ 6= ε. Then σ(i) 6= i, for some i. Let σ(i) = j 6= i. Pick
k ≤ n such that k 6= i, k 6= j. (Possible since n ≥ 3.) Let τ = (ik). Then

(τ ◦ σ)(i) = τ(σ(i)) = τ(j) = k but (σ ◦ τ)(i) = σ(τ(i)) = σ(k) 6= j,

since σ is one-to-one and σ(i) = j. Thus τ ◦ σ 6= σ ◦ τ and σ can’t be in Z(Sn).

7. Let A ∈ GL(3,R). Show that cl (A) 6= cl (−A) but that |cl (A)| = |cl (−A)|.
Proof: if −A = XAX−1 for some X ∈ GL(3,R), then

− det(A) = det(−A) = det(XAX−1) = det(X) det(A) det(X−1) = det(A),

and consequently det(A) = 0, which means A is not in GL(3,R). Thus −A can’t be in
cl (A), and so cl (A) 6= cl (−A).

For the other part:

Y ∈ cl(A) ⇔ Y = XAX−1, for some X ∈ GL(3,R)

⇔ −Y = X(−A)X−1, for some X ∈ GL(3,R)

⇔ −Y ∈ cl(−A).

That is, multiplicaton by −I gives a one-to-one correspondence between cl(A) and
cl(−A), so they have the same order.



PART E: Long Written Question. Each student is assigned one of these four questions. They
then submit their hand-written solution to be marked. (avg: 9.5/25)

1. Let G be a finite group with operation multiplication. For x ∈ G define fx : Z −→ G by
fx(m) = xm. Prove the following:

(a) [2 marks] fx is a group homomorphism.

Proof: fx(m+ n) = xm+n = xmxn = fx(m)fy(m).

(b) [4 marks] ker(fx) = 〈|x|〉
Proof: to show ker(fx) = 〈|x|〉 show ker(fx) ⊂ 〈|x|〉 and 〈|x|〉 ⊂ ker(fx) :

m ∈ ker(fx)⇒ f(m) = e⇒ xm = e⇒ |x|
∣∣m⇒ m ∈ 〈|x|〉 ⇒ ker(fx) ⊂ 〈|x|〉,

and

m ∈ 〈|x|〉 ⇒ m = k|x| ⇒ fx(m) = xk|x| = (x|x|)k = ek = e⇒ 〈|x|〉 ⊂ ker(fx).

(c) [2 marks] im (fx) = 〈x〉
Proof: im (fx) = {fx(m) | m ∈ Z} = {xm | m ∈ Z} = 〈x〉.

(d) [6 marks] If G is Abelian then the set H = {fx | x ∈ G} with the operation ∗
defined by

(fx ∗ fy)(m) = fx(m) fy(m), for all m ∈ Z,

is an Abelian group.

Proof: in five steps.

Step 1: for x, y ∈ G show fx ∗ fy is in H. Let m ∈ Z. Then

(fx ∗ fy)(m) = fx(m) fy(m) = xm ym = (xy)m︸ ︷︷ ︸
since G is Abelian

= fxy(m).

This shows that fx ∗ fy = fxy. Since xy ∈ G, fx ∗ fy ∈ H.
Step 2: existence of identity. The identity function is fe since

fx ∗ fe = fxe = fx = fex = fe ∗ fx.

Step 3: H has inverses. Let fx ∈ H. Then f−1x = fx−1 since

fx ∗ fx−1 = fxx−1 = fe = fx−1x = fx−1 ∗ fx.

Step 4: ∗ is associative. Let x, y, z ∈ G. Then

(fx ∗ fy) ∗ fz = fxy ∗ fz = fxyz = fx ∗ fyz = fx ∗ (fy ∗ fz).

Steps 1 through 4 show that H together with the operation ∗ is a group. Finally,

Step 5: H is Abelian. Let x, y ∈ G. Then

fx ∗ fy = fxy = fyx︸ ︷︷ ︸
since G is Abelian

= fy ∗ fx.



(e) [5 marks] If G is Abelian, then H ≈ G, with H as in part (d).

Proof: define φ : G −→ H by φ(x) = fx. Then, making use of the results proved
in part (d),

• φ is a homomorphism: φ(xy) = fxy = fx ∗ fy = φ(x) ∗ φ(y).

• φ is one-to-one:

φ(x) = fe ⇒ fx = fe ⇒ fx(1) = fe(1)⇒ x = e⇒ ker(φ) = {fe}.

• φ is onto: for fx ∈ H we have φ(x) = fx, so im (φ) = H.

So φ is an isomorphism and thus G ≈ H.

(f) [5 marks] If G is Abelian, then Aut (H) ≈ Aut (G), with H as in part (d).

Proof: it’s true in general that isomorphic groups have isomorphic automorphism
groups. The proof of that is as follows. Let φ : G −→ H be the isomorphism from
part (e); let α ∈ Aut (G). Define f : Aut (G) −→ Aut (H) by

f(α) = φ ◦ α ◦ φ−1.

Then check the following:

1. f(α) is in Aut (H) : i.e. f(α) : H −→ H and f(α) is an isomorphism. Let
x, y ∈ H.
f(α) is a homomorphism:

(f(α))(xy) = (φ◦α◦φ−1)(xy) = φ(α(φ−1(xy))) = φ(α(φ−1(x)φ−1(y)))
= φ(α(φ−1(x))α(φ−1(y))) = φ(α(φ−1(x))φ(α(φ−1(y))) = (f(α))(x)(f(α))(y).

f(α) is one-to-one:

f(α)(x) = eH ⇒ φ(α(φ−1(x))) = eH ⇒ α(φ−1(x)) = φ−1(eH) = eG
⇒ φ−1(x) = α−1(eG) = eG ⇒ x = φ(eG) = eH

f(α) is onto: for any y ∈ H,
(f(α))(φ(α−1(φ−1(y)))) = (φ ◦ α ◦ φ−1)(φ(α−1(φ−1(y)))) = y

2. f : Aut (G) −→ Aut (H) is a homomorphism:

Let α, β ∈ Aut (G). Then

f(α ◦ β) = φ ◦ α ◦ β ◦ φ−1 = φ ◦ α ◦ φ−1 ◦ φ ◦ β ◦ φ−1 = f(α) ◦ f(β)

3. f is one-to-one: let iG : G −→ G and iH : H −→ H be the identity automor-
phisms on G and H, respectively. Then

f(α) = iH ⇒ φ◦α◦φ−1 = iH ⇒ φ◦α = φ◦iH = φ⇒ α = φ−1◦φ = iG

4. f is onto: let β ∈ Aut (H). Then

f(φ−1 ◦ β ◦ φ) = φ ◦ φ−1 ◦ β ◦ φ ◦ φ−1 = iG ◦ β ◦ iH = β.

Thus f is an isomorphism and so Aut (H) ≈ Aut (G).



2. Let p be a prime.

(a) [6 marks] How many subgroups does Zp ⊕ Zp have?

Solution: we know that |Zp ⊕ Zp| = p2 and that every non-identity element in
Zp⊕Zp has order p. If G ≤ Zp⊕Zp then by Lagrange’s Theorem |G| = 1, p or p2.

1. If |G| = 1 then G is the trivial subgroup.

2. If |G| = p2 then G = Zp ⊕ Zp, the whole group.

3. If |G| = p, then G ≈ Zp and G = 〈x〉 for some x ∈ Zp⊕Zp, with |x| = p. There
are p2 − 1 elements of order p in Zp ⊕ Zp but p− 1 of them are in the same
subgroup: that is, if G = 〈x〉, then G is generated by all of x, x2, x3, . . . , xp−1.
Thus the number of distinct subgoups of order p in Zp ⊕ Zp is

p2 − 1

p− 1
= p+ 1.

So in total, Zp ⊕ Zp has p+ 3 subgroups.

(b) [7 marks] How many homomorphisms are there from Zp ⊕ Zp to Zp?
Solution: let f : Zp⊕Zp −→ Zp be a homomorphism. Since |im (f)|

∣∣p, there are
only two possibilities:

1. |im (f)| = 1, in which case f is the zero map: f(x) = 0, for all x ∈ Zp ⊕ Zp.
2. |im (f)| = p, in which case | ker(f)| = p. Hence im (f) = Zp and ker(f) ≈ Zp.

Suppose ker(f) = 〈x〉, one of the p+ 1 subgroups of Zp⊕Zp of order p. Then
Zp ⊕ Zp/ ker(f) ≈ Zp, so there is a y ∈ Zp ⊕ Zp such that

Zp ⊕ Zp/ ker(f) = 〈y ker(f)〉,

and in terms of cosets,

Zp ⊕ Zp = ker(f) ∪ y ker(f) ∪ y2 ker(f) ∪ · · · ∪ yp−1 ker(f).

Then the homomorphism f is completely determined by the value of f(y) :
if f(y) = m ∈ Zp, then for any z ∈ yi ker(f) we have z = yi xk, for some xk

in ker(f), and so

f(z) = f(yi xk) = f(yi) + f(xk) = im+ 0 = im.

Since there are p + 1 choices for ker(f) and p− 1 choices for m, in this case
the total number of homomorphisms is (p+ 1)(p− 1) = p2 − 1.

In total there are 1 + p2 − 1 = p2 possible homomorphisms from Zp ⊕ Zp to Zp.



Alternate Solution: this approach uses techniques of Linear Algebra, but if you use
this approach you must justify everything. First observe that if a, b ∈ Zp, a, b 6= 0, and
f : Zp ⊕ Zp −→ Zp is a homomorphism, then

f((a, b)) = f((a, 0) + (0, b))

= f((a, 0)) + f((0, b))

= f((1, 0) + (1, 0) + · · ·+ (1, 0)︸ ︷︷ ︸
a times

) + f((0, 1) + (0, 1) + · · ·+ (0, 1)︸ ︷︷ ︸
b times

)

= f((1, 0)) + f((1, 0)) + · · ·+ f((1, 0))︸ ︷︷ ︸
a times

+ f((0, 1)) + f((0, 1)) + · · · f((0, 1))︸ ︷︷ ︸
b times

= a f((1, 0)) + b f((0, 1)).

Similarly,
f((a, 0)) = a f((1, 0)) and f((0, b)) = b f((0, 1)).

This shows that the homomorphism f is completely determined by the two values,
f((1, 0)) and f((0, 1)).

Now, if f : Zp ⊕Zp −→ Zp is a homomorphism, then |im (f)|
∣∣ p, so there are only two

possibilities:

1. |im (f)| = 1, in which case f is the zero map: f((a, b)) = 0.

2. |im (f)| = p, in which case im (f) = Zp and im (f) must contain an element of
order p. Since f is not the zero map, at least one of f((1, 0)) and f((0, 1)) is not 0.

(a) If f((1, 0)) = 0, then f((0, 1)) ∈ {1, 2, . . . , p− 1}, giving p− 1 possibilities.

(b) If f((0, 1)) = 0, then f((1, 0)) ∈ {1, 2, . . . , p− 1}, giving p− 1 possibilities.

(c) If neither f((1, 0)) = 0 nor f((0, 1)) = 0, then there are

(p− 1)(p− 1) = p2 − 2p+ 1

ways to pick f((1, 0)) and f((0, 1)), giving p2 − 2p+ 1 possibilities for f.

Thus the total number of homomorphisms in this case is

p− 1 + p− 1 + p2 − 2p+ 1 = p2 − 1.

And so, in total, there are 1 + p2 − 1 = p2 homomorphisms from Zp ⊕ Zp to Zp.



(c) [6 marks] Let G be the set of all homomorphisms from Zp ⊕ Zp to Zp. Show that
G together with the operation of function addition, +, defined by

(f + g)(x) = f(x) + g(x), for all x ∈ Zp ⊕ Zp,

for f, g ∈ G, is an Abelian group.

Proof: in five steps.

Step 1: for f, g ∈ G show f + g is in G. Let f, g ∈ G, x, y ∈ Zp ⊕ Zp. Then

(f + g)(x+ y) = f(x+ y) + g(x+ y)

= f(x) + f(y) + g(x) + g(y)

= f(x) + g(x) + f(y) + g(y), since Zp is Abelian

= (f + g)(x) + (f + g)(y),

which means f + g ∈ G.
Step 2: existence of identity. The zero map, e(x) = 0 for all x ∈ Zp ⊕ Zp, is
the identity, since for any f ∈ G, and every x ∈ Zp ⊕ Zp,

(e+f)(x) = e(x)+f(x) = 0+f(x) = f(x) = f(x)+0 = f(x)+e(x) = (f +e)(x).

That is e+ f = f = f + e.

Step 3: G has inverses. For f ∈ G define −f : Zp ⊕ Zp −→ Zp by

(−f)(x) = −f(x), the additive inverse of f(x) ∈ Zp.

Then −f ∈ G since for all x, y ∈ Zp ⊕ Zp,

(−f)(x+ y) = −(x+ y) = −x− y = (−f)(x) + (−f)(y);

and −f is the inverse of f, since

(f + (−f))(x) = f(x) + (−f)(x) = f(x)− f(x) = 0.

That is, f + (−f) = e, the zero map.

Step 4: functional addition is associative. Let f, g, h ∈ G, x ∈ Zp ⊕ Zp.
Then

(f+(g+h))(x) = f(x)+(g+h)(x) = f(x)+g(x)+h(x) = (f+g)(x)+h(x) = ((f+g)+h)(x).

Since this is true for any x, we have f + (g + h) = (f + g) + h.

Step 5: Show G is Abelian. Let f, g ∈ G, x ∈ Zp ⊕ Zp. Then

(f + g)(x) = f(x) + g(x) = g(x) + f(x)︸ ︷︷ ︸
since Zp is Abelian

= (g + f)(x),

so f + g = g + f.



(d) [3 marks] Show that G ≈ Zp ⊕ Zp.
Proof: |G| = p2 and there are only two Abelian groups up to isomorphism of
order p2 : Zp2 or Zp ⊕ Zp. Let g ∈ G with order n and let x be any element in
Zp ⊕ Zp. Then

(g + g + · · ·+ g︸ ︷︷ ︸
p times

)(x) = p g(x) = 0 in Zp.

Thus n
∣∣p, which means n = 1 or p. So G has no element of order p2, and by

default G ≈ Zp ⊕ Zp.
(e) [1 mark] For x ∈ Zp ⊕ Zp, define x∗ : G −→ Zp by

x∗(g) = g(x).

Show that x∗ is a homomorphism.

Proof: let f, g ∈ G. Then

x∗(f + g) = (f + g)(x) = f(x) + g(x) = x∗(f) + x∗(g).

(f) [1 mark] Assume that H = {x∗ | x ∈ Zp ⊕ Zp} together with function addition,
+, defined by

(x∗ + y∗)(g) = x∗(g) + y∗(g), for g ∈ G,

for x∗, y∗ ∈ H, is a group. Suggest a homomorphism φ : Zp ⊕ Zp −→ H that you
could use to show H ≈ Zp ⊕ Zp.
Suggestion: φ(x) = x∗.



3. Define the following six matrices in O(3,R) :

I =

 1 0 0
0 1 0
0 0 1

 , P132 =

 0 1 0
0 0 1
1 0 0

 , P123 =

 0 0 1
1 0 0
0 1 0

 ,
P23 =

 1 0 0
0 0 1
0 1 0

 , P13 =

 0 0 1
0 1 0
1 0 0

 , P12 =

 0 1 0
1 0 0
0 0 1

 .
(a) [5 marks] Show that {I, P132, P123, P23, P13, P12} is a subgroup of O(3,R) isomor-

phic to S3.

Proof: let P = {I, P132, P123, P23, P13, P12}. All we need to show is that P is
a non-Abelian group, since we proved in class that there are only two possible
groups of order 6, namely Z6 and D3. Then D3 must be isomorphic to S3, since
they are both non-Abelian groups of order 6. The easiest way to prove P is a
group, and the most useful way in terms of what is to come, is to write out it’s
Cayley table, or multiplication table:

I P132 P123 P23 P13 P12

I I P132 P123 P23 P13 P12

P132 P132 P123 I P13 P12 P23

P123 P123 I P132 P12 P23 P13

P23 P23 P12 P13 I P123 P132

P13 P13 P23 P12 P132 I P123

P12 P12 P13 P23 P123 P132 I

Alternate Solution: observe that the effect of left-multiplying I by the matrix
Pσ is to permute the rows of I, one matrix for each possible permutation of the
three rows. So σ 7→ Pσ defines an isomorphism from S3 to P.

(b) [6 marks] Let H be the set of all invertible matrices of the form

aI + cP132 + bP123 =

 a c b
b a c
c b a

 , with a, b, c ∈ R.

Show that H is a subgroup of GL(3,R).

Proof: H is obviously non-empty so we need only check closure under multipli-
cation and inverses. Let A = aI + cP132 + bP123 and B = xI + yP132 + zP123 be
two matrices in H. Then

AB = (aI + cP132 + bP123)(xI + yP132 + zP123)

= (ax+ by + cz)I + (ay + bz + cx)P132 + (az + bx+ cy)P123 ∈ H.
Checking that H is closed under inverses is a little trickier. If you use the adjoint
formula for A−1 you find

A−1 =
1

det(A)

 a2 − bc b2 − ac c2 − ab
c2 − ab a2 − bc b2 − ac
b2 − ac c2 − ab a2 − bc

 ∈ H.



(c) [2 marks] Let K be the set of all invertible matrices of the form

aP23 + bP12 + cP13 =

 a b c
b c a
c a b

 , with a, b, c ∈ R.

Show that if A ∈ K then A−1 ∈ K.
Proof: similar calculation to (b). Let A = aP23 + bP12 + cP13. Then

A−1 =
1

det(A)

 cb− a2 ac− b2 ab− c2
ac− b2 ab− c2 cb− a2
ab− c2 cb− a2 ac− b2

 ∈ K.
(d) [4 marks] Show that

(i) if A,B ∈ K then AB ∈ H.
Proof: let A = aP23 + bP12 + cP13 and B = xP23 + yP12 + zP13 be matrices
in K. Then

AB = (aP23 + bP12 + cP13)(xP23 + yP12 + zP13)

= (ax+ by + cz)I + (ay + bz + cx)P132 + (az + bx+ cy)P123 ∈ H.

(ii) if A ∈ H and B ∈ K then both AB and BA are in K.
Proof: let A = aI + cP132 + bP123 be in H, let B = xP23 + yP12 + zP13 be in
K. Then

AB = (aI + cP132 + bP123)(xP23 + yP12 + zP13)

= (ax+ bz + cy)P23 + (ay + bx+ cz)P12 + (az + by + cx)P13 ∈ K.

A similar calculation shows that BA ∈ K as well.

(e) [3 marks] Let G = H ∪K. Show that G is a subgroup of GL(3,R).

Proof: note that if A ∈ H ∩K then A is of the form

A =

 a a a
a a a
a a a

 ,
which is not invertible. Thus H ∩ K = ∅. Therfore to show G is closed under
multiplication we only have to consider products of the four types

1. A1A2 with A1, A2 ∈ H
2. B1B2 with B1, B2 ∈ K
3. A1B1 with A1 ∈ H,B1 ∈ K
4. B1A1 with A1 ∈ H,B1 ∈ K

By part (b), products of type 1 are in H; by part (d)(i), products of type 2 are
in H; and by part (d)(ii), products of type 3 and 4 are in K. Thus G is closed
under multiplication.



Finally, if A ∈ G then it is in H or K. And by parts (b) and (c), A−1 ∈ H or K,
respectively. So A−1 ∈ G. Thus G is a subgroup of GL(3,R).

(f) [4 marks] Let A ∈ G. Find conditions on a, b, c such that A is orthogonal.

Proof: observe that for any A ∈ G the vector

~v =

 1
1
1


is an eigenvector of A with corresponding eigenvalue λ = a + b + c. If A is
orthogonal then λ = ±1 and the columns of A form an orthonormal basis for R3.
In particular each column of A must be a unit vector. Thus we require

a+ b+ c = ±1 and a2 + b2 + c2 = 1.

Observe that

(a+ b+ c)2 = 1 and a2 + b2 + c2 = 1 together imply 2ab+ 2ac+ 2bc = 0,

and so the columns of A form an orthogonormal set! Thus A ∈ G is orthogonal
if and only if

a+ b+ c = ±1 and a2 + b2 + c2 = 1.



4. Let G be the set of all 2× 2 invertible matrices, with entries in Z.

(a) [2 marks] Is G together with matrix multiplication a group? If not, why not?

Solution: No. G is not closed under inverses. For example,

A =

[
1 5
2 3

]
∈ G but A−1 =

1

7

[
−3 5

2 −1

]
is not in G.

(b) [5 marks] Prove that if both A and A−1 are in G then det(A) = ±1.

Proof: let A =

[
a b
c d

]
be in G, for which

A−1 =
1

det(A)

[
d −b
−c a

]
.

If A−1 ∈ G, then det(A) must divide all of a, b, c, d. Suppose p is a prime such
that pk divides det(A) but pk+1 doesn’t. Then pk divides all of a, b, c, d but pk+1

does not. Then there are integers a′, b′, c′, d′ such that

A =

[
pka′ pkb′

pkc′ pkd′

]
and

A−1 =
1

p2k det(a′d′ − b′c′)

[
pkd′ −pkb′
−pkc′ pka′

]
=

1

pk det(a′d′ − b′c′)

[
d′ −b′
−c′ a′

]
.

But p does not divide at least one of a′, b′, c′ or d′, so the matrix A−1 is not in G.
Thus there is no prime p that divides det(A), which means det(A) = ±1.

(c) [3 marks] Explain why H = {A ∈ G | det(A) = ±1}, together with matrix
multiplication, is a group.

Solution: H contains the identity matrix I, since det(I) = 1. H is closed under
multiplication: if A,B ∈ H then det(A) = ±1, det(B) = ±1, so

det(AB) = det(A) det(B) = ±1

as well. By part (b), H is closed under inverses. Finally, matrix multiplication is
always associative. Conclusion: H is a group.

(d) [2 marks] Prove that K = {A ∈ H | det(A) = 1} is a normal subgroup of H. To
which group is H/K isomorphic?

Proof: consider the homomorphism det : H −→ {1,−1}, with operation mul-
tiplication. Then K = ker(det) and thus K C H. By the First Isomorphism
Theorem,

H/K ≈ im (det) = {1,−1} ≈ Z2.



(e) [4 marks] Find the order of each of the following matrices in H :

A =

[
−1 0

0 −1

]
, B =

[
1 0
0 −1

]
, C =

[
0 1
1 0

]
, D =

[
0 −1
−1 0

]
,

X =

[
0 1
−1 0

]
, Y =

[
0 1
−1 −1

]
, Z =

[
0 1
−1 1

]
.

Solution: A,B,C,D have order 2, since

A2 =

[
−1 0

0 −1

] [
−1 0

0 −1

]
=

[
1 0
0 1

]
;B2 =

[
1 0
0 −1

] [
1 0
0 −1

]
=

[
1 0
0 1

]
;

C2 =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
;D2 =

[
0 −1
−1 0

] [
0 −1
−1 0

]
=

[
1 0
0 1

]
.

X, Y, Z have order 4, 3 and 6, respectively:

X4 =

[
0 1
−1 0

] [
0 1
−1 0

] [
0 1
−1 0

] [
0 1
−1 0

]
=

[
−1 0

0 −1

] [
−1 0

0 −1

]
=

[
1 0
0 1

]
;

Y 3 =

[
0 1
−1 −1

] [
0 1
−1 −1

] [
0 1
−1 −1

]
=

[
−1 −1

1 0

] [
0 1
−1 −1

]
=

[
1 0
0 1

]
;

Z6 =

([
0 1
−1 1

]2)3

=

[
−1 1
−1 0

]3
=

[
0 −1
1 −1

] [
−1 1
−1 0

]
=

[
1 0
0 1

]
.

(f) [8 marks] It is known that all the non-trivial finite subgroups of H are isomorphic
to

Z2,Z2 ⊕ Z2,Z3,Z4,Z6, D3, D4 or D6.

Find examples of subgroups in H for each of these eight possibilities.

Solution: from part (e) we know |A| = |B| = |C| = |D| = 2, |X| = 4, |Y | = 3
and |Z| = 6.

For the cyclic groups:

1. Z2 ≈ 〈A〉 or 〈B〉 or 〈C〉 or 〈D〉.
2. Z3 ≈ 〈Y 〉.
3. Z4 ≈ 〈X〉.
4. Z6 ≈ 〈Z〉.

As for the Dihedral groups:

1. D2 aka Z2 ⊕ Z2 ≈ {I, C,D,−I}, since D = −C and CD = DC = −I.
2. D3 ≈ 〈Y,C〉, since Y 3 = C2 = I and CY C = Y 2.

3. D4 ≈ 〈X,B〉, since X4 = B2 = I and BXB = X3.

4. D6 ≈ 〈Z,C〉, since Z6 = C2 = I and CZC = Z5.


