MAT188H1F - Linear Algebra - Fall 2019
 Solutions to Term Test 2 - November 12, 2019

Time allotted: 100 minutes.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

Genreal Comments:

- The range on every question was 0 to perfect.
- There were two bonus marks available, one each in Question 8(b) and 8(d): the bonus mark was for finding a counterexample.
- Many students missed the connection between parts (a) and (b) of Question 2, which meant some students did way too much work for that question.
- In Question 7 many students used 2×2 matrices in their 'proofs.' This is not valid: you can't prove a general statement by taking a special case. Otherwise I could prove all prime numbers are even: $n=2$ is prime and it is even.

Breakdown of Results: 920 registered students wrote this test. The marks ranged from 6.25% to 102.5%-because of the two bonus marks - and the average was 66.9%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	8.3%
A	24.3%	$80-89 \%$	16.1%
B	21.2%	$70-79 \%$	21.2%
C	22.4%	$60-69 \%$	22.4%
D	16.6%	$50-59 \%$	16.6%
F	15.5%	$40-49 \%$	10.9%
		$30-39 \%$	3.5%
		$20-29 \%$	0.8%
		$10-19 \%$	0.2%
		$0-9 \%$	0.1%

1. [10 marks; avg: 9.5/10] Let

$$
A=\left[\begin{array}{rr}
1 & 0 \\
3 & -2 \\
0 & 3
\end{array}\right], B=\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 0 & 2
\end{array}\right]
$$

Compute the following:
(a) $[3$ marks $] A B$

Solution:

$$
A B=\left[\begin{array}{rr}
1 & 0 \\
3 & -2 \\
0 & 3
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 0 & 2
\end{array}\right]=\left[\begin{array}{rrr}
1 & -1 & 2 \\
5 & -3 & 2 \\
-3 & 0 & 6
\end{array}\right]
$$

(b) $[3$ marks $] B A$

Solution:

$$
B A=\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 0 & 2
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
3 & -2 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
-2 & 8 \\
-1 & 6
\end{array}\right]
$$

(c) [4 marks] $A^{T} B^{T}$

Solution: quick way is

$$
A^{T} B^{T}=(B A)^{T}=\left[\begin{array}{ll}
-2 & 8 \\
-1 & 6
\end{array}\right]^{T}=\left[\begin{array}{rr}
-2 & -1 \\
8 & 6
\end{array}\right]
$$

Long way is

$$
A^{T} B^{T}=\left[\begin{array}{rr}
1 & 0 \\
3 & -2 \\
0 & 3
\end{array}\right]^{T}\left[\begin{array}{rrr}
1 & -1 & 2 \\
-1 & 0 & 2
\end{array}\right]^{T}=\left[\begin{array}{rrr}
1 & 3 & 0 \\
0 & -2 & 3
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-1 & 0 \\
2 & 2
\end{array}\right]=\left[\begin{array}{rr}
-2 & -1 \\
8 & 6
\end{array}\right]
$$

2. [avg: 6.9/10] Let $A=\left[\begin{array}{rrr}3 & c & 5 \\ 0 & 2 & c \\ -1 & 0 & 1\end{array}\right], \vec{b}=\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]$.
(a) [4 marks] Find all values of c such that $\operatorname{det}(A)=0$.

Solution: $\operatorname{det}\left[\begin{array}{rrr}3 & c & 5 \\ 0 & 2 & c \\ -1 & 0 & 1\end{array}\right]=6-c^{2}+10=16-c^{2} . \operatorname{So} \operatorname{det}(A)=0 \Leftrightarrow c= \pm 4$.
(b) [6 marks] Find all values of c for which the system $A \vec{x}=\vec{b}$ has
(i) no solution,
(ii) a unique solution,
(iii) infinitely many solutions.
Answers: $(i) c=-4$
(ii) $c \neq \pm 4$
(iii) $c=4$

Solution: if $c \neq \pm 4$, then A is invertible and the system $A \vec{x}=\vec{b}$ has a unique solution.

If $c=4$, reducing the augmented matrix of the system gives

$$
\left[\begin{array}{rrr|r}
3 & 4 & 5 & -1 \\
0 & 2 & 4 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
0 & 4 & 8 & 2 \\
0 & 2 & 4 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
0 & 0 & 0 & 0 \\
0 & 2 & 4 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right] .
$$

There is one free variable, so in this case there will be infinitely many solutions.
If $c=-4$, reducing the augmented matrix of the system gives

$$
\left[\begin{array}{rrr|r}
3 & -4 & 5 & -1 \\
0 & 2 & -4 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
0 & -4 & 8 & 2 \\
0 & 2 & -4 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
0 & 0 & 0 & 4 \\
0 & 2 & -4 & 1 \\
-1 & 0 & 1 & 1
\end{array}\right]
$$

The top row indicates that in this case the system has no solution.
Alternate approach: row reduce the augmented matrix.

$$
\begin{aligned}
& {\left[\begin{array}{rrr|r}
3 & c & 5 & -1 \\
0 & 2 & c & 1 \\
-1 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
-1 & 0 & 1 & 1 \\
0 & 2 & c & 1 \\
3 & c & 5 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
-1 & 0 & 1 & 1 \\
0 & 2 & c & 1 \\
0 & c & 8 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
-1 & 0 & 1 & 1 \\
0 & 2 & c & 1 \\
0 & 0 & 16-c^{2} & 4-c
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{rrc|c}
-1 & 0 & 1 & 1 \\
0 & 2 & c & 1 \\
0 & 0 & (4-c)(4+c) & 4-c
\end{array}\right]
\end{aligned}
$$

and then analyze as before.
3. [avg: 9.4/10] Consider the system of equations $(*)\left\{\begin{aligned} & x_{1}+2 x_{2}+x_{3}=7 \\ & x_{1}+3 x_{2}+x_{3}=7 \\ & 2 x_{1}+7 x_{2}+3 x_{3}= 19\end{aligned}\right.$.
(a) [3 marks] Write this system as a single matrix equation $A \vec{x}=\vec{b}$. Clearly identify A, \vec{x} and \vec{b}.

Solution:

$$
\underbrace{\left[\begin{array}{lll}
1 & 2 & 1 \\
1 & 3 & 1 \\
2 & 7 & 3
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]}_{\vec{x}}=\underbrace{\left[\begin{array}{r}
7 \\
7 \\
19
\end{array}\right]}_{\vec{b}}
$$

(b) [4 marks] Find A^{-1}.

Solution: use the Gaussian algorithm to find A^{-1} :

$$
\begin{aligned}
{[A \mid I]=} & {\left[\begin{array}{lll|lll}
1 & 2 & 1 & 1 & 0 & 0 \\
1 & 3 & 1 & 0 & 1 & 0 \\
2 & 7 & 3 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 3 & 1 & -2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|rrr}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -3 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 0 & 3 & -1 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & 2 & 1 & -1 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 1 & -3 & 1
\end{array}\right]=\left[I \mid A^{-1}\right]
\end{aligned}
$$

That is,

$$
A^{-1}=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -3 & 1
\end{array}\right]
$$

(c) [3 marks] Use A^{-1} to solve the system of equations ($*$).

Solution: $A \vec{x}=\vec{b} \Rightarrow \vec{x}=A^{-1} \vec{b}$, so

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
2 & 1 & -1 \\
-1 & 1 & 0 \\
1 & -3 & 1
\end{array}\right]\left[\begin{array}{r}
7 \\
7 \\
19
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
5
\end{array}\right]
$$

4. [10 marks; avg: 7.5/10] Solve the following system of linear differential equations

$$
\begin{aligned}
f_{1}^{\prime} & =2 f_{1}+5 f_{2} \\
f_{2}^{\prime} & =f_{1}-2 f_{2}
\end{aligned}
$$

for f_{1} and f_{2} as functions of x if $f_{1}(0)=2$ and $f_{2}(0)=10$.
Solution: the coefficient matrix is $A=\left[\begin{array}{rr}2 & 5 \\ 1 & -2\end{array}\right]$, for which

$$
\operatorname{det}(\lambda I-A)=(\lambda-2)(\lambda+2)-5=\lambda^{2}-9=(\lambda-3)(\lambda+3) .
$$

The eigenvalues of A are $\lambda_{1}=3$ and $\lambda_{2}=-3$, the roots of the characteristic polynomial. To find the eigenvectors, find a (simple) non-zero solution \vec{v} to the homogeneous system $(\lambda I-A) \vec{v}=\overrightarrow{0}$:

For eigenvalue $\lambda_{1}=3$:

$$
\left[\begin{array}{rr|r}
1 & -5 & 0 \\
-1 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

take

$$
\vec{v}_{1}=\left[\begin{array}{l}
5 \\
1
\end{array}\right] .
$$

So the general solution is

$$
\left[\begin{array}{l}
f_{1}(x) \\
f_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{l}
5 \\
1
\end{array}\right] e^{3 x}+c_{2}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] e^{-3 x} .
$$

Use the initial conditions at $x=0$ to find c_{1}, c_{2} :

$$
\begin{gathered}
{\left[\begin{array}{r}
2 \\
10
\end{array}\right]=c_{1}\left[\begin{array}{l}
5 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \Leftrightarrow\left[\begin{array}{r}
2 \\
10
\end{array}\right]=\left[\begin{array}{rr}
5 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \Leftrightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{rr}
5 & -1 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{r}
2 \\
10
\end{array}\right]} \\
\Leftrightarrow\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{6}\left[\begin{array}{rr}
1 & 1 \\
-1 & 5
\end{array}\right]\left[\begin{array}{r}
2 \\
10
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
12 \\
48
\end{array}\right]=\left[\begin{array}{l}
2 \\
8
\end{array}\right] .
\end{gathered}
$$

Thus

$$
f_{1}(x)=10 e^{3 x}-8 e^{-3 x} \text { and } f_{2}(x)=2 e^{3 x}+8 e^{-3 x} .
$$

5. [avg: 4.8/10]
5.(a) [5 marks] Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}z \\ y \\ x\end{array}\right]$. Find the matrix of T and show it is diagonalizable.

Solution: let the matrix of T be $A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right) T\left(\vec{e}_{3}\right)\right]$. Then

$$
A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \text { and } \operatorname{det}(\lambda I-A)=\operatorname{det}\left[\begin{array}{ccc}
\lambda & 0 & -1 \\
0 & \lambda-1 & 0 \\
-1 & 0 & \lambda
\end{array}\right]=(\lambda-1)\left(\lambda^{2}-1\right)=(\lambda+1)(\lambda-1)^{2} .
$$

For the repeated eigenvalue $\lambda=1$ there are two basic eigenvectors:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] ; \text { take } \vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

Thus A is diagonalizable. (You don't actually have to diagonalize A, but of course you could. That would be another way to show that it is diagonalizable.)
5.(b) [5 marks] Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be the linear transformation which is a reflection in the line with equation $y=-x$, followed by a reflection in the x-axis. Show that T is a rotation. What is the angle of rotation?

Solution: if you recall the formulas for the matrices, then

$$
\underbrace{\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]}_{\text {lection in } \mathrm{x} \text { - axis }} \text { times } \underbrace{\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]}_{\text {reflection in line } \mathrm{y}=-\mathrm{x}}=\underbrace{\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]}_{\text {rotation of } \mathrm{pi} / 2}
$$

OR, just follow effect on \vec{e}_{1} and \vec{e}_{2} :

$$
\vec{e}_{1} \underbrace{\longrightarrow}_{\text {reflection in line } \mathrm{y}=-\mathrm{x}}-\vec{e}_{2} \underbrace{\longrightarrow}_{\text {reflection in } \mathrm{x} \text { - axis }} \vec{e}_{2}
$$

and

$$
\vec{e}_{2} \underbrace{\overrightarrow{e_{1}}}_{\text {reflection in line } \mathrm{y}=-\mathrm{x}} \underbrace{\longrightarrow}_{\text {reflection in x- axis }}-\vec{e}_{1} .
$$

So the matrix of the composition is

$$
\left[\begin{array}{ll}
\vec{e}_{2} & -\vec{e}_{1}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

6. [10 marks; avg: 7.5/10] Suppose $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is a linear transformation such that

$$
T\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right)=\left[\begin{array}{l}
-1 \\
-9
\end{array}\right] .
$$

(a) [6 marks] Find a 2×2 matrix A such that $T(\vec{x})=A \vec{x}$, for all \vec{x} in \mathbb{R}^{2}.

Solution: let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $T(\vec{x})=A \vec{x}$. In particular,

$$
A\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
-2 \\
-6
\end{array}\right] \text { and } A\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-9
\end{array}\right] .
$$

We can combine these two equations into one matrix equation and then solve for A :

$$
A\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
-2 & -1 \\
-6 & -9
\end{array}\right] \Leftrightarrow A=\left[\begin{array}{ll}
-2 & -1 \\
-6 & -9
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right]^{-1}=\left[\begin{array}{ll}
-2 & -1 \\
-6 & -9
\end{array}\right]\left[\begin{array}{rr}
4 & -1 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{rr}
-5 & 1 \\
3 & -3
\end{array}\right] .
$$

Alternate Approach: observe that $\vec{e}_{1}=4\left[\begin{array}{l}1 \\ 3\end{array}\right]-3\left[\begin{array}{l}1 \\ 4\end{array}\right]$ and $\vec{e}_{2}=-\left[\begin{array}{l}1 \\ 3\end{array}\right]+\left[\begin{array}{l}1 \\ 4\end{array}\right]$, so

$$
T\left(\vec{e}_{1}\right)=4 T\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)-3 T\left(\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right)=4\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]-3\left[\begin{array}{l}
-1 \\
-9
\end{array}\right]=\left[\begin{array}{r}
-5 \\
3
\end{array}\right]
$$

and

$$
T\left(\vec{e}_{2}\right)=-T\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)+T\left(\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right)=-\left[\begin{array}{l}
-2 \\
-6
\end{array}\right]+\left[\begin{array}{l}
-1 \\
-9
\end{array}\right]=\left[\begin{array}{r}
1 \\
-3
\end{array}\right] .
$$

(b) [4 marks] What is $T^{-1}\left(\left[\begin{array}{l}24 \\ 36\end{array}\right]\right)$?

Solution: the matrix of T^{-1} is A^{-1}, so

$$
T^{-1}\left(\left[\begin{array}{l}
24 \\
36
\end{array}\right]\right)=\left[\begin{array}{rr}
-5 & 1 \\
3 & -3
\end{array}\right]^{-1}\left[\begin{array}{l}
24 \\
36
\end{array}\right]=\frac{1}{12}\left[\begin{array}{ll}
-3 & -1 \\
-3 & -5
\end{array}\right]\left[\begin{array}{l}
24 \\
36
\end{array}\right]=\left[\begin{array}{ll}
-3 & -1 \\
-3 & -5
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-9 \\
-21
\end{array}\right] .
$$

7. [avg: 2.7/10]
8. (a) [3 marks] Prove: if A is an $n \times n$ matrix then $A+A^{T}+A^{T} A$ is symmetric.

Solution: use properties of transpose.

$$
\left(A+A^{T}+A^{T} A\right)^{T}=A^{T}+\left(A^{T}\right)^{T}+\left(A^{T} A\right)^{T}=A^{T}+A+A^{T}\left(A^{T}\right)^{T}=A+A^{T}+A^{T} A .
$$

So $A+A^{T}+A^{T} A$ is its own transpose; it is symmetric.
7.(b) [4 marks] Prove: if \vec{v} is an eigenvector of the $n \times n$ matrix A with eigenvalue λ then \vec{v} is an eigenvector of A^{3} with corresponding eigenvalue λ^{3}.

Solution: we know $A \vec{v}=\lambda \vec{v}$. So

$$
A^{2} \vec{v}=A(A \vec{v})=A(\lambda \vec{v})=\lambda(A \vec{v})=\lambda(\lambda \vec{v})=\lambda^{2} \vec{v}
$$

and similarly

$$
A^{3} \vec{v}=A\left(A^{2} \vec{v}\right)=A\left(\lambda^{2} \vec{v}\right)=\lambda^{2}(A \vec{v})=\lambda^{2}(\lambda \vec{v})=\lambda^{3} \vec{v} .
$$

Thus \vec{v} is an eigenvector of A with corresponding eigenvalue λ^{3}.
7.(c) [3 marks] Prove: if A is an $n \times n$ matrix then A and A^{T} have the same characteristic polynomial (and so the same eigenvalues.)

Solution: use the fact that a square matrix and its transpose have the same determinant. Thus

$$
\operatorname{det}\left(\lambda I-A^{T}\right)=\operatorname{det}\left(\lambda I^{T}-A^{T}\right)=\operatorname{det}\left((\lambda I-A)^{T}\right)=\operatorname{det}(\lambda I-A)
$$

Conclude: the characteristic polynomial of A^{T} is the same as the characteristic polynomial of A.
8. [avg: 5.3/10] Indicate if the following statements are True or False, and give a brief explanation why.
(a) [2 marks] If $\lambda=0$ is an eigenvalue of the $n \times n$ matrix A, then A is not invertible.
\otimes True \bigcirc False
Explanation: if $\vec{v} \neq \overrightarrow{0}$ is a corresponding eigenvector, then $A \vec{v}=\overrightarrow{0}$. This means the homogeneous system has a non-trivial solution, which means A is not invertible.

OR
$0=\operatorname{det}(A-0 I)=\operatorname{det}(A)$, so A is not invertible.
(b) [2 marks] If A, P and D are $n \times n$ matrices, D is a diagonal matrix, and $A P=P D$, then A is diagonalizable.

True \otimes False
Explanation: it's true if P is invertible. But if P is not invertible, A need not be diagonalizable. For example, take

$$
P=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right], A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right], D=I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Then A is not diagonalizable but $A P=P D=O$.
(c) [2 marks] If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear transformation then $T(\overrightarrow{0})=\overrightarrow{0} . \quad \otimes$ True \bigcirc False Explanation: let the matrix of T be A. Then $T(\overrightarrow{0})=A \overrightarrow{0}=\overrightarrow{0}$.
(d) [2 marks] If A and B are $n \times n$ matrices such that A is invertible, then $A B A^{-1}=B$.

\bigcirc True \otimes False

Explanation: the conclusion is equivalent to $A B=B A$. But this is not always true. For example if

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], B=\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right],
$$

then A is invertible but

$$
A B=\left[\begin{array}{ll}
1 & 1 \\
4 & 4
\end{array}\right] \neq\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]=B A .
$$

(e) [2 marks] If A is an $n \times n$ matrix such that $A^{5}-3 A-I=O$, where I is the $n \times n$ identity matrix and O is the $n \times n$ zero matrix, then A is invertible. \otimes True \bigcirc False

Explanation: $A^{5}-3 A=I \Rightarrow A\left(A^{4}-3 I\right)=I$, so $A^{-1}=A^{4}-3 I$.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

