University of Toronto

Faculty of Applied Science and Engineering
Solutions to Final Examination, December 2019
Duration: 2 and $1 / 2$ hrs
First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS MAT188H1F - Linear Algebra

Examiners: D. Burbulla, S. Cohen, L. Döppenschmitt, M. Greeff, J. Sivaraman, S. Sorkhou, S. Uppal

Exam Type: A.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments:

- Many students lost marks for using notation incorrectly; e.g. in Question 1(a): $\operatorname{col}(A)=\left\{\vec{c}_{1}, \vec{c}_{2}, \vec{c}_{5}\right\}$ is wrong since the left side consists of an infinite number of vectors, but the right side contains only three vectors.

Breakdown of Results: 911 registered students wrote this test. The marks ranged from 5% to 98.75% and the average was $47.438 / 80$ or 59.3%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	3.8%
A	15.0%	$80-89 \%$	11.2%
B	14.4%	$70-79 \%$	14.4%
C	20.0%	$60-69 \%$	20.0%
D	20.7%	$50-59 \%$	20.7%
F	29.9%	$40-49 \%$	17.5%
		$30-39 \%$	8.1%
		$20-29 \%$	3.0%
		$10-19 \%$	0.9%
		$0-9 \%$	0.4%

1. [avg: 7.33/10] The reduced row echelon form of

$$
A=\left[\begin{array}{rrrrr}
2 & 1 & 1 & 1 & 6 \\
-1 & 2 & -8 & 7 & -7 \\
-2 & -1 & -1 & -1 & -6 \\
1 & 1 & -1 & 2 & 1
\end{array}\right] \text { is } R=\left[\begin{array}{rrrrr}
1 & 0 & 2 & -1 & 0 \\
0 & 1 & -3 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) [7 marks] Find a basis for each of $\operatorname{col}(A)$ and $\operatorname{null}(A)$.

Solution: a basis for $\operatorname{col}(A)$ consists of the columns of A that correspond to the columns of R with leading 1 's:

$$
\left\{\left[\begin{array}{r}
2 \\
-1 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
2 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{r}
6 \\
-7 \\
-6 \\
1
\end{array}\right]\right\},
$$

OR any three independent columns of A, which you must demonstrate are independent.
A basis for $\operatorname{null}(A)$ consists of the basic solutions to the homogeneous system of equations $A \vec{x}=\overrightarrow{0}$, which can be read off R :

$$
\left\{\left[\begin{array}{r}
-2 \\
3 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{r}
1 \\
-3 \\
0 \\
1 \\
0
\end{array}\right]\right\}
$$

Aside: if not by inspection then you can get the basic solutions to $A \vec{x}=\overrightarrow{0}$ by finding the general solution and writing it as a linear combination, where s and t are parameters:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 s+t \\
3 s-3 t \\
s \\
t \\
0
\end{array}\right]=s\left[\begin{array}{r}
-2 \\
3 \\
1 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{r}
1 \\
-3 \\
0 \\
1 \\
0
\end{array}\right]
$$

(b) [3 marks] Is $\beta=\left\{\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1 \\ 6\end{array}\right],\left[\begin{array}{r}-1 \\ 2 \\ -8 \\ 7 \\ -7\end{array}\right],\left[\begin{array}{l}-2 \\ -1 \\ -1 \\ -1 \\ -6\end{array}\right]\right\}$ a basis for $\operatorname{row}(A)$? Explain why, or why not.

Solution: No. They are not linearly independent: the third vector is the negative of the first.
2.[avg: 6.9/10] Suppose $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ is defined by $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\frac{1}{5}\left[\begin{array}{r}-3 x+4 y \\ 4 x+3 y\end{array}\right]$.
(a) [7 marks] Let A be the matrix of T. Find the eigenvalues of A and a basis for each eigenspace of A.
Solution: $A=\left[T\left(\vec{e}_{1}\right) T\left(\vec{e}_{2}\right)\right]=\left[\begin{array}{rr}-3 / 5 & 4 / 5 \\ 4 / 5 & 3 / 5\end{array}\right]$. Then

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}\left[\begin{array}{cc}
\lambda+3 / 5 & -4 / 5 \\
-4 / 5 & \lambda-3 / 5
\end{array}\right]=\lambda^{2}-\frac{9}{25}-\frac{16}{25}=\lambda^{2}-1
$$

So the eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=-1$. Find a basis for each eigenspace:

$$
\begin{aligned}
E_{1}(A) & =\operatorname{null}\left[\begin{array}{cc}
1+3 / 5 & -4 / 5 \\
-4 / 5 & 1-3 / 5
\end{array}\right]=\operatorname{null}\left[\begin{array}{cc}
8 & -4 \\
-4 & 2
\end{array}\right]=\operatorname{null}\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} . \\
E_{-1}(A) & =\operatorname{null}\left[\begin{array}{cc}
-1+3 / 5 & -4 / 5 \\
-4 / 5 & -1-3 / 5
\end{array}\right]=\operatorname{null}\left[\begin{array}{cc}
-2 & -4 \\
-4 & -8
\end{array}\right]=\operatorname{null}\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

(b) [3 marks] Sketch the eigenspaces of A in the plane and interpret your results from part (a) geometrically in terms of the transformation T. You must clearly identify each eigenspace.

Solution: $E_{1}(A)$ is the line with equation $y=2 x ; E_{-1}(A)$ is the line with equation $2 y=-x$. A is a reflection matrix with $m=2$. So T is
 a reflection in the line with equation $y=2 x$. Since

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

is parallel to the axis of reflection of T we have

$$
T\left(\vec{v}_{1}\right)=\vec{v}_{1} .
$$

Since

$$
\vec{v}_{2}=\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
$$

is orthogonal to the axis of reflection of T we have

$$
T\left(\vec{v}_{2}\right)=-\vec{v}_{2} .
$$

3. [avg: 5.1/10] For each of the following subsets U of \mathbb{R}^{3} determine if it is a subspace of \mathbb{R}^{3}. If it is, find a basis for U and state its dimension.
(a) [4 marks] $U=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right.$ in $\left.\mathbb{R}^{3} \mid x y z=0\right\}$.

Solution: No. U is not closed under vector addition:

$$
\vec{u}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { are both in } U, \text { but } \vec{u}+\vec{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { isn't. }
$$

Aside: U does contain the zero vector and is closed under scalar multiplication.
(b) [6 marks] $U=\left\{\vec{x}\right.$ in $\mathbb{R}^{3} \mid \vec{x} \cdot \vec{u}_{1}=0$ and $\left.\vec{x} \cdot \vec{u}_{2}=0\right\}$, if $\vec{u}_{1}=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right], \vec{u}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Solution: Yes. By definition U is the orthogonal complement of the subspace $W=\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$. Then

$$
\operatorname{dim}(U)=3-\operatorname{dim}(W)=3-2=1,
$$

and a basis for U is the vector

$$
\vec{u}_{1} \times \vec{u}_{2}=\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right] \times\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
3 \\
-4 \\
1
\end{array}\right] .
$$

4. [10 marks; avg: 8.3/10]
4.(a) [5 marks] Find the least squares approximating line $y=a+b x$ to the four data points $(x, y)=$ $(-1,-6),(0,-1),(1,2),(2,3)$.

Solution: use the normal equations. Let

$$
M=\left[\begin{array}{rr}
1 & -1 \\
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right], \vec{z}=\left[\begin{array}{c}
a \\
b
\end{array}\right], Y=\left[\begin{array}{r}
-6 \\
-1 \\
2 \\
3
\end{array}\right] ; \text { then } M^{T}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
-1 & 0 & 1 & 2
\end{array}\right] .
$$

Solve the normal equations for \vec{z} :

$$
\begin{gathered}
M^{T} M \vec{z}=M^{T} Y \Leftrightarrow\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{r}
-2 \\
14
\end{array}\right] \\
\Leftrightarrow\left[\begin{array}{l}
a \\
b
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 6
\end{array}\right]^{-1}\left[\begin{array}{r}
-2 \\
14
\end{array}\right]=\frac{1}{20}\left[\begin{array}{rr}
6 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{r}
-2 \\
14
\end{array}\right]=\frac{1}{20}\left[\begin{array}{r}
-40 \\
60
\end{array}\right]=\left[\begin{array}{r}
-2 \\
3
\end{array}\right]
\end{gathered}
$$

So the least squares approximating line to the data has equation $y=-2+3 x$.
4.(b) [5 marks] Find an orthogonal basis of span $\left\{\left[\begin{array}{r}2 \\ -1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}3 \\ -5 \\ -7 \\ 1\end{array}\right],\left[\begin{array}{r}7 \\ 2 \\ 0 \\ -5\end{array}\right]\right\}$.

Solution: use the Gram-Schmidt algorithm. Call the three given vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$, respectively. Take $\vec{f}_{1}=\vec{x}_{1}$. Then

$$
\begin{gathered}
\vec{f}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{f}_{1}}{\left\|\vec{f}_{1}\right\|^{2}} \vec{f}_{1}=\left[\begin{array}{r}
3 \\
-5 \\
-7 \\
1
\end{array}\right]-3\left[\begin{array}{r}
2 \\
-1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-3 \\
-2 \\
-4 \\
1
\end{array}\right], \\
\overrightarrow{f_{3}}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{f}_{1}}{\left\|\vec{f}_{1}\right\|^{2}} \vec{f}_{1}-\frac{\vec{x}_{3} \cdot \vec{f}_{2}}{\left\|\vec{f}_{2}\right\|^{2}} \overrightarrow{f_{2}}=\left[\begin{array}{r}
7 \\
2 \\
0 \\
-5
\end{array}\right]-2\left[\begin{array}{r}
2 \\
-1 \\
-1 \\
0
\end{array}\right]+\left[\begin{array}{r}
-3 \\
-2 \\
-4 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
2 \\
-2 \\
-4
\end{array}\right] ; \text { or take } \overrightarrow{f_{3}}=\left[\begin{array}{r}
0 \\
1 \\
-1 \\
-2
\end{array}\right] .
\end{gathered}
$$

The orthogonal basis is $\left\{\vec{f}_{1}, \vec{f}_{2}, \vec{f}_{3}\right\}$. Aside: the orthogonal complement of $\operatorname{span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ has basis $\vec{f}_{4}=\left[\begin{array}{lll}1 & 4-2 & 3\end{array}\right]^{T}$. Any three orthogonal vectors orthogonal to \vec{f}_{4} would do.
5. [10 marks; 2 for each part. Avg: 4.4/10] Prove that the following statements are true. (Be concise.)
(a) If A is a 5×7 matrix and $\operatorname{dim}(\operatorname{null}(A))=2$, then the matrix equation $A \vec{x}=\vec{b}$ is consistent for all \vec{b} in \mathbb{R}^{5}.

Proof: $A \vec{x}=\vec{b}$ is consistent if and only if \vec{b} is in $\operatorname{im}(A)$. So it suffices to show $\operatorname{im}(A)=\mathbb{R}^{5}$:

$$
\operatorname{dim}(\operatorname{im}(A))=7-\operatorname{dim}(\operatorname{null}(A))=7-2=5 .
$$

That is, $\operatorname{im}(A)=\mathbb{R}^{5}$.
(b) If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}$ are k linearly independent vectors in \mathbb{R}^{n} and A is an invertible $n \times n$ matrix, then the vectors $A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{k}$ are also linearly independent.

Proof: recall the columns of a matrix B are linearly independent if and only if null $(B)=\{0\}$.
Let V be the $n \times k$ matrix $\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{k}\end{array}\right]$. Let \vec{x} be in $\operatorname{null}(A V)$. Then

$$
(A V) \vec{x}=\overrightarrow{0} \Rightarrow A(V \vec{x})=\overrightarrow{0} \Rightarrow V \vec{x}=A^{-1}(\overrightarrow{0})=\overrightarrow{0} \Rightarrow \vec{x}=0 .
$$

Thus the columns of $A V$, namely $A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{k}$, are linearly independent.
(c) If A is a $k \times n$ matrix such that $\operatorname{null}(A)=\{\overrightarrow{0}\}$, then $n \leq k$.

Proof: $k \geq \operatorname{rank}(A)=n-\operatorname{dim}(\operatorname{null}(A))=n-0=n$.
(d) If A is a $k \times n$ matrix such that $\operatorname{im}(A)=\mathbb{R}^{k}$, then $k \leq n$.

Proof: $n \geq \operatorname{rank}(A)=\operatorname{dim}(\operatorname{im}(A))=k$.
(e) If A is a 3×3 diagonalizable matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$, then

$$
\operatorname{det}\left(A^{2}\right)=\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} \text { and } \operatorname{tr}\left(A^{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2} .
$$

Proof: A is similar to the diagonal matrix $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$, and so A^{2} is similar to the diagonal matrix $D^{2}=\operatorname{diag}\left(\lambda_{1}^{2}, \lambda_{2}^{2}, \lambda_{3}^{2}\right)$. In particular, this means

$$
\operatorname{det}\left(A^{2}\right)=\operatorname{det}\left(D^{2}\right)=\lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2} \text { and } \operatorname{tr}\left(A^{2}\right)=\operatorname{tr}\left(D^{2}\right)=\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}
$$

6. [avg: 7.2/10]

Find an orthogonal matrix P and a diagonal matrix D such that $D=P^{T} A P$, if $A=\left[\begin{array}{rrr}16 & 0 & 0 \\ 0 & 7 & 12 \\ 0 & 12 & 0\end{array}\right]$.
Step 1: find the eigenvalues of A.

$$
\begin{aligned}
& \operatorname{det}(\lambda I-A)=\operatorname{det}\left[\begin{array}{ccc}
\lambda-16 & 0 & 0 \\
0 & \lambda-7 & -12 \\
0 & -12 & \lambda
\end{array}\right]=(\lambda-16) \operatorname{det}\left[\begin{array}{cc}
\lambda-7 & -12 \\
-12 & \lambda
\end{array}\right] \\
& =(\lambda-16)\left(\lambda^{2}-7 \lambda-144\right)=(\lambda-16)(\lambda-16)(\lambda+9)=(\lambda+9)(\lambda-16)^{2}
\end{aligned}
$$

Thus the eigenvalues of A are $\lambda_{1}=16$, repeated, and $\lambda_{2}=-9$.
Step 2: find an orthogonal basis of eigenvectors for each eigenspace.

$$
\begin{gathered}
E_{16}(A)=\operatorname{null}\left[\begin{array}{ccc}
16-16 & 0 & 0 \\
0 & 16-7 & -12 \\
0 & -12 & 16
\end{array}\right]=\operatorname{null}\left[\begin{array}{ccc}
0 & 3 & -4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
4 \\
3
\end{array}\right]\right\} ; \\
E_{-9}(A)=\operatorname{null}\left[\begin{array}{ccc}
-9-16 & 0 & 0 \\
0 & -9-7 & -12 \\
0 & -12 & -9
\end{array}\right]=\operatorname{null}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 3 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{r}
0 \\
-3 \\
4
\end{array}\right]\right\} .
\end{gathered}
$$

Step 3: for the columns of P, take the unit, orthogonal eigenvectors and for the diagonal entries of D take the corresponding eigenvalues:

$$
P=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 4 / 5 & -3 / 5 \\
0 & 3 / 5 & 4 / 5
\end{array}\right] \text { and } D=\left[\begin{array}{rrr}
16 & 0 & 0 \\
0 & 16 & 0 \\
0 & 0 & -9
\end{array}\right]
$$

7. [avg: 5.1/10] Let $\vec{v}_{1}=\left[\begin{array}{r}3 \\ -1 \\ -1 \\ -1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right], \vec{v}_{3}=\left[\begin{array}{r}1 \\ 2 \\ 3 \\ -2\end{array}\right] ; \vec{x}=\left[\begin{array}{r}3 \\ -4 \\ 5 \\ -4\end{array}\right] ; S=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$. Let $U=\operatorname{span}(S)$.
(a) [3 marks] Show that S is a basis for U.

Solution: since S is a spanning set for U, we need only show that S is linearly independent.
The easy way to do this is to observe that S is actually an orthogonal set of non-zero vectors:

$$
\vec{v}_{1} \cdot \vec{v}_{2}=3+0-1-2=0 ; \vec{v}_{1} \cdot \vec{v}_{3}=3-2-3+2=0 ; \quad \vec{v}_{2} \cdot \vec{v}_{3}=1+0+3-4=0 .
$$

As proved in class an orthogonal set of non-zero vectors is linearly independent. Thus S is a linearly independent, spanning set of U, and so S is a basis for U.
(b) [3 marks] Find a basis for U^{\perp}.

Solution:

$$
\begin{aligned}
& U^{\perp}=\text { null }\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
1 & 0 & 1 & 2 \\
1 & 2 & 3 & -2
\end{array}\right]=\operatorname{null}\left[\begin{array}{rrrr}
1 & 0 & 1 & 2 \\
0 & 2 & 2 & -4 \\
0 & 1 & 4 & 7
\end{array}\right]=\text { null }\left[\begin{array}{rrrr}
1 & 0 & 1 & 2 \\
0 & 1 & 1 & -2 \\
0 & 0 & 3 & 9
\end{array}\right] \\
& =\operatorname{null}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & -5 \\
0 & 0 & 1 & 3
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{r}
1 \\
5 \\
-3 \\
1
\end{array}\right]\right\} ; \text { so } \vec{v}_{4}=\left[\begin{array}{r}
1 \\
5 \\
-3 \\
1
\end{array}\right] \text { is a basis for } U^{\perp} .
\end{aligned}
$$

(c) [4 marks] Find vectors $\vec{u} \in U$ and $\vec{v} \in U^{\perp}$ such that $\vec{x}=\vec{u}+\vec{v}$.

Solution: by definition, $\vec{u}=\operatorname{proj}_{U}(\vec{x})$ and $\vec{v}=\operatorname{proj}_{U} \perp(\vec{x})$. The easier one to calculate is \vec{v}, since $\operatorname{dim}\left(U^{\perp}\right)=1$. Then take $\vec{u}=\vec{x}-\vec{v}$. The calculations are

$$
\vec{v}=\operatorname{proj}_{U^{T}}(\vec{x})=\frac{\vec{x} \cdot \vec{v}_{4}}{\left\|\vec{v}_{4}\right\|^{2}} \vec{v}_{4}=\frac{-36}{36}\left[\begin{array}{r}
1 \\
5 \\
-3 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
-5 \\
3 \\
-1
\end{array}\right] ; \vec{u}=\vec{x}-\vec{v}=\left[\begin{array}{r}
3 \\
-4 \\
5 \\
-4
\end{array}\right]-\left[\begin{array}{r}
-1 \\
-5 \\
3 \\
-1
\end{array}\right]=\left[\begin{array}{r}
4 \\
1 \\
2 \\
-3
\end{array}\right] .
$$

Aside: for an alternate calculation of \vec{u}, see Page 10 .
8. [avg: 3.0/10] Let $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T\left(\left[\begin{array}{c}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+y \\ x+y \\ 0\end{array}\right]$.
(a) [1 mark] Why is $U=\left\{T(\vec{v}) \mid \vec{v}\right.$ in $\left.\mathbb{R}^{3}\right\}$ a subspace of \mathbb{R}^{3} ? (Short answer!)

Solution: $U=\operatorname{im}(A)$, where $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ is the matrix of T.
(b) [3 marks] Find a basis for U. What is $\operatorname{dim}(U)$?

Solution: $\operatorname{im}(A)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$. So $\operatorname{dim}(U)=1$ and a basis for U is

$$
\vec{u}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

(c) [6 marks] Find the least possible value of $\|T(\vec{v})-\vec{b}\|$, for \vec{v} in \mathbb{R}^{3}, if
(i) $\vec{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
(ii) $\vec{b}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
(iii) $\vec{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Solution: this is equivalent to asking what is the length of $\left\|\operatorname{proj}_{U}(\vec{b})-\vec{b}\right\|$, since $\operatorname{proj}_{U}(\vec{b})$ is the vector in U closest to \vec{b}.

(i) In this case $\vec{b} \in U,$ so $\operatorname{proj}_{U}(\vec{b})=\vec{b}$ The least value of $\\|T(\vec{v})-\vec{b}\\|$ is $\\|\vec{b}-\vec{b}\\|=\\|\overrightarrow{0}\\|=0$	(ii) In this case $\vec{b} \in U^{\perp},$ so $\operatorname{proj}_{U}(\vec{b})=\overrightarrow{0} .$ The least value of $\\|T(\vec{v})-\vec{b}\\|$ is $\\|\overrightarrow{0}-\vec{b}\\|=\\|\vec{b}\\|=1$	(iii) In this case $\begin{aligned} & \operatorname{proj}_{U}(\vec{b}) \\ & =\frac{\vec{b} \cdot \vec{u}}{\\|\vec{u}\\|^{2}} \vec{u} \\ & =\frac{3}{2} \vec{u} . \end{aligned}$ The least value of $\begin{gathered} \\|T(\vec{v})-\vec{b}\\| \text { is } \\ \left\\|\frac{3}{2} \vec{u}-\vec{b}\right\\|=\frac{\sqrt{38}}{2} . \end{gathered}$

Some Alternate Calculations and Solutions:

For Question $7(\mathrm{c})$: the basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ of part (a) is an orthogonal basis so

$$
\begin{aligned}
\vec{u}=\operatorname{proj}_{U}(\vec{x}) & =\frac{\vec{x} \cdot \vec{v}_{1}}{\left\|\vec{v}_{1}\right\|^{2}} \vec{v}_{1}+\frac{\vec{x} \cdot \vec{v}_{2}}{\left\|\vec{v}_{2}\right\|^{2}} \vec{v}_{2}+\frac{\vec{x} \cdot \vec{v}_{3}}{\left\|\vec{v}_{3}\right\|^{2}} \vec{v}_{3} \\
& =\frac{12}{12}\left[\begin{array}{r}
3 \\
-1 \\
-1 \\
-1
\end{array}\right]+\frac{\frac{1}{6}}{}\left[\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right]+\frac{18}{18}\left[\begin{array}{r}
1 \\
2 \\
3 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{r}
3 \\
-1 \\
-1 \\
-1
\end{array}\right]+\left[\begin{array}{r}
1 \\
2 \\
3 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{r}
1 \\
1 \\
2 \\
-3
\end{array}\right], \text { as before. }
\end{aligned}
$$

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

