
Solutions to Exam Part 2

Question 1 (3 marks) : True or False?

If A is an n× n matrix such that rank(A) = rank(A2), then A = A2.

Answer: False.

Counterexample: pick any invertible matrix A such that det(A) 6= 1, say

A = diag(2, 1, 1, . . . , 1).

Then rank(A) = n = rank(A2), but

A2 = diag(4, 1, 1, . . . , 1) 6= A.

Or simply say, det(A2) = 4 6= 2 = det(A), so A can’t equal A2. (Of course, there are many
other possible counterexamples.)



Question 2 (3 marks) : True or False?

If A is an n× n matrix such that rank(A) = rank(A2), then col(A) = col(A2).

Answer: True.

Proof: since dim(col(A)) = rank(A) = rank(A2) = dim(col(A2)) we know that

dim(col(A)) = dim(col(A2)).

Observe that col(A2) ⊆ col(A) :

~y ∈ col(A2) ⇒ ~y = A2~x, for some ~x ∈ Rn

⇒ ~y = A(A~x)

⇒ ~y = A~z, for ~z = A~x, which is in Rn

⇒ ~y ∈ col(A)

Then by Theorem 5.2.8, col(A2) = col(A).



Question 3 (3 marks) : True or False?

If A is an n× n matrix such that rank(A) = rank(A2), then null(A) = null(A2).

Answer: True

Proof: since dim(null(A)) = n− rank(A) = n− rank(A2) = dim(null(A2)) we know that

dim(null(A)) = dim(null(A2)).

Observe that null(A) ⊆ null(A2) :

~x ∈ null(A) ⇒ A~x = ~0

⇒ A(A~x) = A~0

⇒ A2~x = ~0

⇒ ~x ∈ null(A2)

Then by Theorem 5.2.8, null(A) = null(A2).



Question 4 (5 marks) : Let U be a subspace of Rn; let {~v1, ~v2, . . . , ~vk} be an orthonormal
basis for U ; and let A be the n× k matrix [~v1 ~v2 . . . ~vk] . That is, let

A = [~v1 ~v2 . . . ~vk] .

Show that for all ~x ∈ Rn,
projU(~x) = AAT ~x.

Solution: using the projection formula, and the fact that {~v1, ~v2, . . . , ~vk} is an orthonormal
basis for U, so that ‖~vi‖ = 1, we have

projU(~x) = (~x · ~v1)~v1 + (~x · ~v2)~v2 + · · ·+ (~x · ~vk)~vk.

Now use properties of matrix multiplication and properties of dot product:

projU(~x) = (~x · ~v1)~v1 + (~x · ~v2)~v2 + · · ·+ (~x · ~vk)~vk

= (~v1 · ~x)~v1 + (~v2 · ~x)~v2 + · · ·+ (~vk · ~x)~vk

= [~v1 ~v2 . . . ~vk]


~v1 · ~x
~v2 · ~x

...
~vk · ~x



= A


~vT1 ~x
~vT2 ~x

...
~vTk ~x



= A


~vT1
~vT2
...
~vTk

 ~x
= AAT ~x

Alternate Solution for Question 4: we have U = col(A). As with the derivation of least
squares approximations, there is a ~z ∈ Rk such that

projU(~x) = A~z and ~x− A~z ∈ U⊥.

As shown in class, U⊥ = null(AT ). Thus

AT (~x− A~z) = ~0⇔ AT~x = ATA~z.

Since {~v1, ~v2, . . . , ~vk} is an orthonormal basis,

~vTi ~vj = ~vi · ~vj =

{
1 if i = j
0 if i 6= j

,

for 1 ≤ i, j ≤ k. Thus ATA = Ik×k and AT ~x = ~z. Multiplying both sides by A on the left gives:

AAT ~x = A~z = projU(~x).



Question 5 (8 marks) : Let

U = span




1
0
1
−1

1

 ,


2
1
3
1
0

 ,

−1

2
1
1
1


 and ~x =


1
−6

1
1
3

 .
Find vectors ~u and ~v such that

~u ∈ U,~v ∈ U⊥ and ~x = ~u+ ~v.

Solution: ~u = projU(~x) and ~v = projU⊥(~x). You only have to calculate one directly. To do so
you need to find an orthogonal basis for U or an orthogonal basis for U⊥.

Easiest Way: let

~x1 =


1
0
1
−1

1

 , ~x2 =


2
1
3
1
0

 , ~x3 =


−1

2
1
1
1

 .
Make use of the fact that ~x1 · ~x3 = 0. Then an orthogonal basis for U is {~v1, ~v2, ~v3} with
~v1 = ~x1, ~v2 = ~x3 and

~v3 = ~x2 −
~x2 · ~v1
‖~v1‖2

~v1 −
~x2 · ~v2
‖~v2‖2

~v2 = ~x2 −
~x2 · ~x1
‖~x1‖2

~x1 −
~x2 · ~x3
‖~x3‖2

~x3

=


2
1
3
1
0

− 4

4


1
0
1
−1

1

− 4

8


−1

2
1
1
1

 =
3

2


1
0
1
1
−1

 .
So

~u = projU(~x) =
~x · ~v1
‖~v1‖2

~v1 +
~x · ~v2
‖~v2‖2

~v2 +
~x · ~v3
‖~v3‖2

~v3

=
4

4


1
0
1
−1

1

− 8

8


−1

2
1
1
1

+
0

4


1
0
1
1
−1

 =


1
0
1
−1

1

−

−1

2
1
1
1

 =


2
−2

0
−2

0

 ;

and consequently,

~v = ~x− ~u =


1
−6

1
1
3

−


2
−2

0
−2

0

 =


−1
−4

1
3
3

 .



Direct Approach: directly apply the Gram-Schmidt algorithm to the given basis for U to get
an orthogonal basis for U. Let

~x1 =


1
0
1
−1

1

 , ~x2 =


2
1
3
1
0

 , ~x3 =


−1

2
1
1
1

 .
Then {~v1, ~v2, ~v3} is an orthogonal basis for U, with ~v1 = ~x1;

~v2 = ~x2 −
~x2 · ~v1
‖~v1‖2

~v1 =


2
1
3
1
0

− 4

4


1
0
1
−1

1

 =


1
1
2
2
−1


and

~v3 = ~x3 −
~x3 · ~v1
‖~v1‖2

~v1 −
~x3 · ~v2
‖~v2‖2

~v2 =


−1

2
1
1
1

− 0

4


1
0
1
−1

1

− 4

11


1
1
2
2
−1

 =
3

11


−5

6
1
1
5

 .
So

~u = projU(~x) =
~x · ~v1
‖~v1‖2

~v1 +
~x · ~v2
‖~v2‖2

~v2 +
~x · ~v3
‖~v3‖2

~v3

=
4

4


1
0
1
−1

1

− 4

11


1
1
2
2
−1

− 24

88


−5

6
1
1
5

 =


1
0
1
−1

1

− 4

11


1
1
2
2
−1

− 3

11


−5

6
1
1
5

 =


2
−2

0
−2

0

 ;

and as before,

~v = ~x− ~u =


1
−6

1
1
3

−


2
−2

0
−2

0

 =


−1
−4

1
3
3

 .



Alternate Approach: calculate an orthogonal basis for U⊥. The advantage of this method
is that dim(U⊥) = 2. But first you need to find a basis for U⊥ :

U⊥ = null

 1 0 1 −1 1
2 1 3 1 0
−1 2 1 1 1

 = null

 1 0 1 0 0
0 1 1 0 1
0 0 0 1 −1

 = span




−1
−1

1
0
0

 ,


0
−1

0
1
1


 .

Call these basic solutions ~x1 and ~x2, respectively. Then an orthogonal basis for U⊥ is ~v1 = ~x1
and

~v2 = ~x2 −
~x2 · ~v1
‖~v1‖2

~v1 =


0
−1

0
1
1

− 1

3


−1
−1

1
0
0

 =
1

3


1
−2
−1

3
3


Consequently

~v = projU⊥(~x) =
~x · ~v1
‖~v1‖2

~v1 +
~x · ~v2
‖~v2‖2

~v2 =
6

3


−1
−1

1
0
0

+
24

24


1
−2
−1

3
3

 =


−1
−4

1
3
3

 ,
and

~u = ~x− ~v =


1
−6

1
1
3

−

−1
−4

1
3
3

 =


2
−2

0
−2

0

 .



Question 6 (8 marks) : Find Ak for k a positive integer if

A =

 1 2 −6
2 6 4
−6 4 2

 .
You may assume the eigenvalues of A are

λ1 = 6, λ2 = −6, λ3 = 9.

Solution: since A is symmetric you can orthogonally diagonalize A; that is, find an orthogonal
matrix P and a diagonal matrix D such that

D = P TAP ⇔ A = PDP T .

Then, as we saw in Section 3.3/Week 7, and using the fact that P−1 = P T ,

Ak = PDkP T .

Step 1: since the eigenvalues of A are all distinct, we only have to find an eigenvector for
each eigenvalue, and then divide each eigenvector by its length so that the columns of P are
unit vectors. (If you don’t divide the eigenvectors by their length, things will still work but
calculating P−1 will be messier.)

E6(A) = null(6I − A) = null

 5 −2 6
−2 0 −4

6 −4 4

 = null

 5 −2 6
1 0 2
6 −4 4



= null

 0 −2 −4
1 0 2
0 −4 −8

 = null

 0 1 2
1 0 2
0 0 0

 = span


 −2
−2

1

 ; take ~v1 =

 2/3
2/3
−1/3

 .

E−6(A) = null(−6I−A) = null

 −7 −2 6
−2 −12 −4

6 −4 −8

 = null

 −7 −2 6
1 6 2
6 −4 −8

 = null

 0 40 20
1 6 2
0 −40 −20



= null

 0 2 1
1 6 2
0 0 0

 = null

 0 2 1
1 0 −1
0 0 0

 = span


 2
−1

2

 ; take ~v2 =

 2/3
−1/3

2/3

 .
E9(A) : you can continue with the same approach as above; OR since eigenvectors corresponding
to distinct eigenvalues of a symmetric matrix must be orthogonal, you can take the cross-
product of the previous two eigenvectors to get a third one: −2

−2
1

×
 2
−1

2

 =

 −3
6
6

 ; so take ~v3 =

 −1/3
2/3
2/3

 .



Step 2: thus we have

P =
1

3

 2 2 −1
2 −1 2
−1 2 2

 and D =

 6 0 0
0 −6 0
0 0 9

 .
Note that P is itself symmetric, so P−1 = P T = P.

Step 3: compute!

Ak = PDkP T = PDkP

=
1

3

 2 2 −1
2 −1 2
−1 2 2

 6 0 0
0 −6 0
0 0 9

k

1

3

 2 2 −1
2 −1 2
−1 2 2


=

1

9

 2 2 −1
2 −1 2
−1 2 2

 6k 0 0
0 (−6)k 0
0 0 9k

 2 2 −1
2 −1 2
−1 2 2


=

1

9

 2 2 −1
2 −1 2
−1 2 2

 2 · 6k 2 · 6k −6k

2 · (−6)k −(−6)k 2 · (−6)k

−9k 2 · 9k 2 · 9k


=

1

9

 4 · 6k + 4 · (−6)k + 9k 4 · 6k − 2 · (−6)k − 2 · 9k −2 · 6k + 4 · (−6)k − 2 · 9k

4 · 6k − 2 · (−6)k − 2 · 9k 4 · 6k + (−6)k + 4 · 9k −2 · 6k − 2 · (−6)k + 4 · 9k

−2 · 6k + 4 · (−6)k − 2 · 9k −2 · 6k − 2 · (−6)k + 4 · 9k 6k + 4 · (−6)k + 4 · 9k




