Solutions to MAT188H1S Quiz 4

1. (5 marks) Define following:

(a) [2 marks] the non-empty set of vectors S is a subspace of \mathbb{R}^n .

Definition: the non-empty set of vectors S is a subspace of \mathbb{R}^n if

1. $\vec{u}, \vec{v} \in S \Rightarrow \vec{u} + \vec{v} \in S$.	(S is closed under vector addition.)
2. $a \in \mathbb{R}, \vec{v} \in S \Rightarrow a \vec{v} \in S$.	(S is closed under scalar multiplication.)

(b) [2 marks] the set of vectors $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m\}$ is linearly independent.

Definition: the set of vectors $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m\}$ is linearly independent if

$$a_1\vec{u}_1 + a_2\vec{u}_2 + \dots + a_m\vec{u}_m = 0 \Rightarrow a_1 = 0, a_2 = 0, \dots, \vec{a}_m = 0,$$

where a_1, a_2, \ldots, a_m are scalars in \mathbb{R} .

More formally,

$$\sum_{i=1}^{m} a_i \vec{u}_i = \vec{0} \Rightarrow a_i = 0.$$

In words:

The only linear combination of the vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_m$ that is equal to the zero vector is the trivial linear combination.

(c) $[1 \text{ mark}] \operatorname{span}\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m\}.$

Definition:

span{
$$\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m$$
} = $\left\{ \sum_{i=1}^m a_i \vec{u}_i \mid a_i \in \mathbb{R}, 1 \le i \le m \right\}$.

In words:

 $\operatorname{span}\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_m\}$ is the set of all possible linear combinations of the vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_m$.

2. (5 marks) Find a basis for null(A) if $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{bmatrix}$.

Solution: find the basic solution(s) to the homogeneous system of equations $A \vec{x} = \vec{0}$.

Let $x_4 = t$ be a parameter. The the general solution to $A x = \vec{0}$ is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ t \\ -2t \\ t \end{bmatrix} = t \begin{bmatrix} 0 \\ 1 \\ -2 \\ 1 \end{bmatrix}.$$

So a basis for the null space of A is

$$\left\{ \begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix} \right\}.$$

3. (5 marks) Find a basis for the subspace span $\left\{ \begin{bmatrix} 1\\3\\-1 \end{bmatrix}, \begin{bmatrix} 0\\4\\-4 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix} \right\}$ of \mathbb{R}^3 .

Solution 1: by inspection. Let

$$\vec{v}_1 = \begin{bmatrix} 1\\3\\-1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 0\\4\\-4 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 2\\2\\2 \end{bmatrix}.$$

Then $\vec{v}_2 \neq k\vec{v}_1$, but $v_3 = 2\vec{v}_1 - \vec{v}_2$. So a basis for span $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is

$$\{\vec{v}_1, \vec{v}_2\}$$
 or $\left\{ \begin{bmatrix} 1\\3\\-1 \end{bmatrix}, \begin{bmatrix} 0\\4\\-4 \end{bmatrix} \right\}$.

Solution 2: reduce the matrix $A = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3]$ to find its independent columns.

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 4 & 2 \\ -1 & -4 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 4 & -4 \\ 0 & -4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} = R.$$

So a basis for span{ $\vec{v_1}, \vec{v_2}, \vec{v_3}$ } is the set { $\vec{v_1}, \vec{v_2}$ }, consisting of the columns of A that correspond to the columns of R with the leading 1's.