Solutions to MAT188H1S Quiz 4

1. (5 marks) Define following:
(a) [2 marks] the non-empty set of vectors S is a subspace of \mathbb{R}^{n}.

Definition: the non-empty set of vectors S is a subspace of \mathbb{R}^{n} if

1. $\vec{u}, \vec{v} \in S \Rightarrow \vec{u}+\vec{v} \in S$.
(S is closed under vector addition.)
2. $a \in \mathbb{R}, \vec{v} \in S \Rightarrow a \vec{v} \in S$. (S is closed under scalar multiplication.)
(b) [2 marks] the set of vectors $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}\right\}$ is linearly independent.

Definition: the set of vectors $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}\right\}$ is linearly independent if

$$
a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+\cdots+a_{m} \vec{u}_{m}=\overrightarrow{0} \Rightarrow a_{1}=0, a_{2}=0, \ldots, \vec{a}_{m}=0,
$$

where $a_{1}, a_{2}, \ldots, a_{m}$ are scalars in \mathbb{R}. More formally,

$$
\sum_{i=1}^{m} a_{i} \vec{u}_{i}=\overrightarrow{0} \Rightarrow a_{i}=0
$$

In words:
The only linear combination of the vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}$ that is equal to the zero vector is the trivial linear combination.
(c) $[1$ mark $] \operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}\right\}$.

Definition:

$$
\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}\right\}=\left\{\sum_{i=1}^{m} a_{i} \vec{u}_{i} \mid a_{i} \in \mathbb{R}, 1 \leq i \leq m\right\} .
$$

In words:
$\operatorname{span}\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}\right\}$ is the set of all possible linear combinations of the vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{m}$.
2. (5 marks) Find a basis for $\operatorname{null}(A)$ if $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 4 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12\end{array}\right]$.

Solution: find the basic solution(s) to the homogeneous system of equations $A \vec{x}=\overrightarrow{0}$.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & 2 & 3 & 4 & 0 \\
4 & 6 & 7 & 8 & 0 \\
9 & 10 & 11 & 12 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 2 & 3 & 4 & 0 \\
0 & -2 & -5 & -8 & 0 \\
0 & -8 & -16 & -24 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llll|l}
1 & 2 & 3 & 4 & 0 \\
0 & 2 & 5 & 8 & 0 \\
0 & 0 & 4 & 8 & 0
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{lrrr|r}
1 & 2 & 3 & 4 & 0 \\
0 & 2 & 5 & 8 & 0 \\
0 & 0 & 1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 2 & 0 & -2 & 0 \\
0 & 2 & 0 & -2 & 0 \\
0 & 0 & 1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 2 & 0
\end{array}\right]
\end{aligned}
$$

Let $x_{4}=t$ be a parameter. The the general solution to $A x=\overrightarrow{0}$ is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
0 \\
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{r}
0 \\
1 \\
-2 \\
1
\end{array}\right] .
$$

So a basis for the null space of A is

$$
\left\{\left[\begin{array}{r}
0 \\
1 \\
-2 \\
1
\end{array}\right]\right\} .
$$

3. (5 marks) Find a basis for the subspace span $\left\{\left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{r}0 \\ 4 \\ -4\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]\right\}$ of \mathbb{R}^{3}.

Solution 1: by inspection. Let

$$
\vec{v}_{1}=\left[\begin{array}{r}
1 \\
3 \\
-1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{r}
0 \\
4 \\
-4
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right] .
$$

Then $\vec{v}_{2} \neq k \vec{v}_{1}$, but $v_{3}=2 \vec{v}_{1}-\vec{v}_{2}$. So a basis for $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is

$$
\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \text { or }\left\{\left[\begin{array}{r}
1 \\
3 \\
-1
\end{array}\right],\left[\begin{array}{r}
0 \\
4 \\
-4
\end{array}\right]\right\} .
$$

Solution 2: reduce the matrix $A=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$ to find its independent columns.

$$
A=\left[\begin{array}{rrr}
1 & 0 & 2 \\
3 & 4 & 2 \\
-1 & -4 & 2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 4 & -4 \\
0 & -4 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]=R .
$$

So a basis for $\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is the set $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, consisting of the columns of A that correspond to the columns of R with the leading 1 's.

