UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING SOLUTIONS TO FINAL EXAMINATION, DECEMBER 2019 DURATION: 2 AND 1/2 HRS FIRST YEAR - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS **MAT186H1F - Calculus I** EXAMINERS: J. ARBUNICH, M. BREELING, D. BURBULLA, S. COHEN, J. HAN, J. KO, L. SHORSER

Exam Type: A.

Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments:

- •
- •
- •
- •

Breakdown of Results: 828 registered students wrote this test. The marks ranged from 2.5% to 100% and the average was 50.58/80 or 63.2%. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	%	Decade	%
		90-100%	9.2%
А	21.0%	80-89%	11.8%
В	18.5%	70-79%	18.5%
C	18.2%	60-69%	18.2%
D	17.8%	50-59%	17.8%
F	24.5%	40-49%	14.0%
		30 - 39%	7.9%
		20-29%	2.0%
		10-19%	0.4%
		0-9%	0.2%

- 1. [10 marks; 2 marks for each part. Avg: 7.8/10] Let $f(x) = \sqrt{25 x^2}$. Write down an integral that gives the value of each of the following quantities. (Do NOT evaluate the integrals.)
 - (a) The area of the region bounded by the curves with equations y = f(x), y = x, x = 0 and x = 3.

Solution:

$$\int_0^3 (f(x) - x) \, dx \quad \text{OR} \quad \int_0^3 (\sqrt{25 - x^2} - x) \, dx$$

(b) The volume of the solid of revolution obtained by rotating around the y-axis the region bounded by the curves with equations y = f(x), y = 0, x = 0 and x = 3.

Solution:

$$\underbrace{\int_0^3 2\pi x f(x) dx}_{0} \quad \text{OR} \quad \int_0^3 2\pi x \sqrt{25 - x^2} dx.$$

method of shells

Note:

$$\underbrace{\int_{4}^{5} \pi (25 - y^2) \, dy}_{\text{method of discs}} + 36\pi$$

gives correct volume but is not solely an integral.

(c) The length of the curve with equation y = f(x) for $0 \le x \le 3$.

Solution:

$$\int_0^3 \sqrt{1 + (f'(x))^2} \, dx \quad \text{OR} \quad \int_0^3 \frac{5}{\sqrt{25 - x^2}} \, dx.$$

(d) The surface area of the solid of revolution obtained by rotating around the x-axis the curve with equation y = f(x) for $0 \le x \le 3$.

Solution:

$$\int_0^3 2\pi f(x) \sqrt{1 + (f'(x))^2} \, dx \quad \text{OR} \quad \int_0^3 10\pi \, dx$$

(e) The surface area of the solid of revolution obtained by rotating around the y-axis the curve with equation y = f(x) for $0 \le x \le 3$.

Solution:

Solution:

$$\int_{0}^{3} 2\pi x \sqrt{1 + (f'(x))^{2}} \, dx \text{ OR } \int_{4}^{5} 2\pi g(y) \sqrt{1 + (g'(y))^{2}} \, dy,$$
where $g(y) = f^{-1}(y) = \sqrt{25 - y^{2}}$. Note: as in part (c), $\sqrt{1 + (f'(x))^{2}} = \frac{5}{\sqrt{25 - x^{2}}}$.

- 2. [avg: 9.4/10] Let $v = 2\sqrt{t} 4$ be the velocity of a particle at time t, for $0 \le t \le 16$. Find:
 - (a) [4 marks] the average velocity of the particle.

Solution: use the formula for average.

$$v_{avg} = \frac{1}{16 - 0} \int_0^{16} v \, dt$$

= $\frac{1}{16} \int_0^{16} (2\sqrt{t} - 4) \, dt$
= $\frac{1}{16} \left[\frac{4t^{3/2}}{3} - 4t \right]_0^{16}$
= $\frac{16}{3} - 4 = \frac{4}{3}$

(b) [6 marks] the average speed of the particle.

Solution: since v changes signs on the interval [0, 16]you have to calculate the average speed in two steps. We have

$$v = 0 \Rightarrow 2\sqrt{t} = 4 \Rightarrow t = 4,$$

and so the average speed s = |v| is given by

$$s_{avg} = \frac{1}{16} \int_0^{16} |v| \, dt = \frac{1}{16} \left(\int_0^4 -v \, dt + \int_4^{16} v \, dt \right).$$

Calculations:

$$s_{avg} = \frac{1}{16} \int_{0}^{4} (4 - 2\sqrt{t}) dt + \frac{1}{16} \int_{4}^{16} (2\sqrt{t} - 4) dt$$
$$= \frac{1}{16} \left[4t - \frac{4t^{3/2}}{3} \right]_{0}^{4} + \frac{1}{16} \left[\frac{4t^{3/2}}{3} - 4t \right]_{4}^{16}$$
$$= \frac{1}{16} \left(16 - \frac{32}{3} \right) + \frac{1}{16} \left(\frac{256}{3} - 64 - \frac{32}{3} + 16 \right)$$
$$= 1 - \frac{2}{3} + \frac{14}{3} - 3 = \frac{1}{3} + \frac{5}{3} = 2$$

- 3. [avg: 7.2/10] Let $f(x) = x e^x$, for $x \ge 0$.
 - (a) [2 marks] The graph of y = f(x) is shown below. Clearly indicate the regions that have area corresponding to each of $A_1 = \int_0^1 f(x) dx$ and $A_2 = \int_0^e f^{-1}(y) dy$.

(b) [4 marks] Find the value of A_1 .

Solution: use parts with u = x and $dv = e^x dx$. Then du = dx, $v = e^x$ and

$$A_1 = \int_0^1 x e^x \, dx = [x e^x]_0^1 - \int_0^1 e^x \, dx = [x e^x]_0^1 - [e^x]_0^1 = e - 0 - e + 1 = 1$$

(c) [4 marks] Find the value of A_2 .

Short Way: subtract A_1 from the area of the rectangle bounded by $0 \le x \le 1$ and $0 \le y \le e$:

$$A_2 = e - A_1 = e - 1.$$

Long Way: let $y = f(x) = xe^x$. Then $f^{-1}(y) = f^{-1}(f(x)) = x$ and $dy = (x+1)e^x dx$ and

$$A_{2} = \int_{0}^{e} f^{-1}(y) \, dy = \int_{f^{-1}(0)}^{f^{-1}(e)} x \, (x+1)e^{x} \, dx$$
$$= \int_{0}^{1} (x^{2}+x)e^{x} \, dx$$
(use parts twice; see page 12) = $[(x^{2}-x+1)e^{x}]_{0}^{1}$
$$= e-1$$

- 4. [avg: 5.9/10] Find the volume of the solid generated by rotating around the line y = 2 the region bounded by the curves with equations $y = x^2$ and y = 1, using:
 - (a) [5 marks] the method of cylindrical shells.

Solution: the region is in the figure below.

Using the method of shells, with respect to y:

(b) [5 marks] the method of discs and washers.

Solution: using the method of discs and integrating with respect to x:

$$V = \int_{-1}^{1} (\pi (2 - x^2)^2 - \pi (1)^2) dx$$

= $\pi \int_{-1}^{1} (4 - 4x^2 + x^4 - 1) dx$
= $2\pi \int_{0}^{1} (3 - 4x^2 + x^4) dx$
= $2\pi \left[3x - \frac{4}{3}x^3 + \frac{1}{5}x^5 \right]_{0}^{1}$
= $\frac{56\pi}{15}$

- 5. [avg: 3.9/10] A hemispherical tank of radius 4 m contains water in the bottom 2 m of the tank.
 - (a) [6 marks] How much work does it take to empty the tank by pumping all the water up to the top of the tank and out? (Assume the density of water is ρ and that the acceleration due to gravity is g; leave your answer in terms of ρ and g.)

Solution: if you set y = 0 at the top of the tank, then the equation of the circular side view is $x^2 + y^2 = 4^2$, the bottom of the water is at a = -4, and the top of the water is at b = -2. The

cross-sectional area of the tank at height y is

$$A(y) = \pi x^2 = \pi (4^2 - y^2).$$

Then the work done in pumping all the water from in the tank up to the top y = 0 is given by

$$W = \int_{a}^{b} \rho g A(y)(0-y) dy = \int_{-4}^{-2} \rho g \pi (4^{2} - y^{2})(0-y) dy$$

= $\rho \pi g \int_{-4}^{-2} (y^{3} - 16y) dy = \rho \pi g \left[\frac{y^{4}}{4} - 8y^{2}\right]_{-4}^{-2} = 36 \rho \pi g \text{ (Joules)}$

(b) [4 marks] Suppose the water is being pumped out at a rate of 1 cubic meter per minute. How fast is the depth of the water decreasing when the depth of the water in the tank is 1 m?

Solution: using the same set up as in part (a), the volume of the water in the tank at depth h is given by

$$V = \int_{-4}^{h-4} A(y) \, dy = \pi \int_{-4}^{h-4} (16 - y^2) \, dy$$

Then, using the Chain Rule and the Fundamental Theorem of Calculus,

$$\frac{dV}{dt} = \pi (16 - (h - 4)^2) \,\frac{dh}{dt}.$$

When $\frac{dV}{dt} = -1$, h = 1, we have

$$-1 = \pi (16 - 3^2) \frac{dh}{dt} \Leftrightarrow \frac{dh}{dt} = -\frac{1}{7\pi}.$$

So the depth of the water is decreasing at a rate of $\frac{1}{7\pi}$ m/min. (Approximately: 4.54 cm/min) Alternate Solutions: on pages 10 and 11 there are alternate solutions to both parts of this problem.

- 6. [avg: 5.5/10] Let $g(x) = x^3 + \sin x$.
 - (a) [4 marks] Prove that g is a one-to-one function.

Solution: we shall show g is an increasing function for all x, from which it follows g must be one-to-one. We have

$$g'(x) = 3x^2 + \cos x$$

and

$$g'(x) > 0 \Leftrightarrow 3x^2 > -\cos x.$$

In the figure to the right you can see that the parabola, $y = 3x^2$, is always above the trig function, $y = -\cos x$.

Solution: g(0) = 0 < 4 and $g(2) = 8 + \sin 2 \ge 7 > 4$, so by IVT there is at least one number c in (0, 2) such that

$$q(c) = 4.$$

But by part (a) g is one-to-one, which means there is at most one number c such that g(c) = 4. Therefore there is exactly one number c in [0, 2] such that g(c) = 4.

(c) [4 marks] Approximate the solution to the equation $x^3 + \sin x = 4$ correct to 4 decimal places using Newton's method.

Solution: let $f(x) = x^3 + \sin x - 4$. Then $f'(x) = 3x^2 + \cos x$. Newton's recursive formula is

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, for $n \ge 0$.

Pick $x_0 = 1$ (although it doesn't really matter what your initial choice is) and calculate¹:

 $x_1 = 1.609702..., x_2 = 1.458405..., x_3 = 1.443676..., x_4 = 1.443544..., x_5 = 1.443544...$

So, correct to 4 decimal places, the solution to the equation $x^3 + \sin x = 4$ is x = 1.4435

7. [avg: 5.8/10] A drainage channel is to be constructed so that its cross section is a trapezoid with equally sloping sides. (See figures to the right.) If the sides and bottom of a cross section all have a length of 1 m, how should the angle between the sides and the bottom be chosen to maximize the cross-sectional area of the channel?

Solution: let the base and height of each triangle at the end of the trapezoidal cross section be b and h, respectively. See figure to the right.

cross section

cross section

Then the triangle at each end of the trapezoidal cross section has area

$$T = \frac{bh}{2},$$

with $b = \cos \theta$ and $h = \sin \theta$. Thus the total area of the trapezoidal cross section is

$$A = 2T + (1)(h) = \cos\theta \,\sin\theta + \sin\theta = \frac{\sin(2\theta)}{2} + \sin\theta$$

The problem is to maximize the value of A for $0 < \theta < \frac{\pi}{2}$. Calculating derivatives we find

$$\frac{dA}{d\theta} = \cos(2\theta) + \cos\theta = 2\cos^2\theta - 1 + \cos\theta = (2\cos\theta - 1)(\cos\theta + 1); \quad \frac{d^2A}{d\theta^2} = -2\sin(2\theta) - \sin\theta.$$

Critical Points:

$$\frac{dA}{d\theta} = 0 \Rightarrow (2\cos\theta - 1)(\cos\theta + 1) = 0 \Rightarrow \cos\theta = \frac{1}{2} \text{ or } \cos\theta = -1$$

The only critical point in the interval $(0, \pi/2)$ is $\theta = \pi/3$, or 60°. At this point, $\frac{d^2A}{d\theta^2} = -\frac{3\sqrt{3}}{2} < 0$. Conclusion:

• To maximize the cross-sectional area of the drainage channel the angle between the sides and the bottom should be 60°.

8. [avg: 5.0/10] Let sinc(x) = $\begin{cases} \frac{\sin x}{x}, & \text{if } x \neq 0\\ 1, & \text{if } x = 0 \end{cases}$; let Si(x) = $\int_0^x \operatorname{sinc}(t) dt$.

(a) [2 marks] Is Si(x) a continuous function? Justify your answer.

Solution: yes. Since $\operatorname{sinc}(x)$ is continuous for all x, the definite integral $\operatorname{Si}(x) = \int_0^x \operatorname{sinc}(t) dt$ exists for all x, and so by the Fundamental Theorem of Calculus, $\operatorname{Si}'(x) = \operatorname{sinc}(x)$ for all x. This means $\operatorname{Si}(x)$ is differentiable, hence continuous, for all x.

(b) [2 marks] Show that Si(x) is an odd function.

Solution: let u = -t. Then

$$\operatorname{Si}(-x) = \int_0^{-x} \operatorname{sinc}(t) \, dt = \int_0^x \operatorname{sinc}(-u) \, (-du) = -\int_0^x \operatorname{sinc}(u) \, du = -\operatorname{Si}(x),$$

where we have used the fact that sinc(x) is an even function.

(c) [2 marks] What are the critical points of Si(x) for $-10 \le x \le 10$?

Solution: Si'(x) = 0 \Rightarrow sinc(x) = 0 \Rightarrow x \neq 0 and sin(x) = 0 \Rightarrow x = $\pm \pi, \pm 2\pi, \pm 3\pi$.

(d) [4 marks] The graph of $\operatorname{sinc}(x)$ is dotted in below. Sketch in the corresponding graph of $\operatorname{Si}(x)$. **Solution:** we have $\operatorname{Si}(0) = 0$. Since $\operatorname{Si}'(x) = \operatorname{sinc}(x)$, we know: Si is increasing when $\operatorname{sinc}(x) > 0$ and Si is decreasing when $\operatorname{sinc}(x) < 0$; Si is concave up when sinc is increasing and Si is concave down when sinc is decreasing. Thus the graph of $y = \operatorname{Si}(x)$ looks like the blue graph below:

Alternate Calculations:

For Question 5, if you put the centre of the circle at (0, 4) then the equation of the circle is

$$x^{2} + (y - 4)^{2} = 4^{2} \Leftrightarrow x^{2} - 8y + y^{2} = 0.$$

In this version the bottom of the water is at a = 0, the top of the water is at b = 2, and the cross-sectional area at y is

$$A(y) = \pi x^2 = \pi (8y - y^2).$$

So the work done is

$$W = \int_{0}^{2} \rho g A(y)(4-y) dy$$

= $\rho g \pi \int_{0}^{2} (8y - y^{2})(4-y) dy$
= $\rho g \pi \int_{0}^{2} (y^{3} - 12y^{2} + 32y) dy$
= $\rho g \pi \left[\frac{y^{4}}{4} - 4y^{3} + 16y^{2}\right]_{0}^{2}$
= $\rho g \pi (4 - 32 + 64)$
= $36 \rho g \pi$

For part (b), the depth of the water is h and the volume of this water is

$$V = \int_0^h A(y) \, dy = \pi \int_0^h (8y - y^2) \, dy.$$

By the Chain Rule and the Fundamental Theorem of Calculus,

$$\frac{dV}{dt} = \pi (8h - h^2) \frac{dh}{dt}.$$

Then with $\frac{dV}{dt} = -1$ and h = 1 we have

$$-1 = \pi (8-1) \frac{dh}{dt} \Leftrightarrow \frac{dh}{dt} = -\frac{1}{7\pi},$$

as before.

Question 5: if your tank curves downward, and the tank sits on the x-axis. Then the equation of the side view is

$$x^2 + y^2 = 4^2, \ y \ge 0.$$

For part (a) the work done is now

$$W = \int_0^2 \rho g A(y) (4-y) dy = \pi \rho g \int_0^2 (16-y^2)(4-y) dy = \pi \rho g \int_0^2 (64-16y-4y^2+y^3) dy = \frac{268}{3}\pi \rho g.$$

For part (b), the volume of water in the tank at depth h is

$$V = \int_0^h A(y) \, dy = \int_0^h \pi (16 - y^2) \, dy$$

and

$$\frac{dV}{dt} = \pi (16 - h^2) \frac{dh}{dt}.$$

Then when $\frac{dV}{dt} = -1, h = 1$, we have

$$-1 = \pi (16 - 1) \frac{dh}{dt} \Leftrightarrow \frac{dh}{dt} = -\frac{1}{15\pi}.$$

Alternate Calculations:

For Question 3(c):

$$\int (x^2 + x)e^x dx = \int u \, dv, \text{ with } u = x^2 + x; dv = e^x \, dx$$

$$= uv - \int v \, du$$

$$= (x^2 + x)e^x - \int (2x + 1)e^x \, dx$$

$$= (x^2 + x)e^x - 2 \int xe^x \, dx - e^x$$

$$= (x^2 + x - 1)e^x - 2 \int s \, dt, \text{ with } s = x; dt = e^x \, dx$$

$$= (x^2 + x - 1)e^x - 2 \left(st - \int t \, ds\right)$$

$$= (x^2 + x - 1)e^x - 2xe^x + 2 \int e^x \, dx$$

$$= (x^2 + x - 1)e^x - 2xe^x + 2e^x + C$$

$$= (x^2 - x + 1)e^x + C$$