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1. [10 marks; 2 marks for each part. Avg: 7.8/10] Let f(x) =
√

25− x2. Write down an integral that

gives the value of each of the following quantities. (Do NOT evaluate the integrals.)

(a) The area of the region bounded by the curves with equations y = f(x), y = x, x = 0 and x = 3.

Solution: ∫ 3

0
(f(x)− x) dx OR

∫ 3

0
(
√

25− x2 − x) dx

(b) The volume of the solid of revolution obtained by rotating around the y-axis the region bounded

by the curves with equations y = f(x), y = 0, x = 0 and x = 3.

Solution: ∫ 3

0
2πx f(x) dx︸ ︷︷ ︸

method of shells

OR

∫ 3

0
2πx

√
25− x2 dx.

Note: ∫ 5

4
π(25− y2) dy︸ ︷︷ ︸

method of discs

+ 36π

gives correct volume but is not solely an integral.

(c) The length of the curve with equation y = f(x) for 0 ≤ x ≤ 3.

Solution: ∫ 3

0

√
1 + (f ′(x))2 dx OR

∫ 3

0

5√
25− x2

dx.

(d) The surface area of the solid of revolution obtained by rotating around the x-axis the curve with

equation y = f(x) for 0 ≤ x ≤ 3.

Solution: ∫ 3

0
2πf(x)

√
1 + (f ′(x))2 dx OR

∫ 3

0
10π dx

(e) The surface area of the solid of revolution obtained by rotating around the y-axis the curve with

equation y = f(x) for 0 ≤ x ≤ 3.

Solution: ∫ 3

0
2πx

√
1 + (f ′(x))2 dx OR

∫ 5

4
2πg(y)

√
1 + (g′(y))2 dy,

where g(y) = f−1(y) =
√

25− y2. Note: as in part (c),
√

1 + (f ′(x))2 =
5√

25− x2
.
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2. [avg: 9.4/10] Let v = 2
√
t− 4 be the velocity of a particle at time t, for 0 ≤ t ≤ 16. Find:

(a) [4 marks] the average velocity of the particle.

Solution: use the formula for average.

vavg =
1

16− 0

∫ 16

0
v dt

=
1

16

∫ 16

0
(2
√
t− 4) dt

=
1

16

[
4t3/2

3
− 4t

]16
0

=
16

3
− 4 =

4

3

(b) [6 marks] the average speed of the particle.

Solution: since v changes signs on the interval [0, 16]

you have to calculate the average speed in two steps.

We have

v = 0⇒ 2
√
t = 4⇒ t = 4,

and so the average speed s = |v| is given by

savg =
1

16

∫ 16

0
|v| dt =

1

16

(∫ 4

0
−v dt+

∫ 16

4
v dt

)
.

Calculations:

savg =
1

16

∫ 4

0
(4− 2

√
t) dt+

1

16

∫ 16

4
(2
√
t− 4) dt

=
1

16

[
4t− 4t3/2

3

]4
0

+
1

16

[
4t3/2

3
− 4t

]16
4

=
1

16

(
16− 32

3

)
+

1

16

(
256

3
− 64− 32

3
+ 16

)
= 1− 2

3
+

14

3
− 3 =

1

3
+

5

3
= 2
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3. [avg: 7.2/10] Let f(x) = x ex, for x ≥ 0.

(a) [2 marks] The graph of y = f(x) is shown below. Clearly indicate the regions that have area

corresponding to each of A1 =

∫ 1

0
f(x) dx and A2 =

∫ e

0
f−1(y) dy.

0.5 1

1

2

3

4

y = xex

x

ySolution:

r
The region

shaded in green

has area A2

The region

shaded in red

has area A1

(1, e)

(b) [4 marks] Find the value of A1.

Solution: use parts with u = x and dv = ex dx. Then du = dx, v = ex and

A1 =

∫ 1

0
xex dx = [xex]10 −

∫ 1

0
ex dx = [xex]10 − [ex]10 = e− 0− e+ 1 = 1

(c) [4 marks] Find the value of A2.

Short Way: subtract A1 from the area of the rectangle bounded by 0 ≤ x ≤ 1 and 0 ≤ y ≤ e :

A2 = e−A1 = e− 1.

Long Way: let y = f(x) = xex. Then f−1(y) = f−1(f(x)) = x and dy = (x+ 1)ex dx and

A2 =

∫ e

0
f−1(y) dy =

∫ f−1(e)

f−1(0)
x (x+ 1)ex dx

=

∫ 1

0
(x2 + x)ex dx

(use parts twice; see page 12) =
[
(x2 − x+ 1)ex

]1
0

= e− 1

4



4. [avg: 5.9/10] Find the volume of the solid generated by rotating around the line y = 2 the region

bounded by the curves with equations y = x2 and y = 1, using:

(a) [5 marks] the method of cylindrical shells.

Solution: the region is in the figure below.

y = x2

x

y

0 1−1

y = 1

	y = 2

Using the method of shells, with respect to y :

V =

∫ 1

0
2π(2− y)(

√
y − (−√y)) dy

= 4π

∫ 1

0
(2− y)

√
y dy

= 4π

∫ 1

0

(
2y

1
2 − y

3
2

)
dy

= 4π

[
4

3
y

3
2 − 2

5
y

5
2

]1
0

=
56π

15

(b) [5 marks] the method of discs and washers.

Solution: using the method of discs and integrating with respect to x :

V =

∫ 1

−1

(
π(2− x2)2 − π(1)2

)
dx

= π

∫ 1

−1

(
4− 4x2 + x4 − 1

)
dx

= 2π

∫ 1

0

(
3− 4x2 + x4

)
dx

= 2π

[
3x− 4

3
x3 +

1

5
x5
]1
0

=
56π

15
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5. [avg: 3.9/10] A hemispherical tank of radius 4 m contains water in the bottom 2 m of the tank.

(a) [6 marks] How much work does it take to empty the tank by pumping all the water up to the

top of the tank and out? (Assume the density of water is ρ and that the acceleration due to

gravity is g; leave your answer in terms of ρ and g.)

Solution: if you set y = 0 at the top of the tank, then the equation of the circular side view is

x2 + y2 = 42, the bottom of the water is at a = −4, and the top of the water is at b = −2. The

x2 + y2 = 42

(x, y)

x

y
−4 4

cross-sectional area of the tank at height y is

A(y) = πx2 = π(42 − y2).

Then the work done in pumping all the water

from in the tank up to the top y = 0 is given by

W =

∫ b

a
ρ g A(y)(0− y) dy =

∫ −2
−4

ρ g π(42 − y2)(0− y) dy

= ρ π g

∫ −2
−4

(y3 − 16y) dy = ρ π g

[
y4

4
− 8y2

]−2
−4

= 36 ρ π g (Joules)

(b) [4 marks] Suppose the water is being pumped out at a rate of 1 cubic meter per minute. How

fast is the depth of the water decreasing when the depth of the water in the tank is 1 m?

Solution: using the same set up as in part (a), the volume of the water in the tank at depth h

is given by

V =

∫ h−4

−4
A(y) dy = π

∫ h−4

−4
(16− y2) dy.

Then, using the Chain Rule and the Fundamental Theorem of Calculus,

dV

dt
= π(16− (h− 4)2)

dh

dt
.

When
dV

dt
= −1, h = 1, we have

−1 = π(16− 32)
dh

dt
⇔ dh

dt
= − 1

7π
.

So the depth of the water is decreasing at a rate of
1

7π
m/min. (Approximately: 4.54 cm/min)

Alternate Solutions: on pages 10 and 11 there are alternate solutions to both parts of this

problem.
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6. [avg: 5.5/10] Let g(x) = x3 + sinx.

(a) [4 marks] Prove that g is a one-to-one function.

Solution: we shall show g is an increasing function for

all x, from which it follows g must be one-to-one. We

have

g′(x) = 3x2 + cosx

and

g′(x) > 0⇔ 3x2 > − cosx.

In the figure to the right you can see that the parabola,

y = 3x2, is always above the trig function, y = − cosx.

(b) [2 marks] Explain why the equation g(x) = 4 has exactly one solution in the interval [0, 2].

Solution: g(0) = 0 < 4 and g(2) = 8 + sin 2 ≥ 7 > 4, so by IVT there is at least one number c

in (0, 2) such that

g(c) = 4.

But by part (a) g is one-to-one, which means there is at most one number c such that g(c) = 4.

Therefore there is exactly one number c in [0, 2] such that g(c) = 4.

(c) [4 marks] Approximate the solution to the equation x3 + sinx = 4 correct to 4 decimal places

using Newton’s method.

Solution: let f(x) = x3 + sinx− 4. Then f ′(x) = 3x2 + cosx. Newton’s recursive formula is

xn+1 = xn −
f(xn)

f ′(xn)
, for n ≥ 0.

Pick x0 = 1 (although it doesn’t really matter what your initial choice is) and calculate1:

x1 = 1.609702 . . . , x2 = 1.458405 . . . , x3 = 1.443676 . . . , x4 = 1.443544 . . . , x5 = 1.443544 . . .

So, correct to 4 decimal places, the solution to the equation x3 + sinx = 4 is x = 1.4435

1Of course your calculator must be in radian mode.
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7. [avg: 5.8/10] A drainage channel is to be constructed so that its

cross section is a trapezoid with equally sloping sides. (See figures

to the right.) If the sides and bottom of a cross section all have

a length of 1 m, how should the angle between the sides and

the bottom be chosen to maximize the cross-sectional area of the

channel?
cross section

θθ

physical model

�
�
�
�Q

Q
Q
Q 1

1 1

Solution: let the base and height of each triangle at

the end of the trapezoidal cross section be b and h,

respectively. See figure to the right. cross section

θ

b

h
�
�
�
�Q

Q
Q
Q 1

1 1

Then the triangle at each end of the trapezoidal cross section has area

T =
bh

2
,

with b = cos θ and h = sin θ. Thus the total area of the trapezoidal cross section is

A = 2T + (1)(h) = cos θ sin θ + sin θ =
sin(2θ)

2
+ sin θ.

The problem is to maximize the value of A for 0 < θ <
π

2
. Calculating derivatives we find

dA

dθ
= cos(2θ) + cos θ = 2 cos2 θ − 1 + cos θ = (2 cos θ − 1)(cos θ + 1);

d2A

dθ2
= −2 sin(2θ)− sin θ.

Critical Points:

dA

dθ
= 0⇒ (2 cos θ − 1)(cos θ + 1) = 0⇒ cos θ =

1

2
or cos θ = −1.

The only critical point in the interval (0, π/2) is θ = π/3, or 60◦. At this point,
d2A

dθ2
= −3

√
3

2
< 0.

Conclusion:

• To maximize the cross-sectional area of the drainage channel the angle between the sides and

the bottom should be 60◦.
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8. [avg: 5.0/10] Let sinc(x) =


sinx

x
, if x 6= 0

1, if x = 0
; let Si(x) =

∫ x

0
sinc(t) dt.

(a) [2 marks] Is Si(x) a continuous function? Justify your answer.

Solution: yes. Since sinc(x) is continuous for all x, the definite integral Si(x) =

∫ x

0
sinc(t) dt

exists for all x, and so by the Fundamental Theorem of Calculus, Si′(x) = sinc(x) for all x. This

means Si(x) is differentiable, hence continuous, for all x.

(b) [2 marks] Show that Si(x) is an odd function.

Solution: let u = −t. Then

Si(−x) =

∫ −x
0

sinc(t) dt =

∫ x

0
sinc(−u) (−du) = −

∫ x

0
sinc(u) du = −Si(x),

where we have used the fact that sinc(x) is an even function.

(c) [2 marks] What are the critical points of Si(x) for −10 ≤ x ≤ 10?

Solution: Si′(x) = 0⇒ sinc(x) = 0⇒ x 6= 0 and sin(x) = 0⇒ x = ±π,±2π,±3π.

(d) [4 marks] The graph of sinc(x) is dotted in below. Sketch in the corresponding graph of Si(x).

Solution: we have Si(0) = 0. Since Si′(x) = sinc(x), we know: Si is increasing when sinc(x) > 0

and Si is decreasing when sinc(x) < 0; Si is concave up when sinc is increasing and Si is concave

down when sinc is decreasing. Thus the graph of y = Si(x) looks like the blue graph below:
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Alternate Calculations:

For Question 5, if you put the centre of the circle at (0, 4) then the equation of the circle is

x2 + (y − 4)2 = 42 ⇔ x2 − 8y + y2 = 0.

In this version the bottom of the water is at a = 0, the top of the water is at b = 2, and the cross-sectional

area at y is

A(y) = πx2 = π(8y − y2).

So the work done is

W =

∫ 2

0
ρ g A(y)(4− y) dy

= ρ g π

∫ 2

0
(8y − y2)(4− y) dy

= ρ g π

∫ 2

0

(
y3 − 12y2 + 32y

)
dy

= ρ g π

[
y4

4
− 4y3 + 16y2

]2
0

= ρ g π(4− 32 + 64)

= 36 ρ g π

For part (b), the depth of the water is h and the volume of this water is

V =

∫ h

0
A(y) dy = π

∫ h

0
(8y − y2) dy.

By the Chain Rule and the Fundamental Theorem of Calculus,

dV

dt
= π(8h− h2)dh

dt
.

Then with
dV

dt
= −1 and h = 1 we have

−1 = π(8− 1)
dh

dt
⇔ dh

dt
= − 1

7π
,

as before.
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Question 5: if your tank curves downward, and the tank sits on the x-axis. Then the equation of the

side view is

x2 + y2 = 42, y ≥ 0.

For part (a) the work done is now

W =

∫ 2

0
ρ g A(y) (4− y) dy = πρg

∫ 2

0
(16− y2)(4− y) dy = πρg

∫ 2

0
(64− 16y − 4y2 + y3) dy =

268

3
πρg.

For part (b), the volume of water in the tank at depth h is

V =

∫ h

0
A(y) dy =

∫ h

0
π(16− y2) dy

and
dV

dt
= π(16− h2)dh

dt
.

Then when
dV

dt
= −1, h = 1, we have

−1 = π(16− 1)
dh

dt
⇔ dh

dt
= − 1

15π
.

11



Alternate Calculations:

For Question 3(c):∫
(x2 + x)ex dx =

∫
u dv, with u = x2 + x; dv = ex dx

= uv −
∫
v du

= (x2 + x)ex −
∫

(2x+ 1)ex dx

= (x2 + x)ex − 2

∫
xex dx− ex

= (x2 + x− 1)ex − 2

∫
s dt, with s = x; dt = ex dx

= (x2 + x− 1)ex − 2

(
st−

∫
t ds

)
= (x2 + x− 1)ex − 2xex + 2

∫
ex dx

= (x2 + x− 1)ex − 2xex + 2ex + C

= (x2 − x+ 1)ex + C
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