University of Toronto

Faculty of Applied Science and Engineering

Final Examination, December 2018
Duration: 2 and $1 / 2$ hrs
First Year - CHE, CIV, CPE, ELE, ENG, IND, LME, MEC, MMS Solutions to MAT186H1F - Calculus I
Examiners: F. Bischoff, D. Burbulla, S. Cohen, D. Fusca, J. Ko, X. Jie M. Matvilchuk, K. Pham

Exam Type: A.
Aids permitted: Casio FX-991 or Sharp EL-520 calculator.

General Comments:

Breakdown of Results: 750 registered students wrote this test. The marks ranged from 7.5% to 100%, and the average was 72.2%. There was 1 perfect paper. Some statistics on grade distribution are in the table on the left, and a histogram of the marks (by decade) is on the right.

Grade	$\%$	Decade	$\%$
		$90-100 \%$	9.1%
A	36.2%	$80-89 \%$	27.1%
B	27.7%	$70-79 \%$	27.7%
C	20.8%	$60-69 \%$	20.8%
D	8.1%	$50-59 \%$	8.1%
F	7.2%	$40-49 \%$	4.0%
		$30-39 \%$	0.7%
		$20-29 \%$	1.7%
		$10-19 \%$	0.7%
		$0-9 \%$	0.1%

1. [avg: 7.32/10] Find the following:
(a) [3 marks] $\lim _{x \rightarrow 1} \frac{\ln x}{x^{3}-x}$

Solution: the limit is in the $0 / 0$ form so use L'Hopital's rule:

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x^{3}-x}=\lim _{x \rightarrow 1} \frac{1 / x}{3 x^{2}-1}=\frac{1}{2}
$$

(b) [3 marks] the equation of the tangent line to the graph of $f(x)=\tan ^{-1} x$ at the point $(1, \pi / 4)$.

Solution: $f^{\prime}(x)=\frac{1}{1+x^{2}}$ and $f^{\prime}(1)=\frac{1}{2}$. So the quation of the tangent line to $f(x)$ at $x=1$ is

$$
\frac{y-f(1)}{x-1}=f^{\prime}(1) \Leftrightarrow \frac{y-\pi / 4}{x-1}=\frac{1}{2} \Leftrightarrow y=\frac{1}{2}(x-1)+\frac{\pi}{4}=\frac{1}{2} x+\frac{\pi}{4}-\frac{1}{2} .
$$

(c) [4 marks] all the inflection points on the graph of $y=x^{7 / 3}-14 x^{1 / 3}$

Solution: $f^{\prime}(x)=\frac{7}{3} x^{4 / 3}-\frac{14}{3} x^{-2 / 3} ; f^{\prime \prime}(x)=\frac{28}{9} x^{1 / 3}+\frac{28}{9} x^{-5 / 3}=\frac{28}{9}\left(\frac{x^{2}+1}{x^{5 / 3}}\right)$. So

$$
f^{\prime \prime}(x)>0 \Leftrightarrow x>0 \text { and } f^{\prime \prime}(x)<0 \Leftrightarrow x<0
$$

and the only inflection point of f is the point $(0,0)$. Note: $f^{\prime \prime}(0)$ is not defined; any one who states that " f " $(0)=0$, and consequently there is an inflection point at $x=0$," will lose 2 marks! For interest, the graph is below:

2. [avg: 7.85/10] Find the following:
(a) $\left[3\right.$ marks] $\int_{0}^{\pi / 2} 3 \cos x \sqrt{1+3 \sin x} d x$

Solution: let $u=1+3 \sin x$. Then $d u=3 \cos x$ and

$$
\int_{0}^{\pi / 2} 3 \cos x \sqrt{1+3 \sin x} d x=\int_{1}^{4} \sqrt{u} d u=\left[\frac{2 u^{3 / 2}}{3}\right]_{1}^{4}=\frac{16}{3}-\frac{2}{3}=\frac{14}{3}
$$

(b) [2 marks] $\int_{-\pi / 2}^{\pi / 2} e^{-x^{2}} \sin x d x$

Solution: observe that the integrand is an odd function, so

$$
\int_{-\pi / 2}^{\pi / 2} e^{-x^{2}} \sin x d x=0
$$

Note: it would be nigh impossible, and a total waste of time, to try and find $\int e^{-x^{2}} \sin x d x$.
(c) [5 marks] $\int_{0}^{\pi} x^{2} \cos x d x$

Solution: integrate by parts. Start with $u=x^{2}, d v=\cos x d x$. Then $d u=2 x d x, v=\sin x$. So

$$
\begin{aligned}
& \int x^{2} \cos x d x=\int u d v=u v-\int v d u \\
& =x^{2} \sin x-2 \int x \sin x d x \\
& \text { (now let } s=x, d t=\sin x d x)=-x^{2} \sin x-2\left(s t-\int t d s\right) \\
& =x^{2} \sin x+2 x \cos x-2 \int \cos x d x \\
& =x^{2} \sin x+2 x \cos x-2 \sin x+C
\end{aligned}
$$

and

$$
\int_{0}^{\pi} x^{2} \cos x d x=\left[x^{2} \sin x+2 x \cos x-2 \sin x\right]_{0}^{\pi}=-2 \pi
$$

3. [avg: 9.08/10] Let $v=t^{2}-5 t+6$ be the velocity of a particle at time t, for $0 \leq t \leq 3$. Find:
(a) [4 marks] the average velocity of the particle.

Solution: this is a direct application of the average formula. The average velocity is

$$
\frac{1}{3-0} \int_{0}^{3} v d t=\frac{1}{3} \int_{0}^{3}\left(t^{2}-5 t+6\right) d t=\frac{1}{3}\left[\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+6 t\right]_{0}^{3}=\frac{3}{2}
$$

(b) [6 marks] the average speed of the particle.

Solution: the average speed is given by

$$
\frac{1}{3} \int_{0}^{3}|v| d t
$$

Since v changes signs on the interval $[0,3]$ we have to calculate two separate integrals:

$$
\frac{1}{3} \int_{0}^{3}|v| d t=\frac{1}{3} \int_{0}^{2} v d t+\frac{1}{3} \int_{2}^{3}(-v) d t
$$

So the average speed is

$$
\begin{aligned}
\frac{1}{3} \int_{0}^{3}|v| d t & =\frac{1}{3} \int_{0}^{2}\left(t^{2}-5 t+6\right) d t-\frac{1}{3} \int_{2}^{3}\left(t^{2}-5 t+6\right) d t \\
& =\frac{1}{3}\left[\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+6 t\right]_{0}^{2}-\frac{1}{3}\left[\frac{t^{3}}{3}-\frac{5 t^{2}}{2}+6 t\right]_{2}^{3} \\
& =\frac{14}{9}-\frac{1}{3}\left(-\frac{1}{6}\right) \\
& =\frac{14}{9}+\frac{1}{18}=\frac{29}{18}
\end{aligned}
$$

4. [avg: 7.82/10] Let V be the volume of the solid obtained by revolving the region bounded by $y=\sin x$ and $y=1$, for $0 \leq x \leq \pi / 2$, around the y-axis.
(a) [3 marks] Use the method of shells to express the value of V as one integral with respect to x.

Solution: $V=\int_{0}^{\pi / 2} 2 \pi x(1-\sin x) d x$
(b) [3 marks] Use the method of discs to express the value of V as one integral with respect to y.

Solution: $V=\int_{0}^{1} \pi\left(\sin ^{-1} y\right)^{2} d y$

(c) [4 marks] Find the value of V.

Solution: either integral requires parts, but the easiest integral to evaluate is the one from (a):

$$
\begin{aligned}
V=\int_{0}^{\pi / 2} 2 \pi x(1-\sin x) d x & =\pi \int_{0}^{\pi / 2} 2 x d x-2 \pi \int_{0}^{\pi / 2} x \sin x d x \\
(\text { let } u=x, d v=\sin x) & =\pi\left[x^{2}\right]_{0}^{\pi / 2}-2 \pi[-x \cos x]_{0}^{\pi / 2}-2 \pi \int_{0}^{\pi / 2} \cos x d x \\
& =\frac{\pi^{3}}{4}-0-2 \pi[\sin x]_{0}^{\pi / 2} \\
& =\frac{\pi^{3}}{4}-2 \pi \text { or } \pi\left(\frac{\pi^{2}-8}{4}\right)
\end{aligned}
$$

Alternate Solution: for the integral from (b), you can use parts, twice. Start with $u=\left(\sin ^{-1} y\right)^{2}, d v=d y$. Then $d u=\frac{2 \sin ^{-1} y d y}{\sqrt{1-y^{2}}}, v=y$ and

$$
\begin{aligned}
\int\left(\sin ^{-1} y\right)^{2} d y & =y\left(\sin ^{-1} y\right)^{2}-\int \frac{2 y \sin ^{-1} y d y}{\sqrt{1-y^{2}}} \\
\left(\text { now let } s=\sin ^{-1} y, d t=\frac{2 y d y}{\sqrt{1-y^{2}}}\right) & =y\left(\sin ^{-1} y\right)^{2}-\left(s t-\int t d s\right) \\
& =y\left(\sin ^{-1} y\right)^{2}-\left(-2 \sqrt{1-y^{2}} \sin ^{-1} y+\int 2 d y\right) \\
& =y\left(\sin ^{-1} y\right)^{2}+2 \sqrt{1-y^{2}} \sin ^{-1} y-2 y+C \\
\Rightarrow V & =\pi\left[y\left(\sin ^{-1} y\right)^{2}+2 \sqrt{1-y^{2}} \sin ^{-1} y-2 y\right]_{0}^{1}=\frac{\pi^{3}}{4}-2 \pi
\end{aligned}
$$

as before.
(See Page 10 for an alternate solution.)
5. [avg: 8.31/10] A tank is full of water. The tank is a square-based pyramid oriented with the tip of the pyramid pointing upward. Each side of the base of the pyramid is 4 m long, and the pyramid is 8 m tall. How much work is required to empty the tank by pumping all the water up to a height 1 m above the top of the tank? (Assume the density of water is ρ and that the acceleration due to gravity is g; leave your answer in terms of ρ and g.)

Solution: consider a side view. Let the tip of the pyramid be on the y-axis; let the base of the pyramid be on the $x=$ axis.

Consider a horizontal cross-section at height y. See figure. The point (x, y) satisfies the equation

$$
\frac{y}{8}+\frac{x}{2}=1 .
$$

Thus

$$
x=2\left(1-\frac{y}{8}\right)=\frac{1}{4}(8-y)
$$

and the cross-sectional area of the pyramid at height y is

$$
A(y)=(2 x)^{2}=\frac{1}{4}(8-y)^{2} .
$$

Let W be the work required to empty the tank by pumping all the water up to a height 1 m above the top of the tank. Then

$$
W=\int_{0}^{8} \rho g A(y)(9-y) d y .
$$

The rest is calculation:

$$
\begin{aligned}
W & =\int_{0}^{8} \rho g A(y)(9-y) d y \\
& =\frac{\rho g}{4} \int_{0}^{8}(8-y)^{2}(9-y) d y \\
(\text { let } u=8-y) & =\frac{\rho g}{4} \int_{8}^{0} u^{2}(u+1)(-d u) \\
& =\frac{\rho g}{4} \int_{0}^{8}\left(u^{3}+u^{2}\right) d u \\
& =\frac{\rho g}{4}\left[\frac{u^{4}}{4}+\frac{u^{3}}{3}\right]_{0}^{8}=\frac{\rho g}{4}\left(\frac{8^{4}}{4}+\frac{8^{3}}{3}\right) \\
& =\frac{8^{3} \rho g}{4}\left(2+\frac{1}{3}\right)=128 \rho g\left(\frac{7}{3}\right)=\frac{896 \rho g}{3}
\end{aligned}
$$

Note: you could also use similar triangles to find $\frac{2 x}{8-y}=\frac{4}{8} \Leftrightarrow 2 x=\frac{8-y}{2}$.
6. [avg: 8.03/10] Consider the curve with equation $y=\frac{x^{3}}{12}+\frac{1}{x}$ for $1 \leq x \leq 4$.
(a) [5 marks] Find the length of the curve.

Solution: you need $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$ for both parts of this question, so calculate it very carefully!

$$
\begin{aligned}
\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} & =\sqrt{1+\left(\frac{x^{2}}{4}-\frac{1}{x^{2}}\right)^{2}} \\
& =\sqrt{1+\frac{x^{4}}{16}-\frac{1}{2}+\frac{1}{x^{4}}} \\
& =\sqrt{\frac{x^{4}}{16}+\frac{1}{2}+\frac{1}{x^{4}}} \\
& =\sqrt{\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right)^{2}} \\
& =\frac{x^{2}}{4}+\frac{1}{x^{2}}, \text { since } x^{2}>0
\end{aligned}
$$

Then the length of the curve is

$$
L=\int_{1}^{4} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{4}\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right) d x=\left[\frac{x^{3}}{12}-\frac{1}{x}\right]_{1}^{4}=\frac{64}{12}-\frac{1}{4}-\frac{1}{12}+1=6
$$

(b) [5 marks] Find the area of the surface generated by revolving the curve about the y-axis.

Solution: since we are revolving around the y-axis, the surface area is given by

$$
\begin{aligned}
S & =\int_{1}^{4} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{1}^{4} 2 \pi x\left(\frac{x^{2}}{4}+\frac{1}{x^{2}}\right) d x \\
& =\frac{\pi}{2} \int_{1}^{4} x^{3} d x+2 \pi \int_{1}^{4} \frac{1}{x} d x \\
& =\frac{\pi}{2}\left[\frac{x^{4}}{4}\right]_{1}^{4}+2 \pi[\ln x]_{1}^{4} \\
& =32 \pi-\frac{\pi}{8}+2 \pi \ln 4 \\
& =\frac{255 \pi}{8}+\pi \ln 16 \text { or } \pi\left(\frac{255}{8}+\ln 16\right)
\end{aligned}
$$

7. [avg: 5.09/10] Let A be the area of the region bounded by the graphs of $f(x)=x+2|x|$ and $g(x)=m x+1$. Find the value of m that minimizes the value of A.

Solution: first of all, to simplify $f(x)$ you need to take cases: $f(x)=\left\{\begin{array}{cl}3 x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{array}\right.$.

Next, you need to find the intersection points of $f(x)$ and $g(x)$:

$$
\begin{aligned}
& \text { for } x<0:-x=m x+1 \Rightarrow x=-\frac{1}{1+m} ; \\
& \text { for } x>0: 3 x=m x+1 \Rightarrow x=\frac{1}{3-m} .
\end{aligned}
$$

Let A_{1} be the area of the triangle under the line $y=-x$; let A_{2} be the area of the triangle under the line $y=3 x$. See figure to the left.
Then

$$
\begin{aligned}
A & =\int_{-1 /(m+1)}^{1 /(3-m)} g(x) d x-A_{1}-A_{2} \\
& =\left[\frac{m}{2} x^{2}+x\right]_{-1 /(m+1)}^{1 /(3-m)}-\frac{1}{2(1+m)^{2}}-\frac{3}{2(3-m)^{2}} \\
& =\frac{m}{2(3-m)^{2}}+\frac{1}{3-m}-\frac{m}{2(1+m)^{2}}+\frac{1}{1+m}-\frac{1}{2(1+m)^{2}}-\frac{3}{2(3-m)^{2}} \\
& =\frac{1}{2(3-m)}+\frac{1}{2(m+1)}=\frac{2}{(3-m)(1+m)}
\end{aligned}
$$

The problem is to minimize the value of A for $-1<m<3 .{ }^{1}$ Find the first and second derivatives:

$$
\frac{d A}{d m}=\frac{1}{2(3-m)^{2}}-\frac{1}{2(m+1)^{2}} ; \frac{d^{2} A}{d m^{2}}=\frac{1}{(3-m)^{3}}+\frac{1}{(m+1)^{3}} .
$$

Then

$$
\frac{d A}{d m}=0 \Rightarrow(3-m)^{2}=(m+1)^{2} \Rightarrow 9-6 m+m^{2}=m^{2}+2 m+1 \Rightarrow 8=8 m \Rightarrow m=1 ;
$$

and at $m=1$

$$
\frac{d^{2} A}{d m^{2}}=\frac{1}{4}>0 .
$$

So the value of A is minimized for $m=1$.
(See Page 10 for an alternate solution.)

[^0]8. [avg: 4.28/10] Gauss's error function, erf, is defined for all x by $\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t$. The first four values of $\operatorname{erf}(n)$, for $n=1,2,3,4$ are:
$\operatorname{erf}(1) \approx 0.842701, \operatorname{erf}(2) \approx 0.995322, \operatorname{erf}(3) \approx 0.999978, \operatorname{erf}(4) \approx 0.999999$.
(a) [2 marks] Find the value of $\int_{1}^{2} e^{-t^{2}} d t$ correct to four decimal places.

Solution:

$$
\int_{1}^{2} e^{-t^{2}} d t=\int_{0}^{2} e^{-t^{2}} d t-\int_{0}^{1} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}(\operatorname{erf}(2)-\operatorname{erf}(1)) \approx 0.135257 \ldots
$$

(b) [2 marks] Find $\operatorname{erf}^{\prime}(x)$ and determine for which values of x the error function is increasing.

Solution:

$$
\operatorname{erf}^{\prime}(x)=\frac{2}{\sqrt{\pi}} e^{-x^{2}}>0
$$

for all x. So the error function is increasing for all x.
(c) [2 marks] Show that $\operatorname{erf}(-x)=-\operatorname{erf}(x)$.

Solution:

$$
\begin{aligned}
\operatorname{erf}(-x) & =\frac{2}{\sqrt{\pi}} \int_{0}^{-x} e^{-t^{2}} d t \\
(\operatorname{let} u=-t) & =-\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} d u \\
& =-\operatorname{erf}(x)
\end{aligned}
$$

(d) [4 marks] Find the value of $\int_{0}^{1} \operatorname{erf}(x) d x$ correct to four decimal places.

Solution: use integration by parts. Let $u=\operatorname{erf}(x), d v=d x$. Then $v=x, d u=\frac{2}{\sqrt{\pi}} e^{-x^{2}} d x$, and

$$
\begin{aligned}
\int_{0}^{1} \operatorname{erf}(x) d x & =[x \operatorname{erf}(x)]_{0}^{1}-\frac{2}{\sqrt{\pi}} \int_{0}^{1} x e^{-x^{2}} d x \\
\left(\operatorname{let} w=-x^{2}\right) & =\operatorname{erf}(1)-0+\frac{1}{\sqrt{\pi}} \int_{0}^{-1} e^{w} d w \\
& =\operatorname{erf}(1)+\frac{1}{\sqrt{\pi}}\left(\frac{1}{e}-1\right) \\
& \approx 0.48606 \ldots
\end{aligned}
$$

Alternate Solutions:

Question 4: let $\theta=\sin ^{-1} y$. Then $d \theta=\frac{d y}{\sqrt{1-\sin ^{2} \theta}}=\frac{d y}{\cos \theta} \Leftrightarrow d y=\cos \theta d \theta$ and

$$
\begin{aligned}
& \qquad \begin{aligned}
V & =\int_{0}^{1} \pi\left(\sin ^{-1} y\right)^{2} d y \\
& =\pi \int_{0}^{\pi / 2} \theta^{2} \cos \theta d \theta \\
\text { (from Question 2(c)) } & =\pi\left[\theta^{2} \sin \theta+2 \theta \cos \theta-2 \sin \theta\right]_{0}^{\pi / 2} \\
& =\pi\left(\frac{\pi^{2}}{4}-2\right),
\end{aligned},=\text {.2 }
\end{aligned}
$$

as before.
Question 5: alternate calculations

$$
\begin{aligned}
W & =\rho g \int_{0}^{8} 16\left(1-\frac{y}{8}\right)^{2}(9-y) d y \\
& =\rho g \int_{0}^{8}\left(16-4 y+\frac{y^{2}}{4}\right)(9-y) d y \\
& =\rho g \int_{0}^{8}\left(144-52 y+\frac{25 y^{2}}{4}-\frac{y^{3}}{4}\right) d y \\
& =\rho g\left[144 y-26 y^{2}+\frac{25 y^{3}}{12}-\frac{y^{4}}{16}\right]_{0}^{8} \\
& =\rho g\left(\frac{896}{3}\right)
\end{aligned}
$$

as before.
Question 7: since A is the area of a triangle, you could use vectors and find A using the cross-product:

$$
\begin{aligned}
A & =\frac{1}{2}\left\|\left[\begin{array}{c}
1 /(3-m) \\
3 /(3-m) \\
0
\end{array}\right] \times\left[\begin{array}{c}
-1 /(1+m) \\
1 /(m+1) \\
0
\end{array}\right]\right\| \\
& =\frac{1}{2}\left(\frac{1}{(3-m)(m+1)}+\frac{3}{(3-m)(1+m)}\right) \\
& =\frac{2}{(3-m)(m+1)}
\end{aligned}
$$

and then find the critical point of A as before. OR, in the same vein, you can avoid integration by using the formula for the area of a trapezoid to get the value of the area under $g(x)$ from one intersection point to the other.

Alternate Solutions:

Question 8(c): consider the function $g(x)=\operatorname{erf}(-x)+\operatorname{erf}(x)$. By the chain rule and the fundamental theorem of calculus, we have

$$
g^{\prime}(x)=-\operatorname{erf}^{\prime}(-x)+\operatorname{erf}^{\prime}(x)=-\frac{2}{\sqrt{\pi}} e^{-(-x)^{2}}+\frac{2}{\sqrt{\pi}} e^{-x^{2}}=0,
$$

so $g(x)$ is constant. Since $g(0)=0$, we must have $g(x)=0$ for all x, which implies erf $(-x)=-\operatorname{erf}(x)$.
Question 8(d): work with "double integrals," which is beyond the scope of this course, but many students tried it. It can work if you know what you are doing:

$$
\int_{0}^{1} \operatorname{erf}(x) d x=\frac{2}{\sqrt{\pi}} \int_{0}^{1} \int_{0}^{x} e^{-t^{2}} d t d x
$$

Interchanging the order of integration, we have

$$
\begin{aligned}
\frac{2}{\sqrt{\pi}} \int_{0}^{1} \int_{0}^{x} e^{-t^{2}} d t d x & =\frac{2}{\sqrt{\pi}} \int_{0}^{1} \int_{t}^{1} e^{-t^{2}} d x d t \\
& =\frac{2}{\sqrt{\pi}} \int_{0}^{1}(1-t) e^{-t^{2}} d t \\
& =\operatorname{erf}(1)-\frac{2}{\sqrt{\pi}} \int_{0}^{1} t e^{-t^{2}} d t \\
& =\operatorname{erf}(1)+\frac{1}{\sqrt{\pi}}\left(e^{-1}-1\right) \\
& \approx 0.4861
\end{aligned}
$$

This page is for rough work or for extra space to finish a previous problem. It will not be marked unless you have indicated in a previous question to look at this page.

[^0]: ${ }^{1}$ Note that if $m \leq-1$ or $m \geq 3$ then the area between the graphs of $f(x)$ and $g(x)$ is unbounded. Indeed, since $A \rightarrow \infty$ as $m \rightarrow-1^{+}$or as $m \rightarrow 3^{-}, A$ must have a minimum value on the interval $(-1,3)$, and it must occur at a critical point. This observation can replace the second derivative test to confirm the minimum at $m=1$.

