Office: Bahen Centre/BA 6176 |

- Putnam and other problems sorted according to topic
- Putnam problems in algebra
- Putnam problems in calculus and analysis
- Putnam problems in combinatorics
- Putnam problems in differential equations
- Putnam problems in geometry
- Putnam problems in groups, fields and axiomatics
- Putnam problems in inequalities
- Putnam problems in matrices and linear algebra
- Putnam problems in number theory
- Putnam problems in probability
- Putnam problems in real numbers
- Putnam problems in sequences

- U of T Undergraduate Competition Student Rankings
- U of T Undregraduate Competitions: Complete problem set
- First University of Toronto Undergraduate Mathematics Contest (2001)
- Second University of Toronto Undergraduate Mathematics Contest (2002)
- Third University of Toronto Undergraduate Mathematics Contest (2003)
- Fourth University of Toronto Undergraduate Mathematics Contest (2004)
- Fifth University of Toronto Undergraduate Mathematics Contest (2005)
- Sixth University of Toronto Undergraduate Mathematics Contest (2006)
- Seventh University of Toronto Undergraduate Mathematics Contest (2007)
- Eighth University of Toronto Undergraduate Mathematics Contest (2008)
- Ninth University of Toronto Undergraduate Mathematics Contest (2009)
- Tenth University of Toronto Undergraduate Mathematics Contest (2010)
- Eleventh University of Toronto Undergraduate Mathematics Contest (2011)
- Twelfth University of Toronto Undergraduate Mathematics Contest (2012)
- Thirteenth University of Toronto Undergraduate Mathematics Contest (2013)
- Fourteenth University of Toronto Undergraduate Mathematics Contest (2014)
- Fifteenth University of Toronto Undergraduate Mathematics Contest (2015)
- Sixteenth University of Toronto Undergraduate Mathematics Contest (2016)
- Seventeenth University of Toronto Undergraduate Mathematics Contest (2017)

- Preface and foreword
- 1. Roots of Polynomials
- 2. The Taylor Expansion
- 3. Locating Zeros of Polynomials
- 4. Interpolation and Representation
- 5. Approximatiom by Polynomials
- 6. Irreducibility and Factorization
- 7. Dynamical Systems
- 8. Curves in the Plane
- 9. Allemands
- 10. Diophantine Equations
- 11. Diophantine Equations for Polynomials
- References: Books
- References: Papers