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1. In how many ways can a 5× 5 square be tiled with 3× 1 and 4× 1 rectangles in such a way that each
point in the square is covered and there is no overlap?

2. Let f(x) and g(x) be two increasing real-valued functions defined on [0,∞) for which (1) f(0) = g(0) = 0
and (2) f(x) + g(x) = x for x ≥ 0.

(a) Give an example of such a pair (f, g) of distinct functions.

(b) Prove that f(x) and g(x) are continuous on [0,∞).

3. (a) S is a set of positive integers, the largest of which is n. The least common multiple of any pair of
numbers in S is greater than n. Prove that the sum of the reciprocals of the numbers in S is less than
2.

(b) Give two examples of sets S as described in (a) for which the sum of the reciprocals exceeds 1.

(c) If, in (a), the words “least common multiple” is replaced by “product”, does the conclusion still
hold?

4. Let
h(x, y, z) = x2 + y2 + z2 + 3(xy + yz + zx) + 5(x+ y + z) + 1.

Prove that the diophantine equation h(x, y, z) = 0 has infinitely many solutions for which x, y, z are all
integers.

5. Suppose that f(x) is a continuous real-valued function defined on [0, 1] for which

1 =

∫ 1

0

f(x) dx =

∫ 1

0

xf(x) dx.

(a) Prove that ∫ 1

0

f(x)2 dx ≥ 4.

(b) Give an example of such a function for which equality occurs in (a).

6. Find all solutions of the differential equation

x2y′′ + 4xy′ + (x2 + 2)y = 1

that are continuous at x = 0.

7. The sequence {xn} is defined by the recursion

xn+1 = 2xn − n2

for n ≥ 0. For which values of the initial term x0 are all the terms of the sequence positive?
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8. What are the possible subsets U of the plane for which (1) U contains finitely many points, and (2)
for each point x in the plane, there is exactly one point y ∈ U of maximum distance, such that
d(x, y) > d(x, u) for u ∈ U , u 6= y. (d(x, y) is the Euclidean distance between x and y.)

9. Determine the set of all real numbers r for which

ar

u
+
br

v
+
cr

w
≥ (a+ b+ c)r

u+ v + w
,

whenever a, b, c, u, v, w are all positive. When does equality hold?

10. For a regular polygon A0A1A2 . . . An−1, let a1 denote the length of a side and ak the length of the
diagonal A0Ak for 2 ≤ k ≤ n− 1.

(a) For the regular heptagon A0A1 . . . A6, prove that

1

a1
=

1

a2
+

1

a3
.

(b) For the regular 15−gon A0A1 . . . A14, prove that

1

a1
=

1

a2
+

1

a4
+

1

a7
.

(c) State and prove a generalization for parts (a) and (b).

SOLUTIONS

1. In how many ways can a 5× 5 square be tiled with 3× 1 and 4× 1 rectangles in such a way that each
point in the square is covered and there is no overlap?

Solution 1. Let the square be split into 25 cells. Denote the rows from top to bottom by A,B,C,D,E
and the columns from left to right by 1, 2, 3, 4, 5. Each rectangle must be laid parallel to one of the sides of
the square, so it belongs entirely to one row or to one column.

The tile that covers cell A1 must extend along row A or down column 1. Suppose the former; then it
must cover cell A3. The tile covering A5 must extend down column 5 and so cover C5. The tile cover E5
must also cover E3, and finally the tile covering E1 must cover C1. Thus cells A3, C5, E3 and C1 are all
covered by tiles covering the corner cells.

Consider the tile covering C3. It can only be a 3× 1 tile placed horizontally or vertically. Suppose that
it is placed horizontally. In this case, A4 and E2 must be covered by the respective 4 × 1 tiles A1234 and
E2345. Cell B1 is covered by either 4× 1 tiles B1234 or BCDE1, and cell D4 by either D1234 or ABCD4.
Thus, there are 4 possibilities. The tiles in the centre 3 × 3 array of cells are covered by three horizontal
3× 1 tiles.

If the tile covering C3 is vertical, then again there are 4 possible configurations. Thus there are 8
configurations when A1 is covered by a horizontal tile.

If cell A1 is covered by a vertical tile, then a similar analysis verifies that there are 8 additional config-
urations. Therefore, altogether there are 16 configurations.

Solution 2, by Jing Wang. Adopt the notation of Solution 1. There are two possibilities for the numbers
of rectangles: (1) there is one 4× 1 rectangle and seven 3× 1 rectangles; (2) there are four 4× 1 rectangles
and three 3× 1 rectangles.

Note that each tile must cover at least one cell in either row C or column 3. A 3 × 1 tile covers one
or three such cells and a 4 × 1 tiles one or four such cells. If there is only one 4 × 1 tiles (case (1)), then

2



there are eight tiles altogether, so that one of the tiles must cover exactly two of the nine cells in row C and
column 3. This is not possible. Therefore, case (2) obtains.

There are seven tiles that cover the nine cells in the central row and column. Since no tile covers exactly
two of these central cells, one of the 3 × 1 cells must lie in either the central row or the central column.
Suppose it occupies C123. Consider the tile covering cell C4. If it is a 3× 1 tile, if forces a 3× 1 tile in the
first three columns of two other rows, forcing a total of four 3 × 1 tiles, one more than we have. If it is a
4 × 1 tile, then again it forces a total of four 3 × 1 tiles. Similarly it cannot occupy C354. Hence it must
occupy C234.

Cells C1 and C5 must be covered by tiles placed vertically. If they are both 3 × 1 tiles, then we have
used up all the available 3×1 tiles and so both tiles together cannot block any other than the middle row. If
say the 3×1 tiles cover ABC1 and CDE5, then the 4×1 tiles must cover A2345, B2345, D1234 and E1234.
The other possibility is that the 3× 1 tiles cover CDE1 and ABC5. Thus there are two configurations here.

If both C1 and C5 are covered by 4× 1 tiles, then either the two tiles must cover ABCD1 and BCDE5
or BCDE1 and ABCD5. In either case, there are two 4×1 tiles remaining, and they must be placed on the
remaining cells in rows A and E. The two other 3×1 tiles fill up rows B and D. There are two configurations
here.

Finally, cells C1 and C5 are covered by a 3× 1 and a 4× 1 cell. There are four ways this can happen,
depending on the columns selected for the cells and whether A5 is covered or not by one of them. Suppose,
for example, that a 3× 1 tiles covers CDE1 and a 4× 1 cell covers ABCD5. Then the remaining 3× 1 tile
covers D234 and the remaining three 4× 1 tiles are placed in rows A, B and E.

Thus, there are 8 configuration when a 3 × 1 tile covers C234. Similarly, there are 8 when such a tile
covers BCD3, for a total of 16 configurations altogether.

Solution 3. First, we note that a 4 × 1 tile cannot lie along row C. If, say, it covers C1234, then each
other position X1234 must be covered by horizontal tiles, which forces column 5 to be covered by vertical
tiles, an impossibility. Similarly a 4× 1 tile cannot lie down column 3.

If there are four 4× 1 horizontal tiles, then they must cover the first four cells of rows A and B and the
last four of C and D, or the last four of A and B and the first four of C and C. The position of three 3× 1
tiles is determined. This accounts for two configurations.

If there are three horizontal 4× 1 tiles, they must lie in adjacent rows A and B and row D or in row A
and adjacent rows C and D. The ones in the adjacent rows can touch one edge and the other one the other
edge. There is one placement for three 3× 1 tiles. This accounts for four configurations.

If there are two horizontal 4×1 tiles, they must be in rows A and E, and the remaining tiles in columns
1 and 5. The centre 3 × 3 square of cells can be covered by three 3 × 1 tiles in two ways. There are four
configuration from the two alternative placings of the edge cells and the two alternative placing of the central
cells.

Similarly, there are four configurations with one horizontal (and three vertical) 4 × 1 cell and two
configurations with all vertical 4× 1 cells. The total number of configurations is 2 + 4 + 4 + 4 + 2 = 16.

Solution 4. If there is exactly one 4×1 tile, it must abut one edge and or be in a middle row or column.
Suppose, say, it is in the top row occupying the first four positions, which we denote by A1234. Then the
remaining rectangles occupy, in order, ABC5, D345, E345, CDE1 and CDE2, and it is impossible to place
the remaining two. If the 1× 4 rectangle is is position B1234 or C1234, then there is a rectangle in position
A123 and it is impossible to cover cell A4. Thus, there are no possibilities for this situation. The remaining
possibility is that there are four 4× 1 and three 3× 1 tiles.

There here are two possibilities: either a 1 × 3 tile covers a corner cell or it does not. In the latter
case, a 4× 1 tile must cover either A1234 or ABCD1, In either situation, it determines the position of the
remaining three such rectangles. The three 3× 1 tiles cover the central 3× 3 array of cells, all either vertical
or horizontal. Thus, there are 4 possibilities for this case.
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On the other hand, suppose that a 3×1 rectangle covers A123. Since ABC4 and ABC5 are each covered
in whole or part by a single tile, there must be a tile that covers either E345 or E2345.

If two 3× 1 tiles cover A123 and E345, the remaining 1× 3 tiles covers BCD3 and the four remaning
tiles cover the remainder of the columns 1, 2, 4, 5. There are 4 ways for this configuration to occur according
as two of the three 3× 1 tiles are vertical or horizontal and which diagonal pair of cells they cover.

Suppose two tiles exactly cover A123 and E2345. Then the remaining 3× 1 tiles must cover BCD2 and
BCD3 and the remaining 4× 1 tiles occupy the remaining squares in columns 1, 4, 5. There are 8 ways for
this configuration to occur according as to which corner is covered by the 3× 1 tile and whether it is vertical
or horizontal.

Therefore there are 16 possible configurations.

2. Let f(x) and g(x) be two increasing real-valued functions defined on [0,∞) for which (1) f(0) = g(0) = 0
and (2) f(x) + g(x) = x for x ≥ 0.

(a) Give an example of such a pair (f, g) of distinct functions.

(b) Prove that f(x) and g(x) are continuous on [0,∞).

Note. In part (a), it was intended that the examples be nonlinear, but many students received full
credit for f(x) = cx and g(x) = (1− c)x for some value of c in (0, 1). Some students also provided nontrivial
examples.

(a) Here are some possible pairs:

f(x) = log(1 + x), g(x) = x− log(1 + x).

f(x) = tanh x
2 , g(x) = x− tanh x

2 .

f(x) =
√
x+ 1− 1, g(x) = x+ 1−

√
x+ 1 =

√
x+ 1(

√
x+ 1− 1).

(b) Solution 1. Let x > y ≥ 0. Then

f(x)− f(y) ≤ f(x)− f(y) + g(x)− g(y) = x− y.

Then, for any nonnegative values of x and y, we have that |f(x)− f(y)| ≤ |x− y|. It follows from this that
f(x) is continuous. Therefore g(x) = x− f(x) is also continuous.

Solution 2. Since both f(x) and g(x) are increasing functions, the left and right hand limits of the
function exist at each point in their domains. Let a > 0 and let L = limx→a− f(x) = sup{f(x) : x < a} and
R = limx→a+ f(x) = inf{f(x) : x > a} be the right and left hand limits of f at a. Then L ≤ R. Then, since
g is increasing

a− L = lim
x→a−

(x− f(x)) = lim
x→a−

g(x) ≤ lim
x→a+

g(x)

= lim
x→a+

(x− f(x)) = a−R,

from which R ≤ L. It follows that L = R = f(a) and f is continuous, as is g. An adaptation of this
argument replacing L by f(0) establishes continuity of f and g at 0.

Solution 3. Let x > 0 and let ε > 0. Suppose, if possible that f(x+ ε) > f(x) + ε. Then

g(x+ ε) = (x+ ε)− f(x+ ε) < (x+ ε)− f(x)− ε
= x− f(x) = g(x),

which contradicts the hypothesis that g(x) is increasing. Therefore, for each ε > 0,

0 ≤ f(x+ ε)− f(x) ≤ ε,
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from which it follows that f(x), and so g(x), is continuous.

3. (a) S is a set of at least two positive integers, the largest of which is n. The least common multiple of
any pair of numbers in S is greater than n. Prove that the sum of the reciprocals of the numbers in S
is less than 2.

(b) Give two examples of sets S as described in (a) for which the sum of the reciprocals exceeds 1.

(c) If, in (a), the words “least common multiple” is replaced by “product”, does the conclusion still
hold?

Solution. (a) The elements of S are distinct members of {2, 3, . . . , n}. Each element a in S has bn/ac
multiples that do not exceed n. The sets of multiples not exceeding n for the various elements in S are
pairwise disjoint sets. Therefore ∑

a∈S

⌊n
a

⌋
≤ n,

whence ∑
a∈S

n

a
<
∑
a∈S

(⌊n
a

⌋
+ 1
)
≤ 2n.

Dividing this equation by n yields the result.

(b) If S = {2, 3, 5}, the sum of the reciprocals is 31/30. Another example is S = {3, 4, 5, 7, 11}, whose
reciprocals add to 4690/4620.

Consider
S = {7, 8, 9, 11, 13, 15, 17, 19, 21, . . . , 43},

consisting of all the odd integers between 7 and 43 inclusive along with 8. The smallest least common
multiple of a pair is 45. We use that fact that, for any positive integer k,

1

2k − 1
+

1

2k + 1
>

1

k
.

Then (
1

7
+

1

8

)
+

(
1

9
+

1

11

)
+

(
1

13
+

1

15

)
+ · · ·+

(
1

41
+

1

43

)
>

1

4
+

1

5
+

1

7
+ · · ·+ 1

17
+

1

19
+

1

21

>
1

4
+

1

3
+

1

5
+

1

7
+

1

9
+

1

21

>
1

4
+

1

2
+

1

4
= 1.

(c) The conclusion does not hold and there are infinitely many examples. Let m be any positive integer,
and let

S = {m,m+ 1,m+ 2, . . . ,m2 − 1,m2}.

For any integer 1 ≤ k ≤ m− 1,

1

km+ 1
+

1

km+ 2
+

1

km+ 3
+ . . .+

1

km+m

> m

(
1

(k + 1)m

)
=

1

k + 1
.

The sum of the reciprocals of the number in S is greater than
∑m

k=1
1

k+1 , which exceeds 2 when m is
sufficiently large.
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Alternatively, note that the sum of the reciprocal of the numbers in S is greater that∫ m2

m

1

t
dt = logm

which can be made arbitrarily large.

4. Let
h(x, y, z) = x2 + y2 + z2 + 3(xy + yz + zx) + 5(x+ y + z) + 1.

Prove that the diophantine equation h(x, y, z) = 0 has infinitely many solutions for which x, y, z are all
integers.

Solution. We can write

h(x, y, z) = x2 + (3y + 3z + 5)x+ (y2 + z2 + 3yz + 5y + 5z + 1).

Suppose that (x, y, z) = (u, v, w) is a triple of integers that satisfies h(u, v, w) = 0. Then h(x, v, w) = 0 is a
quadratic equation in x, the sum of whose roots is the integer −(3v+ 3w+ 5). Since u is one root, the other
is −(u+ 3v + 3w + 5), also an integer. Thus

h(v, w,−(u+ 3v + 3w + 5)) = 0,

and we can use this second solution to generate a third and so on. This allows us to generate a bilateral
sequence {xn} of integers for which x−1 = u, x0 = v, x1 = w and

xn+1 = −3xn − 3xn−1 − xn−2 − 5,

for each integer n. We have h(xn−1, xn, xn+1) = 0. It remains to find a solution to the equation and to show
that it generates a nonperiodic bilateral sequence.

Note that
h(x, y, z) = (x+ y + z)2 + (xy + yz + zx) + 5(x+ y + z) + 1.

We search for a solution of h(x, y, z) = 0 that satisfies in addition x + y + z = 0. In this case, we require
xy + yz + zx = −1. Such a solution is (x, y, z) = (−1, 0, 1), which generates the bilateral sequence:

{. . . ,−16, 7,−3,−1, 0, 1,−7, 13,−24, . . .

where x−1 = −1, x0 = 0, x1 = 1 and

xn+1 + 3xn + 3xn−1 + xn−2 + 5 = 0,

for each integer n. Observe that x1 − x−1 = 2, x2 − x−2 = −4 and x3 − x−3 = 6. It can be proved by
induction that xn − x−n = (−1)n−12n for each positive integer n. Therefore, the sequence {xn} cannot be
periodic.

Comments. In search for a solution, we can try to find one for which z = 0. Then x and y have to
satisfy

x2 + y2 + 3xy + 5x+ 5y + 1 = 0.

This can be rewritten
(x− y)2 + 5(x− 1)(y − 1)− 4 = 0,

and it can be seen the (x, y) = (−1, 1) is a solution.

The recursion in the solution can be rewritten

(xn+1 + 2xn + xn−1) + (xn + 2xn−1 + xn−2) + 5 = 0.

6



It can be proved by induction that
x2m+1 + 2x2m + x2m−1 = 0

and
x2m + 2x2m−1 + x2m−2 = −5

for every integer m. There is an additional interesting feature: for m ≥ 2, it appears that x−(n+1) + xn+1 =
−2(x−n + xn), although this fails for n = 1.

If we change the order of the variables in the solution (−1, 0, 1) to (0,−1, 1) and (0, 1,−1), we get
different sequences

{. . . ,−11, 5,−3, 0,−1, 1,−5, 8,−15, . . .}

and
{. . . ,−29, 15,−7, 0, 1,−1,−5, 12,−25 . . . .}

In these sequences, xn+1 + 2xn + xn−1 alternates between different pairs of values (−1,−4) and (1,−6),
respectively.

Lisa Yu, without any explanation, provided the set of five solutions: (1,−1, 0), (1,−7, 0), (5,−17, 0),
(15,−43, 0), (41,−111, 0). I do not know how this was arrived at, but if we denote the terms in the sequence
as (xn, yn, zn) we see that after the first entry xn+1 + yn + 2 = 0. A little more headscratching suggests a
formula. Let {fn} be the Fibonacci bilateral sequence determined by f1 = f2 = 1 and fn+1 = fn + fn−1 for
each integer n. Then it appears that, except for (1,−1, 0), we have

(xn, yn, zn) = (2f2n − 1,−(2f2n+2 − 1), 0),

and
xn+1 = 3xn − xn−1 + 1, yn+1 = 3yn − yn−1 + 1,

for each integer n.

Here is a table showing values of n, the corresponding solution (xn, yn, zn) and related solutions with
two of the three entries unchanged:

−3 : (−17, 5, 0); (−17, 5, 31), (−17, 41, 0), (−3, 5, 0)

−2 : (−7, 1, 0); (−7, 1, 13), (−7,−15, 0), (−1, 1, 0)

−1 : (−3,−1, 0); (−3,−1, 7), (−3, 5, 0), (1,−1, 0)

0 : (−1,−3, 0); (−1,−3, 0), (−1, 1, 0), (5,−3, 0)

1 : (1,−7, 0); (1,−7, 13), (1,−1, 0), (−15,−7, 0)

2 : (5,−17, 0); (5,−17, 31), (5,−3, 0), (41,−17, 0)

3 : (15,−43, 0); (15,−43, 79), (15,−7, 0), (109,−43, 0)

4 : (41,−111, 0); (41.− 111, 205)

5; (109,−289, 0).

The solutions associated with (1,−1, 0 are (1,−1,−5), (1,−7, 0), (−3,−1, 0).

5. Suppose that f(x) is a continuous real-valued function defined on [0, 1] for which

1 =

∫ 1

0

f(x) dx =

∫ 1

0

xf(x) dx.
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(a) Prove that ∫ 1

0

f(x)2 dx ≥ 4.

(b) Give an example of such a function for which equality occurs in (a).

Solution 1. We construct an example of a function that satisfies the conditions of the problem. Let
f(x) = ax+ b. Then we require that (a/2) + b = (a/3) + (b/2) = 1, whence

a+ 2b = 2, and 2a+ 3b = 6.

This is satisfied by (a, b) = (6,−2), so that f(x) = 2(3x− 1) satisfies the conditions. It also turns out that∫ 1

0

(6x− 2)2 dx = 4,

giving us an answer to (b).

Let f(x) satisfy the given conditions and let g(x) = f(x)− 2(3x− 1). Then

0 ≤
∫ 1

0

g(x)2 dx =

∫ 1

0

f(x)2 dx−
∫ 1

0

4(3x− 1)f(x) dx+

∫ 1

0

4(3x− 1)2 dx

=

∫ 1

0

f(x)2 dx−
∫ 1

0

12xf(x) dx+ 4

∫ 1

0

f(x) dx+

∫ 1

0

4(3x− 1)2 dx

=

∫ 1

0

f(x)2 dx− 12 + 4 + 4,

whence ∫ 1

0

f(x)2 dx ≥ 12− 4− 4 = 4.

Solution 2, by Nicholas Sullivan. By the Cauchy-Schwarz inequality, we have for any real numbers a
and b satisfying a+ b = 1:∫ 1

0

f(x)2 dx ·
∫ 1

0

(ax+ b)2 dx ≥
[∫ 1

0

f(x)(ax+ b) dx

]2
=

[
a

∫ 1

0

xf(x) dx+ b

∫ 1

0

f(x) dx

]2
= (a+ b)2 = 1.

Since ∫ 1

0

(ax+ b)2dx =
(a+ b)2 − b3

3a
=

1− b3

3(1− b)

=
1 + b+ b2

3
=

(b+ 1
2 )2

3
+

1

4
≥ 1

4
,

it follows that ∫ 1

0

f(x)2 dx ≥ 4.

Equality occurs if and only if b = −1/2 and a = 3/2, i.e., when ax+b = 1
2 (3x−1) and f(x) is a multiple

of 3x− 1. Since
∫ 1

0
(3x− 1) dx =

∫ 1

0
x(3x− 1) dx = 1

2 and∫ 1

0

(3x− 1)2 dx = (3x3 − 3x2 + x)

∣∣∣∣1
0

= 1,
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we find that f(x) satisfies the conditions of the problem and the conclusion with equality.

6. Find all solutions to the differential equation

x2y′′ + 4xy′ + (x2 + 2)y = 1

that are continuous at 0?

Solution 1. For x 6= 0, let z = x2y. Then z′ = x2y′ + 2xy and z′′ = x2y′′ + 4xy′ + 2y. Therefore the
equation becomes z′′ + z = 1. The general solution of this is

z = 1 + a cosx+ b sinx,

so that
y = x−2(1 + a cosx+ b sinx).

When x = 0, the equation is satisfied by y = 1/2.

As x→ 0, cosx = 1− 1
2x

2 + o(x3) and sinx = x+ 1
6x

3 + o(x4), so that in order for the solution to be
finite as x→ 0, we require that (a, b) = (−1, 0). The desired solution is

y =
1− cosx

x2
=

(
sin(x/2)

x/2

)2

.

it can be checked that this satisfies the equation.

Solution 2. Suppose that y =
∑∞

k=0 akx
k. Then

1 = 2a0 + 6a1x+

∞∑
k=2

(ak−2 + (k + 2)(k + 1)ak)xk,

so that a0 = 1
2 , a2m−1 = 0 for each positive integer m, and

a2m =
−1

(2m+ 2)(2m+ 1)
a2m−2 =

(−1)ma0
(2m+ 2)(2m+ 1) · · · (4)(3)

=
(−1)m

(2m+ 2)!
.

Therefore

y =
1

2
+

∞∑
m=1

(−1)mx2m

(2m+ 2)!

=
1

x2

[ ∞∑
m=0

(−1)mx2m+2

(2m+ 2)!

]

=
1

x2

[ ∞∑
m=1

(−1)m−1x2m

(2m)!

]
=

1

x2
[1− cosx].

7. The sequence {xn} is defined by the recursion

xn+1 = 2xn − n2

for n ≥ 0. For which values of the initial term x0 are all the terms of the sequence positive?

Answer. All terms are positive if and only if x0 ≥ 3.
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Solution 1. Observe that, if {un} and {vn} are two sequences satisfying the recursion, then vn+1−un+1 =
2(vn − un) for n ≥ 0, so that vn = (v0 − u0)2n + un, so that if we find a solution for one instance of the
recursion, solutions for other instances can be found by adding a multiple of 2n. The answer to the problem
turns on finding a convenient solution for the recursion.

For {xn} satisfying xn+1 = 2xn−n2, set yn = 2xn−xn+1 for n ≥ 0. Then yn = n2, yn+1−yn = 2n+ 1,

yn+2 − 2yn+1 + yn = (yn+2 − yn+1)− (yn+1 − yn) = 2,

and
(yn+3 − 2yn+2 + yn+1)− (yn+2 − 2yn+1 + yn) = 0.

From the definition of yn, we can see that this condition is satisfied when

0 = (xn+3 − 2xn+2 + xn+1)− (xn+2 − 2xn+1 + xn)

= (xn+3 − 2xn+2)− (xn+2 − 2xn+1) + (xn+1 − 2xn) + xn

= −(n+ 2)2 + (n+ 1)2 − n2 + xn,

whence
xn = (n+ 2)2 − (n+ 1)2 + n2 = n2 + 2n+ 3 = (n+ 1)2 + 2.

It can be checked that the recursion is satisfied for these values of xn and that x0 = 3.

In general, the recursion is satisfied by

xn = (x0 − 3)2n + (n2 + 2n+ 3)

for n ≥ 0. When x0 ≥ 3, each term of the recursion is positive. Suppose that x0 < 3 and that m = 3− x0.
Then xn = (n2 + 2n+ 3)−m2n, which is negative for n sufficiently large.

Solution 2, by Samuel Li. Let yn = 2−nxn for n ≥ 0. Then

yn = yn−1 −
(n− 1)2

2n
= y0 −

n∑
k=1

(k − 1)2

2k
.

Therefore xn ≥ 0 for all n ≥ 0 if and only if yn ≥ 0 if and only if

x0 = y0 ≥
∞∑
k=1

(k − 1)2

2k
.

It remains only to evaluate the series on the right.

Let f(x) = (1− x)−1 = 1 + x+ x2 + x3 + · · ·+ xk + · · ·. Then

f ′(x) = (1− x)−2 = 1 + 2x+ 3x2 + · · ·+ kxk−1xk−1 + (k + 1)xk + · · ·

and

f ′′(x) = 2(1− x)−3 = 2 + 6x+ · · ·+ k(k − 1)xk−2 + (k + 1)kxk−1 + (k + 2)(k + 1)xk + · · · .

For each real x,

∞∑
k=1

(k − 1)2xk =

∞∑
k=1

[k(k − 1)− k + 1]xk = x2f ′′(x)− xf ′(x) + f(x)− 1

= 2x2(1− x)−3 − x(1− x)−2 + (1− x)−1 − 1.
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Setting x = 1/2 yields the sum 4− 2 + 2− 1 = 3, and the answer follows.

Solution 3. By induction, it can be shown that

xn = 2nx0 −
n−1∑
k=0

2(n−1)−kk2

for n ≥ 1. xn ≥ 0 for all n ≥ 0 iff 2nx0 ≥
∑n−1

k=0 2(n−1)−kk2 for all n ≥ 0 iff

x0 ≥ A ≡
∞∑
k=0

k2

2k+1
.

A =

∞∑
k=1

(k − 1)2

2k

= 2

∞∑
k=1

k2

2k+1
− 2

∞∑
k=1

k

2k
+

∞∑
k=1

1

2k

= 2A− 2

∞∑
i=1

 ∞∑
j=i

1

2j

+ 1

= 2A− 2

∞∑
i=1

1

2i−1
+ 1 = 2A− 3.

Therefore A = 3, each xn ≥ 0 if and only if x0 ≥ 3.

8. What are the possible subsets U of the plane for which (1) U contains finitely many points, and (2)
for each point x in the plane, there is exactly one point y ∈ U of maximum distance, such that
d(x, y) > d(x, u) for u ∈ U , u 6= y. (d(x, y) is the Euclidean distance between x and y.)

Solution 1. It is straightforward to see that any singleton U has the property. Suppose, if possible, that
a set U with at least two elements has the property. Then for each point x in the plane, f(x) 6= x (whether
or not it is in U). Suppose that for each point x in the plane, f(x) is the unique point in U of maximum
distance from x. We show that f(x) is continuous.

Let v be any point of the plane. Let d(v, f(v)) = r > 0 and let ε > 0 be such that d(v, u) < r − ε for
u ∈ U , u 6= f(v). Suppose that d(v, x) < ε/2. Then d(x, f(v)) > r − ε, while

d(x, u) < (r − ε) + (1/2)ε = r − (1/2)ε

for u ∈ U , u 6= f(v). Thus, if d(x, v) < ε/2, then f(x) = f(v). Hence f is a continuous function on the
plane.

Suppose that f(y) 6= f(z). Let g(t) = f((1− t)y + tz) for 0 ≤ t ≤ 1. Since g(t) is continuous and has a
finite discrete image, [0, 1] is the union of at least two relatively open subsets g−1(u) where u ∈ U , which is
impossible.

Solution 2, based on an approach by Brendan Kelly. Suppose that U is a set with at least two points
that satisfies the conditions of the problem. Let z be a point in the plane that is not in U and let w be the
farthest point from z in U . For x in the plane, define

g(x) = max {d(x, u) : u ∈ U, u 6= w}.

Since each d(x, u) is a continuous function of x, g(x) is continuous. For x in the plane, let

h(x) = d(x,w)− g(x).
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For 0 ≤ t ≤ 1, define zt = (1−t)z+tw. Observe that h(zt) is a continuous function of t for which h(z0) =
h(z) > 0 and h(z1) = h(w) < 0. Therefore, there exists s ∈ (0, 1) for which h(zs) = d(zs, w)− g(zs) = 0. Let
v ∈ U , v 6= w be such that g(zs) = d(zs, v). Then w and v are two points in U which exceed d(x, u) for all
u distinct from v and w. But this contradicts the conditions of the problem. Thus, U must be a singleton.

Solution 3, based on an approach by Fateme Sajadi. If U lies within a line segment [p, q] (with p, q ∈ U),
then, since any point on the right bisector of the segment joining the points is equidistant from the points,
U does not satisfy the condition. Suppose that U is a set with at least three points satisfying the conditions
of the problem. The convex hull of U is the intersection of all the closed half-planes that contain U . It is
a closed convex set whose boundary is a (possibly degenerate) polygon P whose vertices are extreme points
(i.e., points not contained in an open interval lying entirely within the convex hull).

Let [v, w] be an edge of P with endpoints v and w lying in U , and let L be the right bisector of [v, w].
For each point u ∈ U distinct from v and w, when x is a point of L on the same side of [v, w] as U and
sufficiently far from [v, w] we have d(x, u) < d(x, v) = d(x,w). Just arrange that the angle ∠vux is obtuse
(i.e, further away from v and w than the intersection of this bisector with the line through u perpendicular
to uv). If x is far enough out, then d(x, u) < d(x, v) = d(x,w) for all u ∈ U distinct from v and w. But this
gives a contradiction, and so U must be a singleton.

Solution 4, based on the approach of Samuel Li. Suppose that U contains at least two points, and that
a and b are two points in U maximum distance apart. The circle C of centre b and radius d(a, b) contains a
on its circumference and all of U within its closed disc. Now let a central similarity of centre a be applied
to C that shrinks it to a circle C ′ with centre p whose circumference contains a second point c ∈ U and all
of U within its closed disc. Then d(p, a) = d(p, c) ≥ d(p, u) ∀u ∈ U . It follows that U does not satisfy the
condition of the problem. [This problem was contributed by Bamdad R. Yahaghi.]

Solution 5, based on the approach of Chayim Lowen. Suppose that U contains at least two points. For
v ∈ U , let

Pu = {x : d(x, v) > d(x, u) for u ∈ U, u 6= v}.

Then Pu is the intersection of finitely many open half planes bounded by the right bisectors of the segments
joining v to each u in U , and so is an open set. Each point x in the plane belongs to exactly one of the
sets Pu, so that the plane would be the union of finitely many open sets. But this is impossible, since it is
connected.

9. Determine the set of all real numbers r for which

ar

u
+
br

v
+
cr

w
≥ (a+ b+ c)r

u+ v + w
,

whenever a, b, c, u, v, w are all positive. When does equality hold?

Solution 1. When a = b = c = u = v = w = 1, the inequality becomes 3 ≥ 3r−1. Therefore, it is
necessary that r ≤ 2.

Suppose that r = −s < 0. Then

ar

u
+
br

v
+
cr

w
>

1

uas
>

1

(u+ v + w)(a+ b+ c)s
=

(a+ b+ c)r

u+ v + w
.

Consider the case r = 0. Since (u+ v + w)(uv + vw + wu) > 3uvw > uvw,

ar

u
+
br

v
+
cr

w
=

1

u
+

1

v
+

1

w
>

1

u+ v + w
=

(a+ b+ c)r

u+ v + w
.

Finally, we turn to 0 < r ≤ 2. By the Cauchy-Schwarz Inequality

(x1y1 + x2y2 + x3y3)2 ≤ (x21 + x22 + x23)(y21 + y22 + y23)
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applied to (x1, x2, x3) = (u1/2, v1/2, w1/2) and (y1, y2, y3) = ((ar/u)1/2, (br/v)1/2, (cr/w)1/2), we find that

(ar/2 + br/2 + cr/2)2 ≤ (u+ v + w)

(
ar

u
+
br

v
+
cr

w

)
.

Observe that, when 0 ≤ s, d, e, f ≤ 1 and d + e + f = 1, then ds + es + fs ≥ d + e + f = 1.
Applying this to s = r/2, d = a(a + b + c)−1, e = b(a + b + c)−1 and f = a(a + b + c)−1, we find that
ar/2 + br/2 + cr/2 ≥ (a+ b+ c)r/2. Hence

(a+ b+ c)r ≤ (ar/2 + br/2 + cr/2)2 ≤ (u+ v + w)

(
ar

u
+
br

v
+
cr

w

)
.

Dividing by u+ v+w yields the desired inequality. Equality occurs in the Cauchy-Schwarz Inequality when
a : b : c = u : v : w and in the power inequality when s = 1, i.e. when r = 2.

Solution 2. As in the previous solution, we see that r ≤ 2. If the inequality

ar

u
+
br

v
≥ (a+ b)r

u+ v
, (1)

holds whenever a, b, u, v > 0, then

ar

u
+
br

v
+
cr

w
≥ (a+ b)r

u+ v
+
cr

w
≥ (a+ b+ c)r

u+ v + w
.

Thus, it remains to establish that (1) holds for r ≤ 2.

If r = −s ≤ 0, since u < u+ v, a < a+ b,

ar

u
+
br

v
=

1

uas
+

1

vbs
>

1

uas

>
1

(u+ v)(a+ b)s
=

(a+ b)r

u+ v
.

Let 0 < r ≤ 2, t = b/a and k = v/u. Wolog, we may suppose that b ≤ a, so that 0 < t ≤ 1. Then (1)
holds if and only if

1 +
tr

k
≥ (1 + t)r

1 + k
(2)

holds for k > 0 and 0 < t ≤ 1.

Let 0 < r ≤ 1 and

f(t) = 1 +
tr

k
− (1 + t)r

1 + k

for 0 ≤ t ≤ 1. Then

f ′(t) =
rtr−1

k(k + 1)
[(k + 1)− k(t−1 + 1)r−1].

Since f(0) > 0 and f ′(t) > 0, f(t) is positive on [0, 1] and the desired result holds.

Let 1 < r ≤ 2. Since 0 < t ≤ 1, then tr ≥ t2 and (1 + t)r ≤ (1 + t)2. Therefore

1 +
tr

k
− (1 + t)r

1 + k
≥ 1 +

t2

k
− (1 + t)2

1 + k

=
(t− k)2

k(k + 1)
≥ 0.
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Equality occurs if and only if r = 2 and t = k, i.e., b/a = v/u. In the original inequality of the problem,
equality holds if and only if a : b : c :: u : v : w.

10. For a regular polygon A0A1A2 . . . An−1, let a1 denote the length of a side and ak the length of the
diagonal A0Ak for 2 ≤ k ≤ n− 1.

(a) For the regular heptagon A0A1 . . . A6, prove that

1

a1
=

1

a2
+

1

a3
.

(b) For the regular 15−gon A0A1 . . . A14, prove that

1

a1
=

1

a2
+

1

a4
+

1

a7
.

(c) State and prove a generalization for parts (a) and (b).

Solution 1, by Zhekai Pang. (a) The quadrilateral A0A1A2A4 is cyclic, and so by Ptolemy’s Theorem,

a1a2 + a1a3 = a1a2 + a1a4 = a2a3,

whence
1

a1
=

1

a2
+

1

a3
.

(b) Apply Ptolemy’s Theorem to the cyclic quadrilaterals A0A1A2A4 and A0A1A4A8 to obtain a2a3 =
a1a2 + a1a4 and a4a7 = a1a4 + a3a8 = a1a4 + a3a7. Hence

1

a7
=

1

a1
− a3
a1a4

=
1

a1
− a2a3
a1a2a4

=
1

a1
− a1a2 + a1a4

a1a2a4
=

1

a1
− 1

a4
− 1

a2
,

from which the result follows.

(c) Let n = 2m − 1. For 1 ≤ k ≤ m− 2, apply Ptolemy’s theorem to obtain

a2ka2k+1−1 = a1a2k + a2k−1a2k+1 .

In particular, when k = m− 2,

a2m−2a2m−1−1 = a1a2m−2 + a2m−2−1a2m−1 = a1a2m−2 + a2m−2−1a2m−1−1.

It follows that

a2m−1−1(a2m−2 − a2m−2−1) = a1a2m−2

or
1

a2m−1−1
=

1

a1
− a2m−2−1
a1a2m−2

(1).

For 1 ≤ k ≤ m− 3. we have that

a2k+1−1
a1a2k+1

=
a2ka2k+1−1
a1a2ka2k+1

=
a1a2k + a2k−1a2k+1

a1a2ka2k+1

=
1

a2k+1

+
a2k−1
a1a2k

.
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Applying this successively to equation (1) for k = m− 3,m− 2, . . . , 1, we find that

1

a2m−1−1
=

1

a1
− a2m−2−1
a1a2m−2

=
1

a1
− 1

2m−2
− a2m−3−1
a1a2m−3

= · · ·

=
1

a1
− 1

a2m−2 −
1

a2m−3 − · · · −
1

a4
− 1

a2
.

Therefore
1

a1
=

1

a2
+

1

a4
+ · · ·+ 1

a2m−2

+
1

22m−1−1
.

Solution 2. For any angle φ,

csc 2φ+ cot 2φ =
1 + cos 2φ

sin 2φ
=

2 cos2 φ

2 sinφ cosφ
= cotφ,

whence csc 2φ = cotφ− cot 2φ.

(a) Let r be the circumradius of the heptagon. Then ak = 2r sin kθ, where θ = π/7. Therefore

1

a2
+

1

a3
=

1

a2
+

1

a4
=

1

2r
(csc 2θ − csc 4θ)

=
1

2r
(cot θ − cot 2θ + cot 2θ − cot 4θ)

=
1

2r
(cot θ − cot 4θ) =

1

2r
(− cot 6θ + cot 3θ) =

1

2r
csc 6θ =

1

2r
csc θ =

1

a1
,

since cot kθ = − cot(7− k)θ and csc kθ = csc(7− k)θ is for 1 ≤ k ≤ 7.

(b)(c) Solution. The result can be generalized to a regular polygon with 2m − 1 sides:

1

a1
=

1

a2
+

1

a4
+

1

a8
+ · · ·+ 1

a2m−1−1
.

Follow the argument in (a) where θ = π/(2m − 1), note that a2m−1−1 = a2m−1 , and obtain

1

a2
+

1

a4
+

1

a8
+ . . .+

1

a2m−1−1

=
1

a2
+

1

a4
+

1

a8
. . .+

1

a2m−1

=
1

2r
(cot θ − cot 2m−1θ) =

1

2r
(− cot(2m − 2)θ + cot(2m−1 − 1)θ/2)

=
1

2r
csc(2m − 2)θ =

1

2r
csc θ =

1

a1
.

Solution 3, by Samuel Li. Place the vertices of a general regular n−gon at the roots ω2k of unity on the
unit circle in the complex plane, where ω = exp(πi/n). For 0 ≤ k ≤ n− 1, the length of the segment A0Ak

is equal to

|ω2k − 1| = |ωk − ω−k| = −i(ωk − ω−k) = −iω2k − 1

ωk
.

Note that ωn = −1 and that 1− ω + ω2 − · · ·+ (−1)n−1ωn−1 = 0. If n = 2r + 1 is odd, then

ar = ar+1 = |ω2r+2 − 1| = | − ω − 1| = |1 + ω|.

15



(a) When n = 7, it is required to show that

1

ω − ω−1
=

1

ω2 − ω−2
+

1

ω4 − ω−4
.

Here ω7 = −1 and
0 = ω6 − ω5 + ω4 − ω3 + ω2 − ω + 1.

Therefore
ω2 + 1 + ω−2 = ω2 + 1− ω5 = ω3 + ω − ω6 − ω4

= ω3 + ω + ω−1 + ω−3.

The right side of the equation is equal to

1

ω − ω−1

[
1

ω + ω−1
+

1

(ω + ω−1)(ω2 + ω−2)

]
=

1

ω − ω−1

[
ω2 + 1 + ω−2

ω3 + ω + ω−1 + ω−3

]
=

1

ω − ω−1
,

as desired.

(b) In the case that n = 15, the corresponding right side of the equation is

1

ω2 − ω−2
+

1

ω4 − ω−4
+

1

ω8 − ω−8

=
1

ω − ω−1

[
1

ω + ω−1
+

1

(ω + ω−1)(ω2 + ω−2)
+

1

(ω + ω−1)(ω2 + ω−2)(ω4 + ω−4)

]
=

1

ω − ω−1

[
ω6 + ω2 + ω−2 + ω−6 + ω4 + ω−4 + 1

ω7 + ω3 + ω−1 + ω−5 + ω3 + ω + ω−3 + ω−5

]
=

1

ω − ω−1
.

The desired result follows.

(c) In the general case, when n = 2m+1 − 1 (m ≥ 2), the generalization is

1

a1
=

1

a2
+

1

a4
+ · · ·+ 1

a2m
.

Let ω = exp[πi/(2m+1 − 1)]. Then ω2m+1−1 = −1 and

1 +

2m−2−1∑
k=1

(ω2k + ω−2k) =

22m−2∑
k=0

(ω2k+1 + ω−(2k+1)).

First, note that for any number λ and nonnegative integer r, we have that

g(λ, r) ≡ (λ+ λ−1)(λ2 + λ−2)(λ4 + λ−4) . . . (λ2
r

+ λ−2
r

) =
∑

λs.

where the product on the left has r + 1 factors and the sum of the right has 2r+1 terms and the values of s
run through (once each) all the 2r+1 odd numbers between 1 + 2 + · · ·+ 2r = 2r+1 − 1 and −(2r+1 − 1).

The right side of the equation to be verified is equal to (ω−ω−1)−1 times a fraction whose denominator
is equal to ∏

{(ω2k + ω2−k

) : 0 ≤ k ≤ 2m−2} = g(ω,m− 2)
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which is the sum of odd powers of ω and whose numerator is equal to the sum of 1 and products of terms

g(ω2t ,m− 2− t) = (ω2t + ω2−t

)(ω2t+1

+ ω2−(t+1)

) · · · (ω2m−2

+ ω2−(m−2)

)

where 1 ≤ t ≤ m− 2; this product picks up powers of ω whose exponents are odd multiples of 2t. Thus the
numerator is the sum of even powers of ω, and the ratio of the numerator and denominator is 1.

Solution 4. (a) Suppose that the polygon has circumradius 1 and that θ = π/7. ak = 2 sin kθ and
cos kθ + cos(7− k)θ = 0 for 1 ≤ k ≤ 6. Therefore

0 = cos 5θ − cos 3θ + cos 2θ − cos 4θ,

whence
cos θ − cos 5θ = cos θ − cos 3θ + cos 2θ − cos 4θ.

Using the identity 2 sinA sinB = cos(A−B)− cos(A+B), we find that

sin 3θ sin 2θ = sin 2θ sin θ + sin 3θ sin θ.

Dividing by 2(sin θ)(sin 2θ)(sin 3θ) yields the desired result.
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