PROBLEMS FOR FEBRUARY

Notes: Given a triangle, extend two nonadjacent sides. The circle tangent to these two sides and to the third side of the triangle is called an excircle, or sometimes an escribed circle. The centre of the circle is called the excentre and lies on the angle bisector of the opposite angle and the bisectors of the external angles formed by the extended sides with the third side. Every triangle has three excircles along with their excentres.

The incircle of a polygon is a circle inscribed inside of the polygon that is tangent to all of the sides of a polygon. While every triangle has an incircle, this is not true of all polygons.

430. Let triangle ABC be such that its excircle tangent to the segment AB is also tangent to the circle whose diameter is the segment BC. If the lengths of the sides BC, CA and AB of the triangle form, in this order, an arithmetic sequence, find the measure of the angle ACB.

431. Prove the following trigonometric identity, for any natural number n:
\[
\sin \frac{\pi}{4n+2} \cdot \sin \frac{3\pi}{4n+2} \cdot \sin \frac{5\pi}{4n+2} \cdots \sin \frac{(2n-1)\pi}{4n+2} = \frac{1}{2^n}.
\]

432. Find the exact value of:

(a)
\[
\sqrt{\frac{1}{6} + \sqrt{\frac{1}{18}}} - \sqrt{\frac{1}{6} - \sqrt{\frac{1}{18}}};
\]

(b)
\[
\sqrt{1 + \frac{2}{5}} \cdot \sqrt{1 + \frac{2}{6}} \cdot \sqrt{1 + \frac{2}{7}} \cdot \sqrt{1 + \frac{2}{8}} \cdots \sqrt{1 + \frac{2}{57}} \cdot \sqrt{1 + \frac{2}{58}}.
\]

433. Prove that the equation
\[x^2 + 2y^2 + 98z^2 = 77777 \ldots 777\]
does not have a solution in integers, where the right side has 2006 digits, all equal to 7.

434. Find all natural numbers n for which $2^n + n^{2004}$ is equal to a prime number.
435. A circle with centre I is the incircle of the convex quadrilateral $ABCD$. The diagonals AC and BD intersect at the point E. Prove that, if the midpoints of the segments AD, BC and IE are collinear, then $AB = CD$.

436. In the Euro-African volleyball tournament, there were nine more teams participating from Europe than from Africa. In total, the European won nine times as many points as were won by all of the African teams. In this tournament, each team played exactly once against each other team; there were no ties; the winner of a game gets 1 point, the loser 0. What is the greatest possible score of the best African team?

Solutions to October problems

409. Find the number of ways of dealing n cards to two persons ($n \geq 2$), where the persons may receive unequal (positive) numbers of cards. Disregard the order in which the cards are received.

Solution. If we allow hands with no cards, there are 2^n ways in which they may be dealt (each card may go to one of two people). There are two cases in which a person gets no cards. Subtracting these gives the result: $2^n - 2$.

410. Prove that $\log n \geq k \log 2$, where n is a natural number and k the number of distinct primes that divide n.

Solution. Let n be a natural number greater than 1 and $p_1^{a_1}p_2^{a_2} \cdots p_k^{a_k}$ its prime factorization. Since $p_i \geq 2$ and $a_i \geq 1$ for all i, $n \geq 2^{a_1 + a_2 + \cdots + a_k} \geq 2^k$. This is also true for $n = 1$, for in this case, $k = 0$ and $n = 2^0$. Thus, for any base b exceeding 1,
$$\log_b n \geq \log_b 2^k = k \log_b 2.$$

411. Let b be a positive integer. How many integers are there, each of which, when expressed to base b, is equal to the sum of the squares of its digits?

Solution. A simple calculation shows that 0 and 1 are the only single-digit solutions. We show that there are no solutions with three or more digits. Suppose that $n = a_0 + a_1b + \cdots + a_mb^m$ where $m \geq 2$, $1 \leq a_m \leq b - 1$ and $0 \leq a_i \leq b - 1$ for $0 \leq i \leq m - 1$. Then
$$(a_0 + a_1b + \cdots + a_mb^m) - (a_0^2 + a_1^2 + \cdots + a_m^2) = a_1(b - a_1) + a_2(b^2 - a_2) + \cdots + a_m(b^m - a_m) - a_0(a_0 - 1) \geq a_m(b^m - a_m) - a_0(a_0 - 1) \geq 1 \cdot (b^2 - (b - 1)) - (b - 1)(b - 2) = 2b - 1 \geq 0.$$

Thus, there are at most two digits for any example.

Let $N(b)$ denote the total number of solutions, and $N_2(b)$ the number of two digit solutions. Thus, $N(n) = N_2(b) + 2$.

Thus, $N_2(n)$ is the number of pairs (a_0, a_1) satisfying
$$a_0 + a_1b = a_0^2 + a_1^2, \quad 0 \leq a_0 < b, 1 \leq a_1 < b.$$

(1)

The transformation given by $2a_0 = p + 1$, $2a_1 = b + q$ establishes a one-one correspondence between the pairs (a_0, a_1) satisfying (1) and the pairs (p, q) satisfying
$$p^2 + q^2 = 1 + b^2, \quad p \text{ odd, } 3 \leq p \leq b, 1 \leq q \leq b.$$

(3)
Now we can express the number of solutions of (2) in terms of the number \(r(k) \) of solutions to
\[
c^2 + d^2 = k. \tag{3}
\]

Suppose that \(b \) is even. Then \(1 + b^2 \) is odd, so that exactly one of \(p \) or \(q \) is odd. Thus, given a solution \((p, q)\) to (2) we can generate three others that solve (3) via \((c, d) = (-p, q), (q, p), (q - p)\). We also add the eight remaining solutions \((\pm 1, \pm b)\) and \((\pm b, \pm 1)\). This shows that \(r(1 + b^2) = 4N_2(b) + 8 = 4N(b) \).

Suppose that \(b \) is odd. Then \(1 + b^2 \equiv 2 \pmod{4} \); hence, both \(p \) and \(q \) must be odd. Thus, from any solution \((p, q)\) to (2) we can generate another solution to (3) via \((c, d) = (-p, q)\). We also add the remaining four uncounted solutions, \((\pm 1, \pm b)\). This shows that \(r(1 + b^2) = 2N_2(b) + 4 = 2N(b) \).

The quantity \(r(k) \) can be computed from a formula given, for example, in the book *Introduction to the Theory of Numbers* by Hardy and Wright. Using the fact that no prime of the form \(4k + 3 \) can divide \(1 + b^2 \), we find that
\[
r(1 + b^2) = \begin{cases}
4\tau(1 + b^2), & \text{if } b \text{ is even,} \\
2\tau(1 + b^2), & \text{if } b \text{ is odd,}
\end{cases}
\]
where \(\tau(n) \) is the number of positive integer divisors of \(n \). Thus \(N(b) = \tau(1 + b^2) \).

412. Let \(A \) and \(B \) be the midpoints of the sides, \(EF \) and \(ED \), of an equilateral triangle \(DEF \). Extend \(AB \) to meet the circumcircle of triangle \(DEF \) at \(C \). Show that \(B \) divides \(AC \) according to the golden section. (That is, show that \(BC : AB = AB : AC \).)

Solution. Consider the chords \(ED \) and \(CC' \). The angles \(EBC' \) and \(CBD \) are equal, since they are vertically opposite, while angles \(C'ED \) and \(DCC' \) are equal since they are subtended by the same chord \(C'D \). Thus triangles \(C'EB \) and \(DCB \) are similar. Therefore \(EB : C'B = BC : BD \).

Since \(EB = BD = AB \),
\[
BC : AB = BC : BD = EC : C'B = AB : AC.
\]

413. Let \(I \) be the incentre of triangle \(ABC \). Let \(A', B' \) and \(C' \) denote the intersections of \(AI, BI \) and \(CI \), respectively, with the incircle of triangle \(ABC \). Continue the process by defining \(I' \) (the incentre of triangle \(A'B'C' \)), then \(A''B''C'' \), etc.. Prove that the angles of triangle \(A'^{(n)}B'^{(n)}C'^{(n)} \) get closer and closer to \(\pi/3 \) as \(n \) increases.

Solution. From triangle \(IAC \) we have that \(\angle AIC = \pi - \frac{A}{2} - \frac{C}{2} = \frac{\pi + B}{2} \), so that \(B' = \angle A'B'C' = \frac{1}{2}\angle A'IC' = \frac{1}{2}\angle AIC = \frac{\pi + B}{2} \). Similar relations hold for \(A' \) and \(C' \). Assuming, wolog, \(A \leq B \leq C \), then \(A' = \frac{1}{2}(A + B) \leq B' \leq \frac{1}{2}(A + B) \leq C' = \frac{1}{2}(C - A) \), and \(C' - A' = \frac{1}{2}(C - A) \), so that triangle \(A'B'C' \) is “four times closer” to equilateral than triangle \(ABC \) is. The result follows.

414. Let \(f(n) \) be the greatest common divisor of the set of numbers of the form \(k^n - k \), where \(2 \leq k \), for \(n \geq 2 \). Evaluate \(f(n) \). In particular, show that \(f(2n) = 2 \) for each integer \(n \).

Solution. For any prime \(p \), \(f(n) \) cannot contain a factor \(p^2 \) because \(p^2 \) \(|k(k^{n-1} - 1) \) for \(k = p \). For any \(n, 2|f(n) \).

If \(p \) is an odd prime and if \(a \) is a primitive root modulo \(p \), then \(p|(a^{n-1} - 1) \) only if \((p - 1)|(n - 1) \). On the other hand, if \((p - 1)|(n - 1) \), then \(p|(k^n - k) \) for every \(k \). Thus, if \(P_n \) is the product of the distinct odd primes \(p \) for which \((p - 1)|(n - 1) \), then \(f(n) = 2P_n \). (In particular, \(6|f(n) \) for every odd \(n \).)

As \(p - 1 \) is not a divisor of \(2n - 1 \) for any odd prime \(p \), it follows that \(f(n) = 2 \).

Comments. The symbol \(| \) means “divides” or “is a divisor of”. For every prime \(p \), there is a number \(a \) (called the primitive root modulo \(p \)) such that \(p - 1 \) is the smallest values of \(k \) for which \(a^k \equiv 1 \) modulo \(p \).
415. Prove that
\[\cos \frac{\pi}{7} = \frac{1}{6} + \frac{\sqrt{7}}{6} \left(\cos \left(\frac{1}{3} \arccos \frac{1}{2\sqrt{7}} \right) + \sqrt{3} \sin \left(\frac{1}{3} \arccos \frac{1}{2\sqrt{7}} \right) \right). \]

Solution. The identity
\[\cos 7\theta = (\cos \theta + 1)(8 \cos^3 \theta - 4 \cos^2 \theta - 4 \cos \theta + 1)^2 - 1 \]
(derive this using de Moivre’s theorem, or otherwise) implies that the three roots of \(f(x) = 8x^3 - 4x^2 - 4x + 1 \) are \(\cos \frac{\pi}{7} \), \(\cos \frac{3\pi}{7} \) and \(\cos \frac{5\pi}{7} \). Observe that \(\cos \frac{\pi}{7} > \cos \frac{3\pi}{7} > 0 > \cos \frac{5\pi}{7} \). Thus, \(\cos \frac{\pi}{7} \) is the only root of the cubic polynomial \(f(x) \) greater than \(\cos \frac{3\pi}{7} \).

Let \(a = \cos \left(\frac{1}{3} \arccos \frac{1}{2\sqrt{7}} \right) \), and let
\[c = \frac{1}{6} + \frac{\sqrt{7}}{6} \left(\cos \left(\frac{1}{3} \arccos \frac{1}{2\sqrt{7}} \right) + \sqrt{3} \cos \left(\frac{1}{3} \arccos \frac{1}{2\sqrt{7}} \right) \right) \]
\[= \frac{1}{6} + \frac{\sqrt{7}}{3} \cos \left(\frac{1}{3} \left(\pi - \arccos \frac{1}{2\sqrt{7}} \right) \right) \]
\[= \frac{1}{6} + \frac{\sqrt{7}}{3} a. \]
The function \(g(x) = \cos \left(\frac{1}{3} \arccos x \right) \) is increasing for \(-1 \leq x \leq 1 \), so that \(a > \cos \left(\frac{1}{3} \arccos(-1) \right) = \frac{1}{7} \). Therefore
\[x > \frac{1 + \sqrt{7}}{6} > \frac{1}{2} > \cos \frac{3\pi}{7}. \]

Since \(6c - 1 = 2\sqrt{7}a \), the identity \(4 \cos^3 \theta - 3 \cos \theta = \cos 3\theta \) gives
\[\frac{1}{14\sqrt{7}}(6c - 1)^3 - \frac{3}{2\sqrt{7}}(6c - 1) = -\frac{1}{2\sqrt{7}}. \]
Hence
\[f(c) = \frac{14\sqrt{7}}{27} \left(\frac{1}{14\sqrt{7}}(6c - 1)^3 - \frac{3}{2\sqrt{7}}(6c - 1) + \frac{1}{2\sqrt{7}} \right) = 0, \]
and so \(c = \cos \frac{\pi}{7} \).

Solutions to December problems.

416. Let \(P \) be a point in the plane.

(a) Prove that there are three points \(A, B, C \) for which \(AB = BC \), \(\angle ABC = 90^\circ \), \(|PA| = 1 \), \(|PB| = 2 \) and \(|PC| = 3 \).

(b) Determine \(|AB| \) for the configuration in (a).

(c) A rotation of \(90^\circ \) about \(B \) takes \(C \) to \(A \) and \(P \) to \(Q \). Determine \(\angle APQ \).

Solution 1. (a) We first show that a figure similar to the desired figure is possible and then get the lengths correct by a dilatation. Place a triangle in the cartesian plane with \(A \) at \((0,1)\), \(B \) at \((0,0)\) and \(C \) at \((1,0)\). Let \(P \) be at \((x,y)\). The condition that \(PA : PB = 1 : 2 \) yields that
\[x^2 + y^2 = 4[x^2 + (y - 1)^2] \iff 0 = 3x^2 + 3y^2 - 8y + 4. \]
The condition that $PB: PC = 2 : 3$ yields that

$$9[x^2 + y^2] = 4[(x - 1)^2 + y^2] \iff 0 = 5x^2 + 5y^2 + 8x - 4.$$

Hence $3x + 5y = 4$, so that $9x^2 = 16 - 40y + 25y^2$ and

$$0 = 2(17y^2 - 32y + 14).$$

Solving these equations yields

$$(x, y) = \left(\frac{5\sqrt{2} - 4}{17}, \frac{16 - 3\sqrt{2}}{17} \right),$$

a point that lies within the positive quadrant, and

$$(x, y) = \left(-\frac{5\sqrt{2} - 4}{17}, \frac{16 + 3\sqrt{2}}{17} \right),$$

a point that lies within the second quadrant..

(b) In the first situation,

$$|PB|^2 = \frac{20 - 8\sqrt{2}}{17}.$$

Rescaling the figure so that $|PB| = 2$, we find that the rescaled square has side length equal to the square root of

$$17/(5 - 2\sqrt{2}) = 5 + 2\sqrt{2}.$$

In the second situation,

$$|PB|^2 = \frac{20 + 8\sqrt{2}}{17}.$$

Rescaling the figure so that $|PB| = 2$, we find that the rescaled square has side length equal to the square root of

$$17/(5 + 2\sqrt{2}) = 5 - 2\sqrt{2}.$$

(c) Since triangle BPQ is right isosceles, $|PQ| = 2\sqrt{2}$. Since also $|AQ| = |CP| = 3$ and $|AP| = 1$, $\angle APQ = 90^\circ$, by the converse of Pythagoras’ theorem.

Comment. Ad (a), P is on the intersection of two Apollonius circles with diameter joining $(-2, 0)$ and $(2/5, 0)$ passing through the points $(0, 2/\sqrt{5})$ on the y-axis and with diameter joining $(0, 2)$ and $(0, 2/3)$. These intersect within the triangle and outside of the triangle.

Solution 2. Suppose that the square has side length x. Let the perpendicular distance from P to AB be a and from P to BC be b, both distances measured within the right angle. Then we have the three equations: (1) $a^2 + b^2 = 4$; (2) $a^2 + (x - b)^2 = 1$ or $x^2 = 2bx - 3$; (3) $b^2 + (x - a)^2 = 9$ or $x^2 = 2ax + 5$. Hence $2x(b - a) = 8$, so that $x = 4(b - a)^{-1}$. Also $4x = x^2(b - a) = 5b + 3a$, which along with $b - a = 4/x$ yields

$$2a = x - \frac{5}{x} \quad \text{and} \quad 2b = \frac{3}{x} + x.$$

Thus

$$16 = \left(x - \frac{5}{x} \right)^2 + \left(\frac{3}{x} + x \right)^2 = 2x^2 + \frac{34}{x^2} - 4$$

$$\Rightarrow x^4 - 10x^2 + 17 = 0$$

$$\Rightarrow x^2 = 5 \pm 2\sqrt{2}. $$
For $2a$ to be positive, we require that $x^2 > 5$ and so $x = \sqrt{5 + 2\sqrt{2}}$ and P is inside triangle ABC. Since
\[(5 - 2\sqrt{2})^2 < \left(5 - \frac{2 \times 7}{5}\right)^2 = \left(\frac{11}{5}\right)^2 < 5,
\]
the second value of x yields negative a and the point lies on the opposite side of AB to C.

For (c), we consider two cases:

(1) $|AB| = \sqrt{5 + 2\sqrt{2}}$ and P lies inside the triangle ABC. Applying the law of cosines to triangle APB yields $\cos \angle APB = -1/\sqrt{2}$ and $\angle APB = 135^\circ$. Hence \(\angle APQ = \angle APB - \angle BPQ = 135^\circ - 45^\circ = 90^\circ\).

(2) $|AB| = \sqrt{5 - 2\sqrt{2}}$ and P lies outside the triangle ABC. Then the law of cosines applied to triangle APB yields $\cos \angle APB = 1/\sqrt{2}$ and $\angle APB = 45^\circ$. Hence $\angle APQ = \angle APB + \angle BPQ = 45^\circ + 45^\circ = 90^\circ$.

Solution 3. [D. Dziabenko] We can juxtapose two right triangles of sides $(2,2,2\sqrt{2})$ and $(1,2\sqrt{2},3)$ to obtain a quadrilateral with $|XY| = |XW| = 2$, $|YZ| = 1$, $|ZW| = 3$ and $|YW| = 2\sqrt{2}$. Since $\angle XZY = 135^\circ$, we can use the law of cosines to find that $|XZ| = \sqrt{5 + 2\sqrt{2}}$.

A rotation of 90° about X takes W to Y and Z to T, so that $|YZ| = 1$, $|XY| = 2$, $|YT| = |WZ| = 3$ and $|XZ| = |XT| = \sqrt{5 + 2\sqrt{2}}$. Relabel Y as P, X as B, Z as A and T as C to get the desired configuration. For (b), we have that $|AB| = |XZ| = \sqrt{5 + 2\sqrt{2}}$, and, for (c), that $Q = W$ and $\angle APQ = \angle XYW = 90^\circ$.

Solution 4. [J. Kilee] Let $P \sim (0,0)$, $B \sim (0,2)$, $A \sim (a,b)$, $C \sim (c,d)$. The conditions to be satisfied are: (1) $a^2 + b^2 = 1$; (2) $c^2 + d^2 = 9$; (3) $a^2 + (b - 2)^2 = c^2 + (d - 2)^2 \implies d = b + 2$;

\[(4) \quad \frac{b - 2}{a} = \frac{c}{2 - d} = \frac{c}{-b} \implies -b^2 + 2b = ac \implies b^4 - 4b^3 + 4b^2 = (1 - b^2)(5 - b^2 - 4b).
\]

Hence
\[0 = 8b^3 - 10b^2 - 4b + 5 = (4b - 5)(2b^2 - 1).
\]

Since $b = -5/4$ is extraneous (why?), either $b = 1/\sqrt{2}$ or $b = -1/\sqrt{2}$.

Lat $b = 1/\sqrt{2}$. From symmetry, it suffices to take $a = 1/\sqrt{2}$ and we get
\[(a,b,c,d) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{2\sqrt{2} - 1}{\sqrt{2}}, \frac{2\sqrt{2} + 1}{\sqrt{2}}\right),
\]

and
\[|AB|^2 = |BC|^2 = 5 - 2\sqrt{2}.
\]

Lat $b = -1/\sqrt{2}$. Again we take $a = 1/\sqrt{2}$ and we get
\[(a,b,c,d) = \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),
\]

and
\[|AB|^2 = |BC|^2 = 5 + 2\sqrt{2}.
\]

Thus the configuration is possible and we have the length of $|AB|$. In the first case, the rotation about B that takes C to A is clockwise and carries P to $Q \sim (-2, 2)$. It is straightforward to check that $\angle APQ = 90^\circ$. In the second case, the rotation about B that takes C to A is counterclockwise and carries P to $Q \sim (2,2)$. Again, $\angle APQ = 90^\circ$.

Solution 5. Place B at $(0,0)$, A at $(0,a)$, C at $(a,0)$ and P at (b,c). Then we have to satisfy the three equations: (1) $(a - c)^2 + b^2 = 1$; (2) $b^2 + c^2 = 4$; (3) $(b - a)^2 + c^2 = 9$. Taking the differences of the first two and of the last two lead to the equations
\[2c = a + \frac{3}{a} \quad \quad 2b = a - \frac{5}{a}.
\]
from which, through substitution in (2), we get that \(a^4 - 10a^2 + 17 = 0 \). This leads to the possibilities that
\[
a^2 = 5 \pm 2\sqrt{2},
\]
and we can complete the argument as in the foregoing solutions.

417. Show that for each positive integer \(n \), at least one of the five numbers \(17^n, 17^{n+1}, 17^{n+2}, 17^{n+3}, 17^{n+4} \) begins with 1 (at the left) when written to base 10.

Solution 1. It is equivalent to show that, for each natural number \(n \), one of \(1.7^{n+k} \) \((0 \leq k \leq 4)\) begins with the digit 1. We begin with this observation: if for some positive integers \(u \) and \(r \), \(1.7^u < 10^r \leq 1.7^{u+1} \), then

\[
1.7^{u+1} = (1.7)(1.7)^u < (1.7)10^r < 2 \cdot 10^r
\]

and the first digit of \(1.7^{u+1} \) is 1.

We obtain the desired result by induction. \(1.7^1 = 1.7 \) begins with 1, so one of the first five powers of 1.7 begins with 1. Suppose that for some positive integer \(n \) exceeding 4, one, at least, of every five consecutive powers of 1.7 up to \(1.7^n \) begins with 1. Let \(m \leq n \) be the largest positive integer for which \(10^v < 1.7^m < 2 \cdot 10^v \) for some integer \(v \). Then \(1.7^m < 10^{v+1} \) and

\[
1.7^{m+5} = (1.7)^m(1.7)^5 = (1.7)^m(14.19857) > 10^{v+1}
\]

with the result that, for \(u \) equal to one of the numbers \(m, m+1, m+2, m+3, m+4 \), \(1.7^{u} < 10^{v+1} \leq 1.7^{u+1} \). Hence, one of the numbers \(1.7^{m+k} \) \((1 \leq k \leq 5)\) begins with the digit 1. If it is \(1.7^{m+k} \), then \(m + k > n \) and we have established the result up to \(m + k \).

Solution 2. For \(n = 1 \), \(17^n \) begins with 1. Suppose that, for some positive integer \(k \), \(17^k \) begins with 1. Then, either

\[
10^a < 17^k < \frac{10^5}{17^4}10^a
\]

or

\[
\frac{10^5}{17^4}10^a < 17^k < 2 \cdot 10^a
\]

for some positive integer \(a \). In the former case,

\[
10^{a+5} < 17^5 \times 10^a < 17^{k+5} < 17 \times 10^{a+5}
\]

so that \(17^{k+5} \) begins with 1. In the latter case,

\[
10^{a+5} < 17^{k+4} < 2 \times 10^a \times 17^4 < 2 \times 10^a \times 300^2 = 1.8 \times 10^{a+5}
\]

so that \(17^{k+4} \) begins with 1. The result follows.

Solution 3. Let \(17^n = a \cdot 10^m + b \) where \(0 \leq b < 10^m \). Then

\[
a \times 10^m < 17^n < (a + 1)10^m
\]

so that

\[
(1.7a)10^{m+1} < 17^{n+1} < (1.7)(a + 1)10^{m+1}.
\]

Let \(6 \leq a \leq 9 \). Then

\[
10^{m+2} < (1.7)6 \times 10^{m+1} < 17^{n+1} < 1.7 \times 10^{m+2}
\]

and \(17^{n+1} \) begins with 1. Let \(4 \leq a \leq 5 \). Then

\[
6 \times 10^{m+1} < 4(17)10^m \leq (17a)10^m < 17^{n+1} < (1.7)6 \times 10^{m+1} < (1.02)10^{m+1}
\]

7
so that, either 17^{n+1} begins with 1, or 17^{n+1} begins with 6, 7, 8 or 9 and 17^{n+2} begins with 1. When $a = 3$, $5 \times 10^{n+1} < 17^{n+1} < 7 \times 10^{n+1}$ and either 17^{n+2} or 17^{n+3} begins with 1. When $a = 2$, then $3 \times 10^{n+1} < 17^{n+1} < 6 \times 10^{n+1}$ and one of $17^{n+2}, 17^{n+3}, 17^{n+4}$ begins with 1. Finally, if $a = 1$, one can similarly show that one of $17^{n+k} (1 \leq k \leq 5)$ begins with 1. The argument now can be completed by induction.

Solution 4. [D. Dziabenko] 17^n beginning with 1 is equivalent to $10^m < 17^n < 2 \times 10^m$ for some positive integer m, which in turn is equivalent to

$$m < n \log 17 < m + \log 2$$

or

$$p < n \log 1.7 < p + \log 2$$

for some positive integer $p(= m - n)$.

Suppose that 17^n begins with 1. We observe that $\log 1.7 \log 2 = (1/3) \log 8 < 1/3$ and that $2^{10} > 10^3$, whereupon $\log 2 > 3/10$ and

$$\log 1.7 = (\log 17) - 1 > (\log 16) - 1 = (4 \log 2) - 1 > \frac{6}{5} - 1 = \frac{1}{5}$$

$$\implies 1 < 5 \log 1.7 < 5 \log 2 < 5/3$$

and so the integer part of $(n + 5) \log 17$ is exactly one more than the integer part of $n \log 17$.

From the foregoing, each interval of length $\log 2$ must contain a multiple of $\log 1.7$ and in particular the interval

$$\{x : p + 1 < x < p + 1 + \log 2\}$$

must contain at least one of $(n + k) \leq 1.7 (1 \leq k \leq 5)$. We can now complete the argument for the result by induction.

418. (a) Show that, for each pair m,n of positive integers, the minimum of $n^{1/m}$ and $n^{1/n}$ does not exceed $3^{1/2}$.

(b) Show that, for each positive integer n,

$$\left(1 + \frac{1}{\sqrt{n}}\right)^2 \geq n^{1/n} \geq 1.$$

(c) Determine an integer N for which

$$n^{1/n} \leq 1.00002005$$

whenever $n \geq N$. Justify your answer.

Solution. (a) Wolog, we may assume that $m \leq n$, so that $m^{1/n} \leq n^{1/n}$. It suffices to show that, for each positive integer n, $n^{1/n} \leq 3^{1/3}(< 3^{1/2})$ or that $n \leq 3^{n/3}$. Since $3 > 64/27$, it follows that

$$3^{1/3} - 1 > (4/3) - 1 = 1/3 > 0$$

and the result holds for $n = 1$. Suppose as an induction hypothesis, that it holds for n. Then, since $3^{n/3} \geq n$,

$$3^{(n+1)/3} \geq (3 + n - 3)3^{1/3} > 3^{1/3} + n - 3$$

$$= n + 3(3^{1/3} - 1) > n + 1.$$

(b) Note that

$$\left(1 + \frac{1}{\sqrt{n}}\right)^n \geq 1 + n\left(\frac{1}{\sqrt{n}}\right) = 1 + \sqrt{n} > \sqrt{n}.$$

8
Alternatively, we can note that, by taking a term out of the binomial expansion,

\[(\sqrt{n} + 1)^{2n} > \left(\frac{2n}{2}\right)^{2n-2} = \frac{2n(2n-1)}{2} n^{n-1} = (2n - 1)n^n \geq n^{n+1},\]

from which

\[\left(1 + \frac{1}{\sqrt{n}}\right)^{2n} = \left(\frac{\sqrt{n} + 1}{n}\right)^{2n} > n .\]

(c) By (b), it suffices to make sure that \((1 + n^{-1/2})^2 \leq 1.000020005\). Let \(N = 10^{10}\). Then, for \(n \geq N\), we have that \(\sqrt{n} \geq 10^5\), so that

\[(1 + n^{-1/2})^2 \leq (1 + n^{-1/2})^2 = 1 + 2n^{-1/2} + n^{-1} = 1 + n^{-1} < 1.000020005 .\]

419. Solve the system of equations

\[x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x} = t\]

for \(x, y, z\) not all equal. Determine \(xyz\).

Solution 1. Taking pairs of the three equations, we obtain that

\[x - y = \frac{y - z}{yz}, \quad y - z = \frac{x - z}{xz}, \quad z - x = \frac{x - y}{xy} .\]

Since equality of any two of \(x, y, z\) implies equality of all three, \(x, y, z\) must be distinct. Multiplying these three equations together we find that \((xyz)^2 = 1\).

When \(xyz = 1\), then \(z = 1/xy\) and we find that solutions are given by

\[(x, y, z) = \left(x, \frac{1}{x+1}, \frac{x+1}{x}\right)\]

as long as \(x \neq 0, -1\). When \(xyz = -1\), then we obtain the solutions

\[(x, y, z) = \left(x, \frac{1}{1-x}, \frac{x-1}{x}\right) .\]

Thus, \(xyz = 1\) or \(xyz = -1\).

Solution 2. We have that \(xy + 1 = yt\) and \(yz + 1 = zt\), so that \(xyz + z = yzt = zt^2 - t\), whence \(z(t^2 - 1) = xyz + t\). Similarly, \(y(t^2 - 1) = x(t^2 - 1) = xyt + t\). If \(x \neq y\), since \((x - y)(t^2 - 1) = 0\), we must have that \(t = \pm 1\). We find that \((x, y, z, t) = ((1 - z)^{-1}, z^{-1}(z - 1), z, 1)\) and \(xyz = -1\) or \((x, y, z, t) = ((z + 1)^{-1}, -z^{-1}(z + 1), z, -1)\) and \(xyz = 1\). Thus \(xyz\) is equal to 1 or \(-1\).

Solution 3. We have that \(y = 1/(t-x)\) and \(z = t - (1/x) = (xt - 1)/x\). This leads to

\[\frac{1}{t-x} + \frac{x}{xt - 1} = t \implies 0 = xt^3 - (1 + x^2)t^2 - (1 + x^2) = (t^2 - 1)(xt - (1 + x^2)) = 0 .\]

Similarly,

\[0 = (t^2 - 1)(yt - (1 + y^2)) = (t^2 - 1)(zt - (1 + z^2)) .\]

Either \(t^2 = 1\) or \(x, y, z\) are the roots of the quadratic equation \(\lambda^2 - t\lambda + 1 = 0\). Since a quadratic has at most two roots, two of \(x\) and \(y\) must be equal, say \(x = y\). But then \(y = z\) contrary to hypothesis. Hence \(t^2 = 1\).
Multiplying the three equations together yields that

\[t^3 = xyz + 3t + \frac{1}{xyz} \]

from which

\[0 = (xyz)^2 + (3t - t^3)(xyz) + 1 = (xyz)^2 + (3t - t)(xyz) + t^2 = (xyz + t)^2. \]

Hence \(xyz = t \). As in the previous solutions, we check that \(t = 1 \) and \(t = -1 \) are both possible.

420. Two circle intersect at \(A \) and \(B \). Let \(P \) be a point on one of the circles. Suppose that \(PA \) meets the second circle again at \(C \) and \(PB \) meets the second circle again at \(D \). For what position of \(P \) is the length of the segment \(CD \) maximum?

Solution 1. The segment \(CD \) always has the same length. The strategy is to show that the angle subtended by \(CD \) on its circle is equal to the sum of the angles subtended by \(AB \) on the two circles, and so is constant. There are a number of configurations possible. Note that (i) and (ii) do not occur with the same pair of circle. The strategy is to show that the angle subtended by \(CD \) on its circle is equal to the sum or difference of the angles subtended by \(AB \) on its two circles, and so \(CD \) is constant.

(i) \(A \) is between \(P \) and \(C \); \(B \) is between \(P \) and \(D \);
(ii) \(C \) is between \(P \) and \(A \); \(D \) is between \(P \) and \(B \);
(iii) \(A \) is between \(P \) and \(C \); \(D \) is between \(P \) and \(B \);
(iv) \(C \) is between \(P \) and \(A \); \(B \) is between \(P \) and \(D \);
(v) \(P \) is between \(A \) and \(C \) and also between \(B \) and \(D \).

Ad (i), \(\angle CBD = \angle PCB + \angle BPC = \angle ACB + \angle APB \). Ad (ii), \(\angle CBD = \angle ACB - \angle APB \). Ad (iii), by the angle sum of a triangle, \(\angle CAD = 180^\circ - \angle CBD = \angle BCA + \angle BPA \). Since \(ADBC \) is concyclic, \(\angle CBD = \angle PAD = 180^\circ - \angle APD - \angle ADP = \angle ADB - \angle APB \). Case (iv) is similar to (iii). Ad (v), \(\angle DBC = \angle DPC - \angle PCB = \angle APB - \angle ACB \). The angle subtended by \(CD \) on the arc opposite \(P \) is \(180^\circ - \angle DBC = \angle ACB + (180^\circ - \angle APB) \). Also, \(\angle DBC = \angle APB - \angle ADB = (180^\circ - \angle ADB) - (180^\circ - \angle APB) \).

Solution 2. We have the same set of cases as in the first solution. Let \(U \) be the centre of the circle \(PAB \) and \(V \) the centre of the circle \(ABDC \). Let \(UV \) and \(AB \) intersect in \(O \); note that \(UV \perp AB \). It is straightforward to show that triangles \(PAB \) and \(PDC \) are similar, whence \(CD : AB = PC : PB \) and that triangles \(PBC \) and \(UBV \) are similar, whence \(PC : PB = UV : UB \). Therefore, \(CD : AB = UV : UB \) and the results follows.

421. Let \(ABCD \) be a tetrahedron. Prove that

\[|AB| \cdot |CD| + |AC| \cdot |BD| \geq |AD| \cdot |BC| . \]

Solution 1. First, we establish a small proposition. Let \(u \) and \(v \) be any unit vectors in space and \(p \) and \(q \) any scalars. Then

\[|pu + qv| = |pv + qu| . \]

This is intuitively obvious, but can be formally established as follows:

\[|pu + qv|^2 = (pu + qv) \cdot (pu + qv) = p^2 + q^2 + 2pq \cdot v \]
\[= (pv + qu) \cdot (pv + qu) = |pv + qu|^2 . \]

Let \(u, v, w \) be unit vectors and \(b, c, d \) be positive scalars for which \(\overline{AB} = bu, \overline{AC} = cv \) and \(\overline{AD} = dw \). Thus \(\overline{BC} = cv - bu, \overline{CD} = dw - cv \) and \(\overline{BD} = dw - bu \).
Then
\[|AB||CD| + |AC||BD| = b|d
v - cw| + c|dw - bu| = b|dv - cw| + c|bw - du| \]
\[\geq |bdv - cd| = d|bv - cu| = d|cv - bu| = |AD||BC| , \]
as required.

Solution 2. Consider the planes of \(ABC \) and \(DBC \) as being hinged along \(BC \). If we flatten the tetrahedron by spreading the planes apart to a dihedral angle of 180°, then \(D \) moves to a position \(D' \) relative to \(A \) and \(|AD'| \geq |AD| \). The other distances between pairs of points remain the same. It is, thus, enough to establish the result when \(A, B, C, D \) are coplanar. Suppose this to be the case.

Let \(a, b, c, d \) be complex numbers representing respectively the four points \(A, B, C, D \). Then
\[|AB||CD| + |AC||BD| = |(a - b)(c - d) + (c - a)(b - d)| \]
\[\geq |(a - b)(c - d) + (c - a)(b - d)| = |(a - d)(c - b)| = |AD||BC| . \]
(The result in the plane is known as Ptolemy’s Inequality.)

Solution 3. [Q. Ho Phu] On the ray \(AC \) determine \(C' \) so that \(|AC||AC'| = |AB|^2 \); on the ray \(AD \) determine \(D' \) so that \(|AD||AD'| = |AB|^2 \). Since \(AB : AC = AC' : AB \) and angle \(A \) is common, triangles \(ABC \) and \(AC'B \) are similar, whence \(BC' : BC = AB : AC \)

\[|BC'| = \frac{|BC||AB|}{|AC|} = \frac{|BC||AD||AB|}{|AC||AD|} . \]

Similarly,
\[|BD'| = \frac{|BD||AB|}{|AD|} = \frac{|BD||AC||AB|}{|AD||AC|} \]
and
\[|C'D'| = \frac{|CD||AD'|}{|AC|} = \frac{|CD||AB|^2}{|AD||AC|} . \]

In the triangle \(BC'D' \), we have that \(|BD'| + |C'D'| > |BC'| \), whence
\[|BD||AC| + |CD||AB| > |AD||BC| \]
as desired.

422. Determine the smallest two positive integers \(n \) for which the numbers in the set \(\{1, 2, \cdots, 3n - 1, 3n\} \) can be partitioned into \(n \) disjoint triples \(\{x, y, z\} \) for which \(x + y = 3z \).

Solution. Suppose that the partition consists of the triples \(\{x_k, y_k, z_k\} \) \((1 \leq k \leq n)\). Then
\[\sum_{k=1}^{n} z_k = \sum_{k=1}^{n} (x_k + y_k + z_k) = 4 \sum_{k=1}^{n} z_k \]
so that 4 must divide \(\frac{1}{2}3n(3n + 1) \), or that \(3n(3n + 1) \) is a multiple of 8. Thus, either \(n \equiv 0 \) or \(n \equiv 5 \) (mod 8).

\(n = 5 \) is possible. Here are some examples:

\[1, 11, 4, 2, 13, 5, 3, 15, 6, 9, 12, 7, 10, 14, 8 \]
\[1, 14, 5, 2, 10, 4, 3, 15, 6, 9, 12, 7, 11, 13, 8 \]
[1, 8, 3], [2, 13, 5], [12, 15, 9], [4, 14, 6], [10, 11, 7]
[1, 11, 4], [2, 7, 3], [5, 13, 6], [10, 14, 8], [12, 15, 9]
[1, 8, 3], [2, 13, 5], [4, 14, 6], [10, 11, 7], [12, 15, 9]

Adjoining to any of these solutions the eight triples

\[[19, 29, 16], [21, 30, 17], [26, 28, 18], [27, 33, 20], [31, 35, 22], [32, 37, 23], [34, 38, 24], [36, 39, 25] \]

yields a possibility for \(n = 13 \).

For \(n = 8 \), we have

\[[1, 5, 2], [3, 9, 4], [6, 18, 8], [7, 23, 10], [14, 19, 11], [16, 20, 12], [17, 22, 13], [21, 24, 15] \]

There are many other possibilities.