Polynomials: Papers

B. Anderson, Polynomial root dragging.

B. Anderson, Where the inflection points of a polynomial may lie.
Mathematics Magazine 70:1 (February, 1997), 32-39

P. Andrews, Where not to find the critical points of a polynomial – variations on a Putnam theme.

Enrique Arrondo, Another elementary proof of the Nullstellensatz.

Robert L. Benedetto, An elementary product identity in polynomial dynamics.

Matthew Boelkins, Jennifer Miller & Benjamin Vugteveen, From Chebyshev to Bernstein: a tour of polynomials small and large.
College Math. Jour. 37:3 (May, 2006), 194-204

Nigel Boston & Marshall L. Greenwood, Quadratics representing primes.

John Brillhart, Michael Filaseta & Andrew Odlyzko, On an irreducibility theorem of A. Cohn.

Jason I. Brown & Charles J. Colbourn, Roots of the reliability polynomial.

Holly Carley & Xin Li, The modulus of polynomials with zeros at the roots of unity.
American Math. Monthly 107:8 (October, 2000), 742-748

B.C. Carlson & J. Todd, Zolotarev’s first problem – the best approximation by polynomials of degree ≤ n – 2 to \(x^n - n\sigma x^{n-1} \) on \([-1, 1]\).
Aequationes Math. 26 (1983), 1-33

Weiyu Chen, On the polynomials with all their zeros on the unit circle.

Pantelis A. Damianou, Monic polynomials in \(\mathbb{Z}[x] \) with roots in the unit disc.

José Carlos de Sousa Oliveira Santos, Another proof of the Fundamental Theorem of Algebra.
American Math. Monthly 112:1 (Jan., 2005), 76-78

K. Dilcher, K.B. Stolarsky, Zeros of the Wronskian of a polynomial.

J.D. Dixon, Polynomials with real roots.

Gregory P. Dresden, On the middle coefficient of a cyclotomic polynomial.

D.S. Dummit, Solving solvable quintics.

William M. Faucette, A geometric interpretation of the solution of the general quartic polynomial.
Michael Filaseta, A further generalization of an irreducibility theorem of A. Cohn.
 Canad. J. Math. 34:6 (1982), 1390-1395

Dwight D. Freund, A genuine application of synthetic division, Descartes’s rule of signs and all that stuff.
 College Math. Journal 26:2 (March, 1995), 106-110

Walter Gautschi, Construction of Gauss-Christoffel quadrature formulas.
 Math. of Computation 22 (102) (April, 1968), 251-270.

K. Girstmair, On an irreducibility criterion of M. Ram Murty.
 American Math. Monthly 112:3 (March, 2005), 269-270

Louisa S. Grinstein, Upper limits to the real roots of polynomial equations.
 American Math. Monthly 60:9 (November, 1953), 608-615

E. Grosswald, Recent applications of some old work of Laguerre.

 Canadian Mathematical Bulletin 10 (1967), 53-63

Dan Kalman, An elementary proof of Marden’s theorem.

Dan Kalman & James E. White, Polynomial equations and circulant matrices.

J.B. Kelly, On factorization of polynomials.

Emmanuel Kowalski, Bernstein polynomials and Brownian motion.

T.Y. Lam & K.H. Leung, On the cyclotomic polynomial $\Phi_{pq}(X)$.

Xin Li, R.N. Mohapatra & R.S. Rodriguez, Bernstein-type inequalities for rational functions with prescribed poles.

H.E. Lomelí & C.L. García, Variations on a theorem of Korovkin.

Eugene Lukacs, Applications of Faà di Bruno’s formula in mathematical statistics.

D. Minda & S. Phelps, Triangle, ellipses and cubic polynomials.

M. Ram Murty, Prime numbers and irreducible polynomials.

Richard D. Neidinger & R. John Annen, III, The road to chaos is filled with polynomial curves.

G. Peyser, On the roots of the derivative of a polynomial with real roots.

Allen D. Rogers, Integrals of fitted polynomials and an application of Simpson’s Rule.
 College Math. Journal 38:2 (March, 2007), 124-130
Michael I. Rosen, Niels Hendrick Abel and equations of the fifth degree.

Walter Rudin, Sums of squares of polynomials.

Anindya Sen, Fundamental theorem of algebra – yet another proof.

Robert S. Sery, A new method for finding prime-rich equations of the type $x^2 - x + c$.
J. Recreational Math. 23 (1991), 47-54

Alf van der Poorten & Gerhard Woeginger, Squares from products of consecutive integers.

Airton von Sohsten de Medeiros, The fundamental theorem of algebra revisited.