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CHAPTER TEN

DIOPHANTINE EQUATIONS

§1. NORM FORMS

Let p(x) be a monic irreducible polynomial of degree n with integer coefficients, and suppose that θ is
a root of the polynomial. This polynomial has n distinct roots, θ1 = θ, θ2, · · ·, θn; suppose that s of the
roots, θi with 1 ≤ i ≤ s are real and that 2t, θi with s + 1 ≤ i ≤ s + 2t of them are nonreal, the nonreal
roots consisting of t complex conjugate pairs, (θs+j , θs+t+j), with 1 ≤ j ≤ t. Thus, n = s + 2t.

The field Q[θ], generated by the rationals with θ adjoined, has a vector basis {1, θ, θ2, · · · , θn−1}. The
natural isomorphism

x0 + x1θ + · · ·+ xn−1θ
n−1 −→ (x0, x1, · · · , xn−1)

of Q[θ] onto Qn induces a product {(· · · , xi, · · ·) ∗ (· · · , yi · · ·) = (· · · , zi, · · ·), where (
∑

xiθ
i)(

∑
yiθ

i) =
(
∑

ziθ
i). We have n distinct field isomorphisms from Q[θ] into C via θ → θi, s of which are real valued and

2t of which take some nonreal values.

An algebraic integer is any complex number that is a zero of a monic polynomial with integer coefficients.
An algebraic integer ε is a unit if and only if its multiplicative inverse ε−1 is also an algebraic integer. Two
algebraic integers α and β are associates if there exists a unit ε for which α = εβ.

The function

f(x) =
n∏

i=1

(x0 + x1θi + · · ·+ xn−1θ
n−1
i ) (1)

(with x = (x0, x1, x2, · · · , xn−1)) is a polynomial in n variables x0, · · ·, xn−1 with real coefficients known
as a norm form, its value being the norm N(ξ) of the element ξ = x0 + x1θ + · · · + xn−1θ

n−1 in the field
extension Q(θ) of Q. We wish to study the Diophantine equation f(x) = ±1. It turns out that the set of
its solutions is a group with respect to the ∗ product. If x is a solution of this equation, then the element
x0 + x1θ + · · ·+ xn−1θ

n−1 is a unit in the ring Z(θ); these are the elements of the ring whose multiplicative
inverses also lie in the ring.

A simple example of an equation of this type is Pell’s equation x2 − dy2 = ±1, where d is a nonsquare
integer, as the left side can be factored as (x+

√
dy)(x−

√
dy),

√
d being a root of the irreducible polynomial

x2 − d.

A key result is the Dirichlet Unit Theorem:

Dirichlet Unit Theorem; There exists a set of units {ε1, · · · , εr}, where r = s + t− 1 such that every
unit ε in Z(θ) can be written uniquely in the form

ε = ζεk1
1 εk2

2 · · · εkr
r ,

where ζ is a root of unity and each εi is a unit of infinite order.

A sketch of the proof of this result will be given. We begin by describing a vector lattice. Let
{e1, e2, · · · , em} be a linearly independent set of vectors in a real vector space of dimension n ≥ m. The set
of vectors of the form

∑
i aiei, where ai ∈ Z is a vector lattice. The lattice is full when m = n. Two linearly

independent sets E = {ei} and F = {fi} give the same vector lattice if and only if they are related by a
linear transformation F = CE where the transformation matrix C has determinant with absolute value 1.
When the vector space is given a topology defined by the inner product with respect to the basis, the lattice
generated by the basis is a discrete set. Indeed, any discrete subgroup of the vector space is a lattice. The
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fundamental parallelepiped of the lattice is the set T ≡ {
∑

i uiei : 0 ≤ ui < 1}. The translates T + z, where
z belongs to the lattice are pairwise disjoint sets and there are only finitely many of them that intersect any
ball B(0, r) of radius r centered at the origin.

Let M be the Z−module in C consisting of numbers of the form ξ = x0 + x1θ + · · ·+ · · ·+ xn−1θ
n−1,

where each xi is an integer, and let ξi = x0 +x1θi + · · ·+xn−1θ
n−1
i be the ith associate of ξ. This module can

be coordinatized through its associates as (ξ1, ξ2, · · · , ξs, ξs+1, · · · , ξs+t) for ξ ∈ M , where each ξi (1 ≤ i ≤ s)
is real and each ξj is nonreal (with two real coordinates) for s + 1 ≤ j ≤ t. The linear space M has an inner
product whose norm is given by

‖ξ‖2 = ξ2
1 + · · ·+ ξ2

s + |ξs+1|2 + · · ·+ |ξt|2 .

For each η ∈ M , the mapping α −→ ηα maps M linearly into itself with determinant N(η).

M can be embedded in a n−dimensional real vector space Ls,t consisting of vectors

x = (x1, x2, · · · , xs, xs+1, · · · , xs+t)

where xi is real if 1 ≤ i ≤ s and xs+j is complex (with a real and imaginary part) if 1 ≤ j ≤ t. We give Ls,t

norms that extends the vector norm on M by assigning an inner product that specifies ‖x‖ as the square
root of

∑s
i=1 x2

i +
∑t

j=1 |xs+j |2 and extends the “algebraic” norm N(x) = x1x2 · · ·xs|xs+1|2 · · · |xs+t|2. The
set S ≡ {x ∈ Ls,t : N(x) = 1} is closed under multiplication, defined coordinatewise, of two vectors in Ls,t.

Consider the vector space Rs+t. We define the logarithmic mapping L from Ls,t into Rs+t by

L(x) = (log |x1|, log |x2|, · · · , log |xs|, log |xs+1|2, · · · , log |xs+t|2) .

Observe that L(xy) = L(x) + L(y), so that L maps the multiplicative structure of Ls,t to the additive
structure of Rs,t. The set {x : N(x) = 1} is mapped by L onto the (s + t− 1)−dimensional subspace V of
Rs+t consisting of those vectors whose components sum to 0. The kernel of L in Ls,t consists of vectors all
of whose components have absolute value 1 and so it is bounded.

On M , this mapping L takes the form

L(ξ) = (log |ξ1|, log |ξ2|, · · · , log |ξs|, log |ξs+1|2, log |ξs+2|2, · · · , log |ξs+t|2) .

Let E be the set of units contained in M and U be the set of those that lie in the kernel of L. U contains
all the roots of unity that happen to be in M , in particular ±1, so that U is nontrivial. In fact, U contains
only roots of unity. If α ∈ U , then all powers of α belong to the bounded set U ; accordingly, there can be
only finitely many of them, from which we deduce that some power of α must equal 1. Thus, U , containing
the group {1,−1} of order 2, is a finite cyclic group of even order and consists only of the roots of unity in
M .

Since the norm of any number of E is equal to ±1, the sum of the entries li of L(ξ) for any ξ satisfies∑
i li = 0, so that L(E) lies in a subspace of dimension s + t− 1. It remains to show that L(E) is full in the

subspace of Rs+t of vectors for which the sum of the entries is 0.

To show that the lattice is full, we use the criterion that a lattice N contained in an inner product linear
space V is full if and only if there is a bounded set S such that V is contained in the union S + N of its
translates by elements of N . If the lattice is full, S can be the fundamental parallelepiped. If the lattice is
not full, let S be any bounded set. Then there is a number r for which ‖x‖ < r for all x ∈ S. Since the
subspace W generated by N is proper in V , we can find y ∈ V orthogonal to W for which ‖y‖ > r. Suppose
if possible that y = u + z with u ∈ S and z ∈ N . Then

‖y‖r < ‖y‖2 = 〈y, y〉 = 〈y, u〉 ≤ ‖y‖‖u‖ < ‖y‖r ,
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which is a contradiction.

A result needed to finish the proof of Dirichlet’s Theorem is the following:

Minkowski Theorem on Convex Bodies. Let J be a full lattice in Rn whose fundamental paral-
lelepiped has volume ∆, and let X be a bounded, centrally symmetric convex set with volume Γ. If Γ > 2n∆,
then X contains at least one nonzero point of J .

Proof. Note that, if a bounded set Y is such that its translates Yz = Y + z for z ∈ J are pairwise
nonintersecting, then the volume of Y is less than ∆. To see this, note that, where T is the fundamental
parallelepiped,

Vol (Y ) =
∑

{Vol (Y ∩ T−z) : z ∈ J} =
∑

{Vol (Yz ∩ T ) : z ∈ J} ,

where the right sum computes the volume of the union of finitely many disjoint subsets of T and therefore
must be less than Vol (T ) = ∆.

The volume of the set 1
2X obtained from X by a dilatation of factor 1/2 exceeds ∆. Hence, two of its

translates by elements of J must intersect, so that there exist elements x1, x2 ∈ X and z1, z2 ∈ J so that
z1 6= z2 and 1

2x1 + z1 = 1
2x2 + z2. Hence

z1 − z2 =
1
2
(−x1) +

1
2
(x2) ∈ X .

and the result follows. �

To relate all of this to M , consider the coordinatization of M with respect to its associates (ξj), where
ξj = ηj + ζji for s+1 ≤ j ≤ t where ηj and ζj are real. If X is the bounded set of points ξ for which |ξi| < ci

(1 ≤ i ≤ s) and |ξj |2 < cj (s + 1 ≤ j ≤ s + t), then the volume of X is∫ c1

−c1

dξ1 · · ·
∫ cs

−cs

dξs

∫
η2

s+1+ζ2
s+1<cs+1

dηs+1dζs+1 · · ·
∫

η2
s+t

+ζ2
s+t

<cs+t

dηs+tdζs+t = 2sπtc1 · · · cs+t .

Noting that n = s + 2t, we obtain from Minkowski’s theorem that if the fundamental parallelepiped of the
full lattice M has volume ∆ and if c1c2 · · · cs+t > (4/π)t∆, then there is a nonzero element ξ of M for which

|ξ1| < c1, · · · , |ξs| < cs, |ξs+1|2 < cs+1, · · · , |ξt|2 < ct .

With this background, we return to the task of proving Dirichlet’s Theorem by showing that L(E) is
full in the (s+ t− 1)−dimensional subspace V of Rs+t by constructing a bounded set in Ls,t and then using
the mapping L to obtain a bounded subset of Rs+t whose translates by elements of L(E) cover V .

With S = {x ∈ Ls,t : N(x) = 1}, let y be an arbitrary point of M ∩ S. Then M and yM are two
lattices whose fundamental parallelepipeds havs the same volume ∆. Select real numbers c1, · · · , ct for which
c ≡ c1c2 · · · cs+t > (4/π)t∆. Let

X = {x ∈ Ls,t : |xi| < ci(1 ≤ i ≤ s), |xs+j |2 < cs+j(1 ≤ j ≤ t)} .

By Minkowski’s theorem applied to the lattice yM , X contains a nonzero point x = yα where α is a nonzero
element of M . We have that N(α) = N(x) < c.

Since at most finitely many pairwise nonassociate elements of M have norm less than c, we can find
elements α1, α2, · · ·, αm to one of which any element of norm less than c is associated. Thus, there is a unit
ε for which αε = αh for some h ≤ m. Then y = xα−1 = (xα−1

h )ε.

Let Z = S ∩ (∪{Xα−1
h : 1 ≤ h ≤ m}). Z is bounded since each Xα−1

h is bounded and y ∈ Zε for
some unit ε. Since y and ε both belong to S, then xα−1

h = yε−1 belong to S and hence to Z. Thus
S ⊂ ∪{Zε : ε a unit in M}.
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Apply the map L. Since Z is a bounded subset, L(Z) is also bounded and V = ∪{L(Z) + L(ε) :
ε a unit in M}. Dirichlet’s theorem follows.

§2. A CUBIC EXAMPLE

Let θ be a root of the equation x3 = x + 1, The corresponding norm form is

g(x, y, z) = x3 + y3 + z3 + 2x2z + xz2 − xy2 − yz2 − 3xyz .

Since the equation x3 = x + 1 has one real and two nonreal roots ((s, t) = (1, 1)), the solutions of g(x) = 1
have the structure of a cyclic group. Three obvious solutions are (x, y, z) = (1, 0, 0), (0, 1, 0), (0, 0, 1), which
correspond to the elements 1, θ and θ2 in Q[θ].

The set of elements in Z[θ] that correspond to solutions of g(x) = 1 is a group that is closed under
multiplication by θ. Since (x + yθ + zθ2)θ = z + (x + z)θ + yθ, if (x, y, z) satisfies g(x, y, z) = 1, then so also
does (z, x + z, y). The transformation (x, y, z)t −→ (z, x + z, y)t is implemented by the matrix

M =

 0 0 1
1 0 1
0 1 0

 ,

which satisfies the equation M3 = M+1. It follows from this that the sequence of solutions xn = Mn(1, 0, 0)t

satisfies the recursion xn = xn−2 + xn−3.

We obtain a bilateral sequence of solutions

{· · · , (0,−1, 1), (1, 1,−1), (−1, 0, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1), (1, 1, 1), (1, 2, 1), · · · .

If we define the sequence {un} by the recursion, u0 = 1, u1 = u2 = 0 and un = un−2 +un−3 for every integer
n, then (x, y, z) = (un, un+2, un+1) satisfies g(x, y, z) = 1.

§3. PELL’S EQUATION

Pell’s equations arise from the norm form for the real nth primitive root of unity. In the quadratic case,
it is the familiar x2 − dy2 = ±1, where d is a nonsquare integer. When d < 0, then this has finitely many
solutions, which all arise from roots of unity in Q(

√
−d). When d > 0, then it has infinitely many solutions

(xm, ym) arising from xm + ym

√
d = (u + v

√
d)m, where u + v

√
d is a “fundamental” unit in Z(

√
d).

In fact, (xm, ym) = (Tm(u), Um(u)v) where Tm and Um are Chebyshev polynomials of the first and
second types. (See Section 5.4.) To see this, observe that dv2 = u2 − 1 and that

(Tm(u) + Um(u)v
√

d)(u + v
√

d) = (uTm(u) + (u2 − 1)Um(u)) + (Tm(u) + uUm(u))v
√

d

= Tm+1(u) + Um+1(u)v
√

d .

The cubic version of Pell’s equation is

x3 + cy3 + c2z3 − 3cxyz = ±1 ,

where c is an integer not equal to a perfect cube. By Dirichlet’s theorem, the set of solutions is, up to roots
of unity, a cyclic group; they can be found by taking powers of a fundamental unit u + vθ + wθ2, where θ is
the real cube root of c.
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The sequence of solutions generated by (u, v, w) is defined by the recursion (xm+1, ym+1, zm+1)t =
M(xm, ym, zm)t, where the transition matrix

M =

 u cw cv
v u cw
w v u


has characteristic polynomial λ3 − 3uλ2 + 3(u2 − cvw)λ− 1 = 0. Thus, {xm}, {ym} and {zm} each satisfy
the recursion

tm+1 = 3utm − 3(u2 − cvw)tm−1 + tm−2 .

Example 10.1. When c = 2, the fundamental solution of x3 + 2y3 + 4z3 − 6xyz = 1 is (1, 1, 1), the
recursion is tm+1 = 3tm + 3tm−1 + tm−2 and the sequence of solutions is

{· · · , (−1, 1, 0), (1, 0, 0), (1, 1, 1), (5, 4, 3), (19, 15, 12), (73, 58, 46), · · ·} .

Example 10.2. When c = 3, the fundamental solution of x3 + 3y3 + 9z3 − 9xyz = 1 is (4, 3, 2), the
recursion is tm+1 = 12tm + 6tm−1 + tm−2 and the sequence of solutions is

{· · · , (4, 3,−4), (−2, 0, 1), (1, 0, 0), (4, 3, 2), (52, 36, 25), · · ·} .

The quartic version of Pell’s equation, obtained from calculating the norm of x + yθ + zθ2 + wθ3, where
θ is a fourth root of c, is given by

(x2 + cz2 − 2cyw)2 − c(2xz − y2 − cw2)2 = ±1 .

When c < 0, then the equation t4 − c = 0 has two pairs of complex conjugates roots, and so the set of
solutions of this equation is essentially a cyclic group. When c > 0 and c is not a square, then the set of
solutions is essentially a free group on two generators (up to roots of unity). If we write X = x2 +cz2−2cyw
and Y = 2xz − y2 − cw2, then it appears as though the two generators will yield (X, Y ) = (1, 0) and (X, Y )
a fundamental solution of X2 − cY 2 = ±1. It would be nice to find a nice representation for the set of
solutions.

The quintic Pells’s equation is the rather formidable looking

(x5 + cy5 + c2z5 + c3u5 + c4v5)− 5c(x3yv + x3zu + xy3z)− 5c2(y3uv + xz3v + yz3u + xyu3)

− 5c3(zu3v + xuv3 + yzv3) + 5c(x2y2u + x2yz2)

+ 5c2(x2u2v + x2zv2 + xy2v2 + xz2u2 + y2z2v + y2zu2)

+ 5c3(yu2v2 + z2uv2)− 5c2(xyzuv) = ±1 .

In this case, s = 1, t = 2, so that the group of solutions is essentially free with two generators.

The sixth degree Pell’s equation has the form

p2 − cq2 = r3 + cs3 + c2t3 − 3crst = ±1

where
p = x3 + (3xu2 + 3y2v + z3 − 3xyw − 3xvz − 3uyz)c

+ (v3 + 3zw2 − 3uvw)c2 ,

q = (3x2u + y3 − 3xyz)

+ (u3 + 3yv2 + 3z2w − 3xvw − 3uyw − 3uvz)c + w3c2 ,
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r = x2 + 2czv − cu2 − 2cyw ,

s = 2xz + cv2 − y2 − 2cuw ,

and

t = z2 + 2xv − 2yu− cw2 .

When c is positive and not a cube, there are two real and two nonreal complex conjugate pairs of sixth roots
of c, so that the group of solutions is essentially free with three generators. There are four types of solutions,
those for which

(p, q) = (±1, 0) (r, s, t) = (±1, 0, 0)

(p, q) = (±1, 0) (r, s, t) nontrivial

(p, q) nontrivial (r, s, t) = (±1, 0, 0)

and both (p, q) and (r, s, t) nontrivial.

For example, when c = 2, we have solutions [(x, y, z, u, v, w), (p, q), (r, s, t),±1] given by

[(1, 1, 0, 0, 0, 0), (1, 1), (1,−1, 0),−1]

[(1, 0, 0, 1, 0, 0), (7, 5), (−1, 0, 0),−1]

[(1, 0, 1, 0, 1, 0), (1, 0), (5, 4, 3),+1]

[(3, 2, 2, 2, 2, 2), (3, 2), (1, 0, 0),+1]

[(11, 10, 9, 8, 7, 6), (3, 2), (5, 4, 3),+1]

[(145, 138, 126, 108, 90, 78), (1, 0), (1, 0, 0),+1]

§4. POLYNOMIAL VERSION OF PELL’S EQUATION

In solving Pell’s equation x2 − dy2 = 1 for various values of d, it can be observed that some solutions
follow a pattern when d has a certain character and at other times, the solution for a given d can be quite
idiosyncratic. Thus, when d = t(t+1) for some positive integer t, x2−dy2 = 1 is satisfied by (x, y) = (2t+1, 2).

Sometime the search for a solution of x2 − dy2 = 1 can be shortened by solving x2 − dy2 = k where k is
one of −1, 4 and −4. For, if −1 = u2−dv2 = N(u+v

√
d), then 1 = N((u+v

√
d)2) = (u2 +dv2)2−d(2uv)2.

Suppose u2 − dv2 = ±4. If u and v are both even, then (x, y) = (u/2, v/2) will satisfy x2 − dy2 = ±1, while
if both u and v are odd, then an integer solution will be provided from 1

8 (u + v
√

d)3.

We can formulate finding solutions of x2−dy2 = k that follow a pattern in terms of solving a polynomial
version of Pell’s equation, where d, x and y are polynomials in one or more variables. The following table
gives some examples of such polynomials d and corresponding solutions.
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d(t) k x(t), y(t)

t2 − 1 1 (t, 1)
t2 + 1 −1 (t, 1)
t2 ± 2 1 (t2 ± 1, t)
t2 ± 4 ∓4 (t, 1)
t(t± 1) 1 (2t± 1, 2)
t(4t± 1) 1 (8t± 1, 4)
t(9t± 2) 1 (9t± 1, 3)
t(9t± 4) 4 (9t± 2, 3)
3(3t2 ± 4) 4 (3t2 ± 2, t)
9t2 ± 8t + 2 1 ((9t± 4)2 + 1, 3(9t± 4))
49t2 ± 20t + 2 1 ((49t± 10)2 − 1, 7(49t± 10))
3(3t2 ± 1) 1 (6t2 ± 1, 2t)
t(t3 ± 2) 1 (t3 ± 1, t)
t(s2t± 1) 1 (2s2t± 1, 2s)
t(s2t± 2) 1 (s2t± 1, s)
t(s2t± 4) 4 (s2t± 2, s)

In a similar way, we can find polynomial solutions for x3+cy3+c2z3−3cxyz = 1 for certain polynomials
c(t). For example,

c(t) (x(t), y(t), z(t))

t3 ± 1 (1,±3t2,∓3t)
t3 ± 1 (t2, t, 1)
t3 ± 1 (∓t,±1, 0)
t3 ± t (1,±3t,∓3)
t3 ± 3 (1,±t2,∓t)
8k3 ± 2 (1,±6t2,∓3t)

For the quartic (x2 + cz2 − 2cyw)2 − c(2xz − y2 − cw2)2 = 1, we have the examples

c(t) (x(t), y(t), z(t), w(t))

t4 ± 1 (2t4 ± 1, 2t3, 2t2, 2t)
t4 ± 1 (t3, t2, t, 1)
t4 ± 2 (t4 ± 1, t3, t2, t)
t4 ± t (2t3 ± 1, 2t2, 2t, 2)
t4 ± 2t (t3 ± 1, t2, t, 1)
s4t4 ± 2t (s4t3 ± 1, s3t2, s2t, s)

§4. INVESTIGATIONS

1. Pell’s equations: fundamental solutions. For the standard Pell’s equation of degree 2, there is a
robust algorithm for determining the fundamental solution. Algorithms that might be used for Pell’s
equation of higher degree are more hit or miss; they may turn up solutions that may or may not be
fundamental, or may not lead anywhere at all. Furthermore, Dirchlet’s theoreml gives us information
about the algebraic structure of the set of solutions, but there is much more to be investigated. When
the degree of the Pell’s equation is composite, we can see in the cases of 4 and 6 that there exists a
natural mapping of solutions to solutions of lower degree equations. For Pell’s equation of degree 4,
it appears that the set of solutions has two generators, one of which maps to the solution (1, 0) of the
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corresponding quadratic Pell’s equation and the other to a nontrivial solution of the quadratic equation.
Need this nontrivial solution be fundamental? What happens for the sixth degree equation, when the
solution set has three generators.

It might be particularly instructive to look at the situation where the parameter c is equal to 2, since
the determining of solutions seems to be more amenable.
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