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Partial generalizations of the theory of virtual polyhedra (sometimes under different

names) appeared recently in the theory of torus manifolds look very different from the

original theory of virtual polyhedra. Such generalizations are based on simple arguments

from homotopy theory while the original theory is based on integration over the Euler

characteristic. We explain how these generalizations are related to the classical theory of

convex bodies and the original theory of virtual polyhedra. The paper basically contains

no proofs: all proofs and details can be found in the cited literature. Bibliography: 10

titles. Illustrations: 3 figures.

Dedicated to the 85th anniversary of my beloved teacher Vladimir Igorevich Arnold

1 Introduction. Virtual Convex Polyhedra
and Their Polynomial Measures

Convex polyhedra in the linear space R
n form a convex cone in the following way. One can

multiply a convex polyhedron Δ by any nonnegative real number λ (i.e., take its dilatation

λΔ centered at the origin with the factor λ) and add two convex polyhedra Δ1 and Δ2 in the

Minkowski sense. Recall that the Minkowski sum of Δ1,Δ2 ⊂ R
n is the set Δ of points z

representable in the form z = x+ y, where x ∈ Δ1 and y ∈ Δ2.

A convex chain is a function on R
n representable as a finite linear combination of the char-

acteristic functions of closed convex polyhedra (of different dimensions) with real coefficients.

Convex chains form a real vector space in a natural way. One can further define the product

f ∗g of two chains f and g as follows. If f and g are the characteristic functions of closed convex

polyhedra Δ1,Δ2 ⊂ R
n, then the chain f ∗ g is the characteristic function of Δ = Δ1 +Δ2 by

definition (the addition is understood in the Minkowski sense). This product can be extended

to the space of convex chains by linearity.

It is not obvious at all that the above product is well defined. Indeed, a convex chain can

be represented as a linear combination of characteristic functions in many different ways, and

the independence of the product f ∗ g of such representations of f and g is not obvious. Using

integration over the Euler characteristic [1], one can prove [2] that the product is well defined.
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Convex chains in R
n with the multiplication ∗ form a real algebra with the identity element

1 which is the characteristic function of the origin in R
n. The characteristic function χΔ of a

closed convex polyhedron Δ ⊂ R
n is invertible in the algebra of convex chains. More precisely,

the following theorem holds.

Theorem 1.1. Let Δ ⊂ R
n be a convex polyhedron, and let −Δ0 be the set of interior points

(in the intrinsic topology of Δ) of the polyhedron −Δ symmetric to Δ with respect to the origin.

Then

(−1)dimΔχ−Δ0 ∗ χΔ = 1.

In other words, the convex chain (−1)dimΔχ−Δ0 is inverse to Δ with respect to the addition in

the Minkowski sense (extended to the space of convex chains).

The algebra of convex chains contains the multiplicative subgroup generated by the charac-

teristic functions of closed convex polyhedra. Elements of this group are called virtual polyhedra

in R
n.

Let us fix closed convex polyhedra Δ1, . . . ,Δk ⊂ R
n. For any k-tuple of nonnegative integral

numbers n = (n1, . . . , nk) one can define the polyhedron

Δ(n) =
∑

niΔi.

The following sentence can be considered as the slogan of the theory of virtual polyhedra:

The natural continuation of the function Δ(n) (whose values are convex polyhedra) to k-tuples

n = (n1, . . . , nk) of integral numbers (some of which can be negative) is the convex chain Δ̃(n)

defined by the following formula:

Δ̃(n) = χn1
Δ1

∗ · · · ∗ χnk
Δk

.

This slogan can be justified as follows. The value of a polynomial measure (see an example

of such a measure below) on a chain Δ̃(n) is a polynomial in n. Generalizations of the theory

of virtual polyhedra suggest other families of cycles depending on parameters satisfying the

following condition: for any differential form with polynomial coefficients its integrals over cycles

from each such a family depend polynomially on paramaters.

We present an example of a polynomial measure on convex polyhedra with integral vertices

and justify the slogan of the theory of virtual polyhedra.

Let P : Rn → R be a polynomial of degree m. With P one can associate the following

measure μ on convex polyhedra Δ with integral vertices:

μ(Δ) =
∑

x∈Zn∩Δ
P (x).

One can prove that the function μ(Δ(n)) is a polynomial in k-tuples n of nonnegative integral

numbers of degree � (n+m).

The following theorem justifies the slogan of the theory of virtual polyhedra.

Theorem 1.2. Let P be a polynomial of degree m, and let F̃ (n) be the function on k-tuples

n = (n1, . . . , nk) of integral numbers (which can be negative) defined by the formula

F̃ (n) =
∑

x∈Zn

χn1
Δ1

(x) ∗ · · · ∗ χnk
Δk

(x)P (x).

Then F̃ (n) is a polynomial in k-tuples n of degree � (n+m) that coincides with F (n) on k-tuples

with nonnegative components.
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Due to the theory of virtual polyhedra, it becomes possible to develop the general theory of

polynomial finite additive measures on convex polyhedra (see [2]) which contains many gener-

alizations of Theorem 1.2.

The theory of virtual polyhedra was motivated by cohomology theory of complete toric

varieties with coefficients in sheaves invariant under the torus action. In particular, it provides

a combinatorial version of the Riemann–Roch theorem for such varieties [3], which also can be

considered as a multi-dimensional version of the classical Euler–MacLuren formula (see [3]).

The general theory is applicable to singular polynomial measures on polyhedra (such as

the measure associating with a polyhedron the number of integral points in it) which can take

nonzero values on polyhedra Δ with dimΔ < n. However, if one is interested in nonsingular

polynomial measures that vanish on polyhedra and have dimension smaller than n, then one

can totally neglect all polyhedra of dimension < n in convex chains. This leads to a significant

simplification of the theory of virtual polyhedra, which captures smooth polynomial measures

(and which is not appropriate for studying singular measures).

The simplified theory is still useful. In particular, it allows us to provide a topological proof

of the Bernstein–Koushnirenko–Khovanskii (BKK) theorem. More generally, using a description

of algebras with Poincaré duality (see, for example, [4, Section 6]), one can describe the coho-

mology ring H∗(M,Z) of a smooth complete toric variety M in terms of the volume function

on virtual integral convex polyhedra (the so-called Khovanskii–Pukhlikov description of the ring

H∗(M,Z)).

In this paper, we consider simplified versions of the theory of virtual polyhedra which deal

only with nonsingular measures as well as its generalizations. We also mention some topological

applications of these generalizations. We start with the geometric meaning of a virtual convex

body and its volume for the difference of two strictly convex bodies with smooth boundaries.

We also present some applications of mixed volume and virtual polyhedra in algebra.

2 Virtual Strictly Convex Bodies and Their Volumes

A formal virtual convex body is a formal difference of compact convex bodies (which, in

general, are not polyhedra).

Similar to polyhedra, compact convex bodies in R
n form a convex cone with respect to

the Minkowski addition and dilation with positive factors centered at the origin. Moreover, the

addition of convex bodies satisfies the cancelation property, i.e., for a convex body Δ the identity

Δ1 + Δ = Δ2 + Δ implies Δ1 = Δ2. Hence one can generate a group by formal differences of

convex bodies with Δ1 −Δ2 = Δ3 −Δ4 whenever Δ1 +Δ4 = Δ3 +Δ2.

By the Minkowski theorem, the volume is a homogeneous polynomial of degree n on the cone

of convex bodies. More precisely, if Δ1 and Δ2 are convex bodies and λ, μ � 0, then the volume

Vol(λΔ1+μΔ2) is a homogeneous polynomail in (λ, μ) of degree n. Therefore, the volume can be

extended to the linear space of formal differences of convex bodies as a homogeneous polynomial

of degree n. In Section 4, we give a geometric interpretation of virtual convex bodies as well as

their volumes.

Since the volume is a homogeneous polynomial of degree n on the cone of convex bodies

in R
n, it admits the polarization Vol(Δ1, . . . ,Δn), i.e., Vol(Δ1, . . . ,Δn) is a unique function of

n-tuples of convex bodies Δ1, . . . ,Δn with the following properties:
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1) Vol(Δ1, . . . ,Δn) is linear in each argument with respect to the Minkowski addition,

2) Vol(Δ1, . . . ,Δn) is symmetric,

3) Vol(Δ, . . . ,Δ) = Vol(Δ) on the diagonal.

The polarization of a volume polynomial is called the mixed volume. By multi-linearity, the

mixed volume can be extended to n-tuples of virtual convex bodies.

3 Volume and Mixed Volume in Algebra

In this section, we briefly recall the relation of mixed volumes of virtual polytopes with

algebraic geometry. Let Δ1, . . . ,Δn be a collection of convex polyhedra with integral vertices.

The following question was originated by V. I. Arnold in the middle of the 1970s: Let

P1, . . . , Pn be a generic n-tuple of Laurent polynomials with given Newton polyhedra Δ(Pi) = Δi.

How many roots does the system of equations P1 = · · · = Pn = 0 have in (C∗)n?
The answer is given by the BKK theorem which was originally proved by A. G. Koushnirenko

and D. N. Bernstein. In the later work, I found many generalizations and different proofs of

that result.

Theorem 3.1 (BKK theorem). The number of solutions is equal to n! Vol(Δ1, . . . ,Δn).

One generalization of the BKK theorem comes if we consider rational functions on (C∗)n

instead of Laurent polynomials. Let
P1

Q1
, . . . ,

Pn

Qn
be a generic n-tuple of rational functions with

given Newton polyhedra Δ(Pi) = Δi and Δ(Qi) = Δ′
i. Then the intersection number in (C∗)n

of the principal divisors of these rational functions is equal to the mixed volume of the virtual

polyhedra Δ̃i = Δi −Δ′
i multiplied by n!, i.e., n! Vol(Δ̃1, . . . , Δ̃n) (see [5] for details).

4 Geometric Meaning of Virtual Strictly Convex Bodies

First, recall that the support function HΔ of a compact convex body Δ ⊂ R
n is the function

on the dual space (Rn)∗ defined by the following formula:

HΔ(ξ) = max
x∈Δ

〈ξ, x〉.

One can further associate the support function to a virtual convex body. Indeed, the support

function depends linearly on the convex body. Thus, it can be naturally extended to differences

of convex bodies: HΔ1−Δ2 = HΔ1 −HΔ2 . The support function HΔ of a (virtual) convex body Δ

is a homogeneous function of degree one. More precisely, for λ � 0 the following relation holds:

HΔ(λξ) = λHΔ(ξ).

In what follows, we assume that an Euclidian metric in R
n is fixed, which allows us to identify

(Rn)∗ with R
n. Assume further that Δ has smooth boundary and is strictly convex. Then for

ξ not equal to zero the inner product 〈ξ, x〉 attains maxima at one point a of ∂Δ only and this

point a(ξ) is equal to grad HΔ(ξ).

Lemma 4.1. The vector-valued function grad HΔ(ξ) restricted to the unit sphere Sn−1 de-

fines a map from Sn−1 to the boundary ∂Δ of a strictly convex body Δ. Moreover, this map is

inverse to the Gauss map g : ∂Δ → Sn−1.
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To a virtual convex body Δ with smooth support function HΔ on R
n \ {0} one can associate

the image grad HΔ(S
n−1) of the unit sphere under the map grad HΔ : Sn−1 → R

n. This image

has a natural parametrization by the sphere Sn−1. The correspondence Δ → grad HΔ provides

a map from the space of virtual convex bodies with smooth support function HΔ to the linear

space of gradient mappings from Sn−1 to R
n.

We consider an (n − 1)-form ω = x1dx2 ∧ · · · ∧ dxn on R
n. Note that the differential dω is

the standard volume form on R
n. The following statement is a direct corollary of Lemma 4.1

and the Stokes formula.

Corollary 4.1. The volume of a convex body Δ with smooth strictly convex boundary ∂Δ is

equal to ∫

Sn−1

f∗ω,

where f is the restriction of grad HΔ to the sphere Sn−1.

Corollary 4.1 provides a proof of the Minkowski theorem for convex bodies with smooth

strictly convex boundaries. Indeed,

(grad HλΔ1+μΔ2)
∗ω = (λ · grad HΔ1 + μ · grad HΔ2)

∗ω

is an (n−1)-form whose coefficients are homogeneous polynomials in (λ, μ) of degree n. Moreover,

since the above formula for the volume is written in terms of support functions, it is applicable

to virtual convex bodies. More concretely, for a virtual convex body Δ = Δ1 −Δ2, where Δ1

and Δ2 are strictly convex bodies with smooth boundaries, let f be grad HΔ = grad (HΔ1−HΔ2)

restricted to the unit sphere. Then

Vol(Δ) =

∫

Sn−1

f∗ω.

Now, we give a different presentation for the volume of virtual convex bodies which is ap-

plicable to the case of generalized virtual polyhedra. Let f : Sn−1 → R
n be a smooth mapping

of the unit sphere to R
n. The image f(Sn−1) of the unit sphere Sn−1 cuts the space R

n into a

collection of connected open bodies.

Definition 4.1. The winding number Wf (U), where U is an open connected component of

R
n \ f(Sn−1), is the mapping degree of the map τa : Sn−1 → Sn−1, where

τ(ξ) =
f(ξ)− a

|f(ξ)− a| , ξ ∈ Sn−1,

and a is any point in U .

Informally, the number Wf (U) shows how many times the image f(Sn−1) of the sphere Sn−1

rotates around U .

Definition 4.2. Let H(ξ) be a smooth function on R
n \{0} which is homogeneous of degree

one. Then the virtual convex body with support function H is defined as the chain
∑

U

Wf (U)U,

where f = grad H and the sum is taken over all bounded connected components of the comple-

ment Rn \ f(Sn−1).
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Theorem 4.1. The volume of a virtual convex body with smooth support function H on

R
n \ {0} is equal to the integral of the volume form over the chain

∑
Wf (U)U associated with

the virtual convex body. In other words, the volume of the virtual bogy is equal to
∑

U

Wf (U)Vol(U),

where Vol(U) is the volume of U .

The proof follows from the formula for the volume of a virtual convex body and the Stokes

formula. Theorem 4.1 has the following automatic generalization.

Theorem 4.2. The integral of a polynomial P of degree m over a virtual convex body with

smooth support function H on R
n \ {0} is equal to the integral of the polynomial P over the

chain, associated with this virtual convex body, i.e., is equal to

∑

U

Wf (U)

∫

U

Pdx1 ∧ · · · ∧ dxn.

Proof. This theorem can be proved in the same way as Theorem 4.1. It is enough to replace

the form ω = x1dx2 ∧ · · · ∧ dxn with the form Qdx2 ∧ · · · ∧ dxn, where Q is a polynomial of

degree m+ 1 satisfying
∂Q

∂x1
= P.

The theorem is proved.

One can generalize the above theorems in the following directions.

1. Instead of the unit sphere Sn−1 and its gradient mappings to R
n, one can take any piecewise

smooth (n− 1)-cycle Γ and consider the space of piecewise smooth mappings f : Γ → R
n.

The integral of the form f∗ω over Γ, where ω is a fixed (n − 1) form with polynomial

coefficients on R
n, is a polynomial on the space of maps f from Γ to R

n. The same

polynomial on the space of mappings f can be obtained by integrating the n-form dω over

the chain
∑

Wf (U)U , where U are connected components of Rn \ f(Γ) and Wf (U) is the

mapping degree of the map τ : Γ → Sn−1, where

τ(x) =
f(x)− a

|f(x)− a| ∈ Sn−1,

where x ∈ Γ and a is any point in U . The chainWf (U)U is an analog of the chain associated

with a virtual convex body.

2. Let Γ be an (n−1)-cycle as above, and letM(Γ, L) be the space of piecewise linear mappings

of Γ to a real linear space L. With a fixed (n−1) form ω with polynomial coefficients on the

space L one can associate a polynomial function on M(Γ, L) whose value on f ∈ M(Γ, L)

is equal to ∫

Γ

f∗ω.

In such a generalization, one has integrals depending on the parameters in a polynomial

way (but in such a generalization there are no chains analogous to the chains associated

with virtual convex polyhedra).
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5 Analogous Virtual Polyhedra and Their Volume

Let us return to the original definition of virtual polyhedra. With any given convex poly-

hedron Δ0 one associates a subgroup of virtual polyhedra majorized by Δ0. In this section, we

first recall this construction and then describe a simplified theory of virtual polyhedra.

First, recall that each convex polyhedron Δ defines the dual fan Δ⊥ in the following way.

Two covectors are said to be Δ-equivalent if they attain maxima at the same face of Δ. The

set of all Δ-equivalent covectors forms a cone (which is open in the intrinsic topology). The

closures of such cones form the dual fan Δ⊥ for Δ.

Definition 5.1. Two polyhedra Δ1 and Δ2 are called analogous if their dual fans coincide.

In particular, for each facet of Δ1 there is exactly one facet of Δ2 parallel to it and having the

same coorientation.

The following lemma is straightforward to show.

Lemma 5.1. Let Δ1 and Δ2 be convex polyhedra analogous to Δ0. Then Δ1 + Δ2 is also

analogous to Δ0.

If a virtual polyhedron Δ is representable as the difference Δ1 −Δ2 of polyhedra analogous

to Δ0, then we say that the virtual polyhedron Δ is majorized by Δ0. In other words, a virtual

polyhedron majorized by Δ0 if the corresponding convex chain is representable in the form

χΔ1 ∗ χ−1
Δ2

, where χΔi is the characteristic function of Δi. We note that the virtual polyhedron

Δ1 − Δ2 depends on its support function (and is independent of the representation of this

function in the form HΔ1 −HΔ2).

Simplified version of theory of analogous convex polyhedra

If one is interested only in nonsingular measures of a virtual polyhedron, one can neglect

polyhedra of dimension < n in the convex chain associated with a virtual polyhedron majorized

by Δ0. This leads to a simplified theory of virtual polyhedra which can be described by using

support functions in a way similar to the above-presented description of virtual convex bodies

with smooth boundaries.

Figure 1. Dual fan to a convex 5-gon.

Figure 2. Trapezoid, its dual fan, and a virtual 4-gon majorized by it.
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Convex polyhedra are not strictly convex, and the Gauss map from the unit sphere to the

boundary of a convex polyhedron is not defined. But one can define (up to a homotopy) an

analog of the Gauss map from the boundary of one polyhedron to the boundary of an analogous

polyhedron.

Let us fix a convex polyhedron Δ0. In what follows, it will play a role of the unit sphere in

our construction.

To each polyhedron Δ analogous to Δ0 we associate the union LΔ of affine hyperplanes LΓi

which are affine spans of the facets Γi of Δ (i.e., faces of Δ having dimension (n− 1)).

Definition 5.2. A continuous map fΔ : ∂Δ0 → LΔ is a Gauss type map if the following

condition holds: If x ∈ ∂Δ0 belongs to the closure of an (n− 1)-dimensional face Γ0
i of Δ0, then

f(x) has to belong to LΓi , where Γi and Γ0
i are parallel faces of Δ and Δ0 having the same

coorientation.

Lemma 5.2. 1. For any Δ analogous to Δ0 there exists a piecewise smooth Gauss type

map fΔ.

2. Moreover, fΔ can be defined in such a way that it linearly depends on Δ, i.e.,

fλΔ1+μΔ2 = λfΔ1 + μfΔ2 .

3. Any two Gauss type maps from ∂Δ0 to LΔ are homotopies equivalent to each other.

Now, we are ready to define the volume of a virtual polyhedron and the integral of a poly-

nomial form over a virtual polyhedron.

First, let us associate a collection of cooriented affine hyperplanes to a virtual polyhedron Δ

majorized by Δ0. Let H be the support function of Δ. Then H is a piecewise linear function on

R
n which is linear on each cone of the dual fan Δ⊥

0 of Δ0. Then H defines the collection L(H)

of cooriented hyperplanes which is in one-to-one correspondence with the collection of facets of

Δ0. The hyperplane LΓi(H) ∈ L(H) corresponding to a facet Γi ⊂ Δ0 is parallel to Γi and has

the same coorientation.

To each facet Γi of Δ0 one associates the dual ray l(Γi) in the dual fan Δ⊥
0 to Δ0.

The collection L(H) is defined as follows.

Definition 5.3. For each facet Γi of Δ0 the hyperplane LΓi(H) ∈ L(H) is defined by the

equation 〈ei, x〉 = H(ei), where ei is any nonzero vector in the ray l(Γi). The coorientation of

LΓi(H) is defined by the covector ei.

It is easy to check the following lemma.

Lemma 5.3. If Γi
⋂

Γj = F is a nonempty face of Δ0, then LΓi(H)
⋂

LΓj (H) is an affine

space parallel to F .

Definition 5.4. A Gauss type map fH for a virtual polyhedron with support function H is a

map fH : ∂Δ0 → L(H) which maps the face F = ∩Γij of Δ0 to the affine space LH(F ) = ∩LΓij
(H).

The statement of Lemma 5.2 also holds for virtual polyhedra. More precisely, one gets the

following lemma.

Lemma 5.4. 1. For any H which is linear on each cone of Δ⊥
0 there exists a Gauss type

map fH.
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2. Moreover, fH can be defined in such a way that it linearly depends on H, i.e.,

fλH1+μH2 = λfH1 + μfH2 .

3. Any two Gauss type maps from ∂Δ0 to L(H) are homotopies equivalent to each other.

Definition 5.5. The winding number WfH(U), where U is an open connected component

of Rn \ L(H), is the mapping degree of the map τ : ∂Δ0 → Sn−1, where

τ(x) =
fH(ξ)− a

||fH(ξ)− a|| , x ∈ ∂Δ0,

and a is any point in U .

As in the case of virtual convex bodies with smooth boundaries, to a virtual polyhedron with

support function H one can associate the chain

∑

U

WfH(U)U,

where the sum is taken over open connected components of Rn \ L(H).
One can prove the following theorem.

Theorem 5.1. The chain
∑

WfH(U)U can be obtained from virtual polyhedra with support

function H by neglecting all polyhedra in the chain whose dimension is smaller than n.

Thus, the integral of any n-form with polynomial coefficients over a virtual polyhedron can

be obtained by integrating this form over the chain
∑

WfH(U)U . One can deal with integrals of

such type using simple arguments which we applied above to similar integrals over virtual convex

bodies with smooth boundaries (and the technique of integrating over the Euler characteristic

is not needed here).

Let P be a polynomial of degree m, and let Q be a polynomial of degree m + 1 such that

P =
∂Q

∂dx1
.

Theorem 5.2. The values of the integrals

∫

∂Δ0

f∗
Δ(x1dx2 ∧ · · · ∧ dxn),

∫

∂Δ0

f∗
Δ(Qdx2 ∧ · · · ∧ dxn)

are equal to

∑
WfH(U)

∫

U

dx1 ∧ · · · ∧ xn,
∑

WfH(U)

∫

U

Pdx1 ∧ · · · ∧ xn

correspondingly.

With a convex support function H linear on each cone of Δ⊥ one associates an oriented

polyhedron Δ(H) with support function H. If one is interested in integrals of polynomial differ-

ential forms over a chain, then the natural continuation of the functor H → Δ(H) to nonconvex
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support functions linear on each cone of Δ⊥ is the functor H → ∑
WfH(U)U . Below, we discuss

a wide generalization of the above construction.

The following formulation allows even wider generalizations.

Let H → fH(∂Δ0) ∈ Hn−1(L(H)) be a functor associating to H the homotopy class in

Hn−1(L(H)) which is the image of the fundamental class of ∂Δ0 under the map fH. That

functor has a generalization to the case where, instead of the union of hyperplanes, one consider

the union of affine spaces.

6 Theory of Generalized Virtual Polyhedra

We generalize the above construction in the following directions.

1. Instead of the union L(H) of hyperplanes parallel to the faces of a convex polyhedron Δ,

we consider the union X of arbitrary affine subspaces of any dimension in an affine space.

2. Instead of the image of ∂Δ0 in L(H), we consider arbitrary cycles in X. We identify the

homology groups of the unions X1 and X2 of different collections of affine subspaces under

some combinatorial assumptions.

3. If the affine subspaces are hyperplanes in R
n and the cycle has dimension (n− 1), then the

above generalization can be modified as follows: Instead of (n−1)-dimensional cycles in the

union of hyperplanes in R
n, we consider n-dimensional chains in R

n whose boundaries are

the above-mentioned cycles. In the particular case of analogous simplified virtual polyhedra,

such chains coincide with the chains
∑

WfH(U)U discussed above.

In this section, we deal with ordered sets of affine subspaces Li indexed by the same set I.

Definition 6.1. The set X =
⋃
i∈I

Li has the natural covering by the spaces Li. The nerve

KX of the natural covering of X is the following simplicial complex:

1) the set of vertices of KX is the set I of indices i,

2) the set J ⊂ I of vertices belongs to one simplex if and only if
⋂
i∈J

Li 
= ∅.

Definition 6.2. Let X1 =
⋃

Li and X2 =
⋃
Mi be the unions of affine subspaces of spaces

L and M indexed by the same set {i} = I. We say that

1) X1 dominates X2 if the nerve KX1 is a subcomplex of the nerve KX2 ,

2) X1 and X2 are equivalent if KX1 = KX2 .

Figure 3. An ordered set of four lines on a plane.

Let BKX be the barycentric subdivision of the nerve KX . For each i ∈ I let BiKX be the

union of all (closed) simplices in BKX which contain the vertex Ai (corresponding to the space

Li in the covering of X).
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Lemma 6.1. The nerve of the covering of BKX by the closed sets BiKX coincides with the

original nerve KX .

Definition 6.3. A map g : KX1 → X2 is compatible with coverings if for any i ∈ I and

x ∈ BXi the image g(x) belongs to Mi.

Theorem 6.1. 1. A map g : KX1 → X2 compatible with coverings exists if and only if

KX1 ⊂ KX2.

2. All maps from KX1 to X2 compatible with coverings are homotopies equivalent to each

other.

3. If KX1 = KX2, then the map g : KX1 → X2 provides a homotopy equivalence between

these spaces.

Theorem 6.1 implies that all cycles of H∗(X) can be seen in the homology group of the nerve

KX of the covering of X. Moreover, if KX1 is a subcomplex of KX2 , then each cycle in H∗(KX1)

has the natural image in H∗(X2).

We consider a collection of affine k-dimensional subspaces {Li} in a vector space L with

i ∈ I. For each i we denote by Yi the factor space L/L̃i, where L̃i is the vector subspace parallel

to Li.

Definition 6.4. Vectors yi ∈ Yi are compatible with the nerve of X =
⋃
Li if the following

condition holds: if Li1 ∩ · · · ∩ Lim 
= ∅, then (Li1 + yi1) ∩ · · · ∩ (Lim + yim) 
= ∅.

Let Y be the space of all I-tuples y1, . . . , y|I| compatible with the nerve of X =
⋃

Li.

Definition 6.5. To each point y ∈ Y one associates the collection {Li(y)}, where Li(y) =

Li + yi.

The set Y parametrizes translations of the subspaces Li which preserve the existed intersec-

tions. More precisely, for a generic point y ∈ Y the collections {Li(y)} have the same nerve,

denoted by KX . There is a subset Σ in Y of a smaller dimension than the dimension of Y such

that the nerve of
⋂
Li(y) contains KX as a proper subcomplex.

We consider KX × Y and L× Y as fiber bundles over the base Y .

One can define a map g• : KX × Y → L × Y which fixes the base, respects the fibers, and

has the following properties. For each point y ∈ Y the restriction g•,y of g• to the fiber KX ×y

is compatible with the nerves of the corresponding fibers and depends on y linearly, i.e.,

g•,λy1+μy2 = λg•,y1
+ μg•,y2 .

For any k-form α on L × Y with polynomial coefficients and any cycle γ ∈ Hk(KX) one can

consider the following function Fα,γ on Y :

Fα,γ(y) =

∫

γ

g∗•,yα.

Theorem 6.2. The function Fα,γ is a polynomial function on Y .
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7 Homotopy Type of Union of Affine Subspaces

We know that the homotopy type of X =
⋃

Li is the same as the homotopy type of its

nerve KX .

For any finite simplicial complex it is easy to construct a collection of affine subspaces whose

nerve is homeomorphic to a given complex. However, if affine subspaces have codimension one

in L, then their union always has the homotopy type of the wedge of spheres.

Let {Li} be a collection of hyperplanes in L. We denote by l({Li}) the biggest subspace

parallel to all these hyperplanes. One can check that l({Li}) is equal to the intersection of linear

subspaces parallel to the affine spaces Li. For a sufficiently general collection of hyperplanes the

space l({Li}) is equal to zero.

Theorem 7.1. The union X =
⋃

Li of affine hyperplanes under the condition l({Li}) = 0

is a homotopy equivalent to the wedge of (n − 1)-dimensional spheres, which are in one-to-

one correspondence with the boundaries of convex polyhedra that are the closures of connected

bounded components of L \⋃Li.

Corollary 7.1. If l({Li}) has dimension m, then X =
⋃

Li has the homotopy type of the

wedge of spheres of dimension n− 1−m.

Proof. Indeed, under the assumptions of Corollary 7.1, X is equal to X∩l⊥×l({Li}), where
the space l⊥ is transversal to l({Li}). Theorem 7.1 can be applied to X ∩ l⊥.

Under the assumptions of Theorem 7.1, we choose a cycle γ ∈ Hn−1(KX ,Z). For a point

y ∈ Y we consider the map gy : KX → ⋃
Li(y) = L(y) compatible with coverings. To this map

one can associate the chain
∑

Wτ (U)U , where U is a connected component of L \L(y). In this

chain, Wτ (U) is the winding number of the cycle γ under the map τ : KX → Sn−1, where

τ =
gy − a

|gy − a| ,

a is a point in U , and Sn−1 is the unit sphere. This chain can be considered as the generalized

virtual polyhedron appeared in the assumptions of Theorems 5.1 and 5.2. In particular, an

integral of a form ω = Pdx1 ∧ · · · ∧ dxn, where P is a polynomial, over such chains depends

polynomially on y.

8 Applications of Generalized Virtual Polyhedra

We finish the paper with a brief description of recent applications of generalized virtual

polyhedra. Exact statements and details can be found in [6].

Torus manifolds (see [7, 8]) provide a wide topological generalization of smooth algebraic toric

varieties. Such a manifold can be associated with the union L(y) of hyperplanes in R
n depending

on the parameter y and (n− 1)-dimensional cycle Γ in the nerve of the natural covering of L(y)

[9, 10, 6]. Using the results described in Section 7, one can define a homogeneous polynomial in

y of degree n that is the volume of the corresponding virtual polyhedron. One can describe the

cohomology ring of a torus manifold by using the Khovanskii–Pukhlikov construction known in

the theory of toric varieties.
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On a torus manifold there is a special collection of characteristic linear bundles which are

in one-to-one correspondence with the generalized virtual polyhedra responsible for the torus

manifold. The intersection number of n-sections of such bundles is equal to n! multiplied by

the mixed volume of the corresponding virtual polyhedron. This theorem generalizes the BKK-

theorem for torus manifolds. Moreover, one can describe the cohomology ring of the total space

of a fiber bundle whose fibers are torus manifolds in terms of integrals of some polynomials over

corresponding virtual polyhedra. This theorem generalizes an analogous result for bundles with

toric fibers.
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