Courant problems

Oleg I. Bogoyavlenskij

Department of Mathematics, Queen’s University, Kingston, K7L 3N6, Canada

As is known, the decoupling of a quasi-linear system of pde’s

\[
\frac{\partial u^i}{\partial t} = \sum_{j=1}^{n} A^i_j(u^1, \cdots, u^n) \frac{\partial u^j}{\partial x}
\]

into several non-interacting subsystems drastically effects properties of its solutions and the computer time required for its numerical investigation. The paper is devoted to the following two problems posed by Courant [1]:

I. When a given system (1) of first order pde’s can be decoupled in some coordinates \(v^1, \cdots, v^n\) into \(k\) non-interacting subsystems?

II. When a given system (1) can be transformed in some coordinates \(v^1, \cdots, v^n\) into a block-diagonal form?

In the paper we derive the necessary and sufficient conditions for the decoupling of the quasi-linear systems of pde’s into \(k\) non-interacting subsystems and the necessary and sufficient conditions for the block-diagonalization of such systems with possible interaction between the blocks [2, 3]. Several necessary conditions for the decoupling of systems (1) are found in terms of the specially constructed invariant polynomials.

References

