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2012

Gradient flows of energy functionals on the space of probability measures with Wasser-

stein metric has proved to be a strong tool in studying certain mass conserving evolu-

tion equations. Such gradient flows provide an alternate formulation for the solutions

of the corresponding evolution equations. An important condition, which is known to

guarantees existence, uniqueness, and continuous dependence on initial data is that the

corresponding energy functional be displacement convex. We introduce a relaxed notion

of displacement convexity and we show that it still guarantees short time existence and

uniqueness of Wasserstein gradient flows for higher order energy functionals which are

not displacement convex in the standard sense. This extends the applicability of the

gradient flow approach to larger family of energies. As an application, local and global

well-posedness of different higher order non-linear evolution equations are derived. Ex-

amples include the thin-film equation and the quantum drift diffusion equation in one

spatial variable.

Keywords: Optimal Transport; Wasserstein Gradient Flows; Displacement Convexity;

Minimizing Movement; Well-posedness; Non-linear Evolution Equations.
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Notations

T#µ Push forward of the measure µ via the map T

C∞c (Rm) Space of compactly supported smooth functions on Rm

P(Rm) Space of probability measure on Rm

P2(Rm) Space of probability measure on Rm with finite second moment

Lm Lebesgue measure on Rm

Pa2 (Rm) Subspace of P2(Rm) containing a.c. measures w.r.t. Lm

Πi Projection to the ith coordinate

Lp(dµ) Space functions with finite p-integration against µ

Γ(µ, ν) Space of probability measures with marginals µ and ν

W2(µ, ν) Quadratic optimal transport distance between measures µ and ν

P(X) Probability measures in a separable metric space X

AC2([0, t];X) Space of absolutely continuous curves with L2([0, t]) integrable derivative

∂E(µ) subdifferential of E at µ

Tµ(P2(Rm)) The tangent space of P2(Rm) at µ

D(E) The domain of E, i.e.
{
x ∈ X

∣∣ E(x) <∞
}

Ec The energy sub level-set given by
{
µ ∈ D(E)

∣∣ E(µ) < c
}

vi



Chapter 1

Introduction

In the last decade, the theory of Optimal Transport has been a rapidly expanding area

of research. With a wide range of applications to differential geometry, mathematical

finance, gradient flow solutions of evolution equations and functional inequalities, this

theory has received an extensive amount of interest. One of the active applications of

optimal transport theory is the application of the quadratic optimal transport in study-

ing evolution equations.

The quadratic optimal transport space P2(Rm), also known as the Wasserstein space,

consists of the Borel probability measures on Rm with finite second moment. Wasser-

stein distance W2, defines a distance function between pair of measures µ, ν ∈ P2(Rm)

given by

W2(µ, ν) := inf

{∫
Rm×Rm

|x− y|2 dγ : γ ∈ Γ(µ, ν)

} 1
2

where Γ(µ, ν) ⊂ P2(Rm×Rm) is the space of probability measures with marginals µ and

ν. We will refer to such measures γ as transport plans.
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Chapter 1. Introduction 2

It turns out that P2(Rm) has a rich geometric structure and a formal Riemannian

calculus can be performed on this space. The first appearance of the Riemannian calculus

on P2(Rm) is due to Otto et al in [18] and [25]. It was shown in [25] that the solution of

the porous medium equation

∂tu = ∆um,

with m > 0 can be reformulated as the Wasserstein gradient flow of the energy

E(u) =

∫
um

m− 1
.

Since then, the interaction between the Riemannian space P2(Rm) as a geometric object

and evolution equations as analytic objects have attracted a lot of attention. This point

of view is commonly called ”Otto calculus”.

A notion which has been very important in the development of this theory is the

notion of displacement convexity. McCann in his thesis [23] introduced the notion of

displacement convexity of an energy functional on the Wasserstein space. Under the

displacement convexity assumption, he proved existence and uniqueness of minimizers of

wide classes of energies, commonly referred to as potential, internal, and interactive ener-

gies. Displacement convexity had been defined before the development of the Wasserstein

gradient flows, but after establishment of the Riemannian structure of the Wasserstein

space, it turned out that displacement convexity can be interpreted as the standard

convexity along the geodesics of the Wasserstein space. The displacement convexity

condition, with its generalization to λ-displacement convexity, has a central role in ex-

istence, uniqueness, and long-time behaviour of the gradient flow of an energy functional.
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Another important idea in the theory of Wasserstein gradient flows is the notion of

minimizing movement. The minimizing movement scheme was suggested by De Georgi

as a variational approximation of gradient flows in general metric spaces [14]. It was later

used by Jordan, Kinderlehrer, Otto [18] and by Ambrosio, Gigli, Savaré [1] to construct

a systematic theory of Wasserstein gradient flows. This theory was soon used by many

researchers to develop existence, uniqueness, stability, long-time behaviour, and numeri-

cal approximation of evolution PDEs such as in [2], [3], [6], [10], [11], [13], [15], and [24].

In recent years, it has become apparent that Otto Calculus [25] also applies to higher-

order evolution equations, at least at a formal level. The best-studied example is the

thin-film equation

∂tu = −∇ · (u∇∆u),

which corresponds to the gradient flow of the Dirichlet energy

E(u) =
1

2

∫
|∇u|2 dx.

The hope is that gradient flow methods might help to resolve long-standing problems con-

cerning well-posedness and long-time behaviour of this PDE. However, taking advantage

of the gradient flow method has proved difficult. The main obstruction has been the lack

of displacement convexity of the Dirichlet energy. The same problem arises for studying

other energy functionals containing derivatives of the density. In [26, open problem 5.17]

Villani raised the question whether there is any interesting example of a displacement

convex functional that contains derivatives of the density. In [12], Carrillo and Slepčev an-

swered this question by providing a class of displacement convex functionals. Therefore

it was proved that there is no fundamental obstruction for existence of such energies.

However because of the lack of displacement convexity, the Wasserstein gradient flow
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method has not been very successful in studying gradient flows of the Dirichlet energy

and other interesting energies of higher order.

Our result can be summarized as follows:

• We introduce a relaxed notion of λ-displacement convexity of an energy functional

and in Theorem 4.2.2 we prove that, under this relaxed assumption, the general

theory of well-posedness of Wasserstein gradient flows holds at least locally.

• In Theorem 5.2.6, we prove that, in spatial dimension, the Dirichlet energy, which

is not λ-displacement convex in the standard sense, satisfies the relaxed version

of λ-displacement convexity on positive measures. Hence the gradient flow of the

Dirichlet energy is locally well-posed and the solution of the thin-film equation with

positive initial data exists and is unique as long as positivist is preserved.

• We show that the method developed to study thin-film equation directly applies to

a range of PDEs of fourth and higher order.

The thesis is organized as follows:

In Chapter 2 we will gather some basics of the theory of Optimal Transport. The

space of probability measures with finite second moments and the structure of optimal

transport map is described here. We will focus in particular on quadratic optimal trans-

portation which is the underlying space for our gradient flows.

In chapter 3 the general formulation of Wasserstein gradient flows is presented. We

also study the concept of displacement convexity and related displacement convex energy
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functionals.

We introduce a generalized version of λ-displacement convexity which we call relaxed

λ-convexity in Chapter 4. Setting technicalities aside, the idea of relaxed λ-convexity

can be summarized in two simple principles: Firstly, the modulus of convexity, λ, can

vary along the flow. Secondly, one can study λ-convexity locally on sub-level sets of

the energy. Note that both locallity and energy dissipation have important roles in our

analysis. For example, the Dirichlet energy is not even locally λ-convex, because an

arbitrarily small neighbourhood of a smooth positive measure contains measures with

infinite energy where λ-convexity fails altogether. Instead, by taking advantage of the

defining properties of the gradient flow, we study the flow on energy sub-level sets. The

key observation is that typically finiteness of the energy implies some regularity on the

measure which helps to elevate the formal calculations to a rigorous proof. For exam-

ple, in one spacial dimension, densities of finite Dirichlet energy are continuous. After

introducing relaxed λ-convexity, we state our first result, Theorem 4.2.2. In this the-

orem we prove that if an energy functional is relaxed λ-convex at a point µ, then the

corresponding gradient flow trajectory starting from µ exists and is unique at least for

a short time. The proof is based on convergence of the minimizing movement scheme

and the subdiffrential properties that are carried over to the limiting curve. The existing

proof does not apply directly to a relaxed λ-convex energy because the restricted domain

contains only energy dissipating directions and hence having convexity on this restricted

set of directions does not imply convexity on all directions even locally. However relaxed

λ-convexity is very compatible with the defining properties of the minimizing movement

scheme. In particular both of the constraints locality and energy boundedness are used
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in the definition of the minimizing movement scheme (3.10). It is interesting to note

that since minimizing movement was initially defined to be applied to gradient flows on

general metric spaces, Theorem 4.2.2 hence has a wider range of applicability and with

minor modifications it can be applied to gradient flows on different metric spaces given

that the energy is relaxed λ-convex.

In Chapter 5 we apply the theory developed in the previous chapter to the Dirichlet

energy. We prove that the Dirichlet energy on R/Z, is relaxed λ-convex on the measures

with positive density. This theorem re-derives the existing theory [5] of well-posedness

of the solutions of the thin-film equation away from degenerate points by a direct geo-

metric proof. To the best of our knowledge, this is the first well-posedness result for the

thin-film equation based on Wasserstein gradient flows. Two key ideas are very useful

in the proofs of this section: Firstly, the Wasserstein convergence and the uniform con-

vergence are equivalent on energy sub-level sets. Secondly, finiteness of the energy can

be used directly in the calculations of the second derivative of the energy along geodesics.

In the final chapter, we show that the method developed in Chapters 4 and 5 can be

applied to a wide class of energies of fourth and higher orders. Some important exam-

ples have been studied using this method such as equations of higher order of the form

∂tu = (−1)k∂x(u∂
2k+1
x u), and equations of different forms, for instance the quantum drift

diffusion equation ∂tu = −∂x(u∂x ∂
2
x

√
u√
u

).

The Wasserstein gradient flow approach to PDEs has some interesting features. For

example, it has a unified notion of solution which allows for very weak solutions and
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it is applicable to equations of higher order even with the lack of maximum principle.

Also the minimizing movement scheme is a constructive method. Hence the proofs are

constructive and one can derive numerical approximations based on the Wasserstein gra-

dient flows similar to what has been done in [19], [13], and [15].



Chapter 2

The Optimal Transport Problem

In this chapter we start by a simple example motivating the idea of optimal transport

and later we state the rigorous definitions and fundamental theorems of the theory which

we will use in the next chapters.

2.1 Description of the optimal transport problem

The problem of optimal transport was formalized by the French mathematician Gaspard

Monge in 1781. During the world war II the Russian mathematician and economist

Leonid Kantorovich made important advancements in the theory. Informally, the problem

can be posed as follows. Assume there is a pile of sand that should be transported into a

hole to make the surface of the ground even. The question is how to transport the sand

with a minimal effort (see figure (2.1)). We can model the pile of sand and the hole by

two measures µ and ν on the intervals X and Y . A mapping T which sends every small

parcel of the sand to a corresponding location T (x) on the hole represents a particular

transportation. Of course, we need the mass of each parcel to be equal to the mass of its

8
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Figure 2.1: Optimal Transport

destination. In other words, we need the push forward of µ via T to be equal to ν which

is defined by

T#µ = ν ⇐⇒ ν(B) = µ(T−1(B)) for all measurable set B ⊂ Y . (2.1)

For the displacement of each parcel some energy is needed which is called the transporta-

tion cost. It is natural to assume that the cost depends on the initial location of the

parcel and its destination i.e. cost = c(x, T (x)). One natural example of a cost function

is the distance of x from T (x). The total cost needed to transport the pile of sand via a

particular mapping T is obtain by summing up the cost over all the small parcels of sand

I(T ) =

∫
X

c(x, T (x))dµ.

Note that the effect of ν is hidden in this equation via (2.1). The optimal transport

problem is to find a map T which gives the minimal cost of transportation constrained

to (2.1). This problem is called Monge’s optimal transportation problem.

Usually it is too restrictive to assume that each parcel of mass is transported into

exactly one location. For example, in the case of sand/hole problem each parcel of sand

might be split into smaller parcels which are then transported to different locations. To

allow such possibility, one has to consider measures on the product space X × Y . Infor-

mally stated, such a measure π(x, y) indicates the amount of sand which is transported
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from location x on the pile to the location y in the hole. We still need the mass at

location x to be equal to the total mass transported from x to the hole. This means that

π should have marginals µ and ν, i.e.

π(A× Y ) = µ(A) and π(X ×B) = ν(B),

for all measurable sets A ⊂ X and B ⊂ Y . We call such measure on X×Y a transporta-

tion plan between µ and ν. The set of all plans between µ and ν is denoted by Π(µ, ν).

The total cost of the transportation π ∈ Π(µ, ν) is given by

I(π) =

∫
X×Y

c(x, y)dπ.

The question now is to find the transportation plan with minimal cost.

The problem in a more general setting when X and Y are measurable spaces equipped

with measures µ and ν is called Kantorovich’s optimal transportation problem. Kan-

torovich was awarded economics Nobel prize for his work on a related problem in mini-

mization.

In general setting, for an arbitrary cost function, existence of a minimizer is not guar-

anteed. In the case of the quadratic cost c(x, y) = |x − y|2, and absolutely continuous

measures µ and ν, existence of a unique minimizer and characteristic of the optimizers

is known. The theorem is due to Brenier [8] with its generalization by McCann [22].
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2.2 Definitions and theorems

Let us recall some deinitions and notation. For the moment, we will work on Rm, but we

will see later that most of the statements remain valid when Rm is replaced by a smooth

manifold.

The space of probability measures with finite second moment on Rm is given by

P2(Rm) :=

{
µ ∈ B(Rm)

∣∣∣ ∫
Rm

dµ(x) = 1 ,

∫
Rm
|x|2dµ(x) <∞

}
,

where B(Rm) is the space of Borel measures on Rm. The class of absolutely continuous

probability measures Pa2 (Rm) are particularly important. Here absolute continuity of a

measure refers to absolute continuity with respect to Lebesgue measure, i.e.

Pa2 (Rm) := {µ ∈ P2(Rm)
∣∣∣ µ = udx , u ∈ L1(Rm)}.

For two measures µ, ν in P2(Rm) the space Γ(µ, ν) is defined to be the space of all joint

probability measures on Rm × Rm whose marginals are µ and ν. This means that if

γ ∈ Γ(µ, ν), then for any two bounded measurable functions f and g we have∫
Rm×Rm

f(x)dγ(x, y) =

∫
Rm

f(x)dµ(x) and

∫
Rm×Rm

g(y)dγ(x, y) =

∫
Rm

g(y)dν(y).

The Wasserstein distance of µ and ν, based on Kantorovich’s problem, is given by

W2(µ, ν) := inf
γ

{∫
Rm×Rm

|x− y|2 dγ : γ ∈ Γ(µ, ν)

} 1
2

. (2.2)

Brenier’s theorem [8] asserts that the minimum is always assumed and the minimal

transport plan is concentrated on a graph of a map T νµ , provided that µ ∈ Pa2 (Rm). This

theorem was generalized to smooth manifolds by McCann [22].
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Theorem 2.2.1 (Brenier’s theorem) Let µ, ν ∈ P2(Rm). Assume that µ is abso-

lutely continuous with respect to Lebesgue measure. Then

(i) There is a unique minimal plan π ∈ Π(µ, ν) to the Kantorovich’s problem

inf
γ

{∫
Rm×Rm

|x− y|2 dγ : γ ∈ Γ(µ, ν)

} 1
2

.

(ii) There exists a convex lower semicontinuous function φ : Rm → R such that

π = (Id×∇φ)#µ.

(iii) Monge’s problem has a unique solution which is given by T = ∇φ, i.e.∫
Rm
|x−∇φ(x)|2 = inf

T

{∫
Rm
|x− T (x)|2 dµ : T#µ = ν

}
.

This optimal transport map T is called Brenier’s map. We usually use T νµ to refer to

the optimal transport map between measure µ and ν.

In [23] McCann proved the following theorem which describes Brenier’s map explicitly.

Theorem 2.2.2 Let µ, ν ∈ Pa2 (Rm) with densities µ = udx and ν = vdx. Assume that

T is the optimal map between µ and ν. Then for almost all x ∈ Rm we have

det(DT )v(T (x)) = u(x), (2.3)

where DT is the derivative matrix of T .

Equation (2.3) which is the Euler-Lagrange equation for the Monge problem is called

Monge-Ampère equation.
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The following theorem due to McCann [23] describes a time dependent transportation

which is given by the push-forward of the linear interpolation between the optimal map

T µ1µ0 and the identity map.

Theorem 2.2.3 Let µ0, µ1 ∈ Pa2 (Rm). Assume that T is the optimal transport map

between µ0 and µ1. Then for any s ∈ [0, 1] the map

Ts := (1− s)Id+ sT

is the optimal map between µ and

µs =
(
(1− s)Id+ sT µ1µ0

)
#
µ0. (2.4)

Also for the Wasserstein distance of the intermediate points we have

W2(µ0, µs) = sW (µ0, µ1) ∀s ∈ [0, 1].



Chapter 3

Wasserstein Gradient Flows

In this chapter, we gather basics of the theory of Wasserstein gradient flows. In the first

section we recall the formulation of gradient flows on a Hilbert space. The formulation of

the flow on a Hilbert space is very concrete and we will use this transparent structure as

a recipe for corresponding notions in the more abstract setting of Wasserstein space. The

second section will study some aspects of the Rienmannian structure of the quadratic

optimal transport as the underlying space of the flows that we are interested in. Finally,

in section three, we study the structure of the Wasserstein gradient flows.

3.1 Gradient Flows on Hilbert Spaces

Informally stated, a gradient flow evolves by the steepest descent of an energy functional.

This idea can be formalized in several different ways, some of which carry over to general

metric spaces. Let us first recall the notion of a gradient flow on a finite dimensional

Riemannian manifold. The ingredients of a gradient flow consist of three parts: a smooth

14
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manifold M , a metric g, and an energy E. The gradient flow of the energy E starting

from a point x0 can be formulated as
limt↓0 xt = x0 (initial condition)

∂txt = Vt (velocity vector)

Vt = −∇E(xt) (steepest descent).

Note that the role of the metric is to convert the co-vector dE = ∂E
∂xj
dxj into the corre-

sponding vector ∇E on the tangent space Txt(M). In the early 1970’s, several groups

of mathematicians studied the notion of gradient flows on infinite dimensional Hilbert

spaces (see the survey [9]). These articles consider the contraction semi-groups generated

by a proper, convex, and lower semicontinuous energy functional E on a Hilbert space.

One of the notions that was modified for the infinite dimensional setting was the gradi-

ent operator. It turned out that the notion of Fréchet subdifferential (Definition (3.6)) is

an appropriate substitution for the gradient on a Hilbert space. Therefore the steepest

descent equation Vt = −∇E(xt) on a Hilbert space is reformulated by subdifferential

inclusion:

Vt ∈ ∂E(xt).

Later, DeGiorgi and his collaborators studied the gradient flows on general metric

spaces through the variational method called minimizing movement [14]. To illustrate

this method we first consider it on a Hilbert space. The minimizing movement scheme is

a time discretization of the steepest descent equation. Assume an energy functional E is

given on Hilbert space H. For a fixed time step size τ we consider the following iterative

scheme:

xτn := Argminx∈H{E(x) +
1

2τ
|x− xτn−1|2}. (3.1)
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By taking the time derivative of (3.1) at a formal level, we see that the scheme is ap-

proximating the steepest descent equation:

xτn − xτn−1
τ

∈ −∂E(xτn).

It is worth noting that this equation is the reformulation of implicit Euler method in the

abstract setting.

Mimicking the structure of gradient flows in setting of a Hilbert space one obtains

appropriate formulation for Wasserstein gradient flows. The ingredients of the Wasser-

stein gradient flows are given by: P2(Rm) as the manifold, the Wasserstein distance (and

its infinitesimal version) as the metric, and an energy functional on P2(Rm). More de-

tailed discussion is provided at section 3.3 where we consider the Fréchet subdifferential

formulation of Wasserstein gradient flows. Later in Chapter 4 we identify conditions on

the energy functional that guarantee short-time existence and uniqueness. The proof is

based on a careful analysis of the minimizing movement scheme.

3.2 Geometry of the quadratic optimal transport

In this section we gather some basic elements of the Riemannian calculus on the Wasser-

stein space P2(Rm). We refer the reader to [1] or [26] for comprehensive discussion of

the subject. It is worth mentioning that we consider the Euclidean space Rm as the

underlying space of probability measures but one can replace Rm with any Hilbert space

by slight modifications to the definitions as it is done in [1].
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A class of curves in P2(Rm) that supports a natural notion of tangent vectors is given

by the absolutely continuous curves with square integrable derivativesAC2
loc([0,∞);P2(Rm)).

A curve µt belongs to AC2
loc([0,∞);P2(Rm)) if there exist a locally L2(dt) integrable

function g such that

W2(µa, µb) 6
∫ b

a

g(t)dt ∀a, b ∈ [0,∞).

The absolutely continuous curves are given by mass conserving deformations of the mea-

sures i.e. they satisfy the continuity equation:

∂tµt +∇.(µtVt) = 0

for a velocity vector field Vt of deformations of µt. This equation is assumed to hold in

the distributional sense i.e. for every test function ψ ∈ C∞c (Rm × (0, s)) we have∫ s

0

∫
Rm

(∂tψ + 〈Vt,∇ψ〉) dµtdt = 0.

The following theorem due to Brenier and Benamou ([4]) shows that P2(Rm) is a

length space in the sense that the distance of two measures is given by the length of the

shortest path between them.

Theorem 3.2.1 Let µ, ν ∈ P2(Rm). We have

W2(µ, ν)2 = min

{∫ 1

0

∫
Rm
|Vt|2dµtdt

∣∣∣ ∂tµt +∇.(µtVt) = 0

}
, (3.2)

where the minimum is taken over all absolutely continuous curves µt and velocity vector

fields Vt which connect µ0 = µ to µ1 = ν.

For a given curve µt ∈ AC2([0, 1]);Pa2 (Rm)) there might be many velocity vectors

that satisfy the same continuity equation ∂tµt +∇.(µtVt) = 0. For instance vector fields
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of the form Ft+Vt where ∇.(µtFt) = 0 all satisfy the same continuity equation. However

there is a unique vector field that minimizes (3.2), i.e. the one which defines the distance

between µ and ν. This optimal velocity vector field is defined to be the tangent vector

field to the curve µt. This way a tangent vector to a curve can be defined and then one

can define the tangent space TanµP2(Rm) using the tangents to the curves that pass

through µ. This norm minimality condition characterizes the tangent space to P2(Rm)

by

TanµP2(Rm) = {∇φ
∣∣∣ φ ∈ C∞c (Rm)}

L2(dµ)

.

The tangent vector field of µt can also be expressed in term of the optimal maps. If

Vt is the tangent vector field of µt then

Vt = lim
ε→0

T µt+εµt − Id
ε

.

The converse is also true, i.e. for a given optimal map T νµ , the vector field T νµ − Id

is a tangent vector at µ for some curve that passes µ. The tangent vector fields are

also useful in calculating the derivative of the Wasserstein metric along curves. Let

µt ∈ AC2
loc(R+;Pa2 (Rm)). By [1, Chapter 8] the derivative of the Wasserstein metric

along the curve µt is given by

d

dt
W2(µt, ν)2 = 2

∫
Rm
〈Vt, Id− T νµt〉dµt ∀ν ∈ P2(Rm) (3.3)

where Vt is the tangent vector field to µt and 〈., .〉 is the standard inner product on Rm.

The Wasserstein metric is closely related to a certain weak topology on P2(Rm),

induced by narrow convergence:

µn
narrow−−−−→ µ ⇐⇒

∫
Rm

fdµn →
∫
Rm

fdµ ∀f ∈ C0
b (Rm) , (3.4)
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where C0
b (Rm) is the set of of continuous bounded real functions on Rm. The topolo-

gies induced by the narrow convergence and the Wasserstein distance are equivalent for

sequences of measures with uniformly bounded second moments:

lim
n→∞

W2(µn, µ) = 0 ⇐⇒


µn

narrow−−−−→ µ

{µn} has uniformly bounded 2-moments.

(3.5)

3.3 Wasserstein Gradient Flows

Now we describe gradient flows on the Wasserstein space. Consider an energy functional

E : P2(Rm) → [0,∞] and let its domain, D(E), be the set where E is finite. Let µ lie

in D(E) ∩ Pa2 (Rm). A vector field ξ ∈ L2(dµ) belongs to the subdifferential of E at µ,

denoted by ∂E(µ) if

lim inf
ν→µ

ν∈D(E)

E(ν)− E(µ)−
∫
X

〈
ξ, T νµ − Id

〉
dµ

W2 (µ, ν)
> 0. (3.6)

We say that a curve µt ∈ AC2
loc(R+,Pa2 (Rm)) is a trajectory of the gradient flow for

the energy E, if there exists a velocity field Vt with |Vt|L2(dµt) ∈ L1
loc(R+) such that

∂tµt +∇ · (µtVt) = 0 (continuity equation),

Vt ∈ −∂E(µt) (steepest descent)

(3.7)

holds for almost every t > 0. We will refer to (3.7) as the gradient flow equation.

The continuity equation links the curve with its velocity vector field and ensures that

the mass is conserved. The steepest descent equation expresses that the gradient flow

evolves in the direction of maximal energy dissipation.

Next we describe the link between Wasserstein gradient flows and evolution PDEs.

Here, we assume that all of the measures are absolutely with respect to Lebesgue measure
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and we work with their density functions. More detailed analysis with a discussion of

general measures can be found in [1]. Let µ = udx be in D(E) and let V ∈ ∂E(µ) be a

tangent vector field at µ. Consider a linear perturbation of µ given by the curve µε :=

(Id + εW )#µ for small values of ε > 0 where W ∈ C∞c (Rm;Rm). By the subdifferential

inequality (3.6) we have

lim sup
ε↑0

E(uε)− E(u)

ε
6
∫
Rm
〈V,W 〉udx 6 lim inf

ε↓0

E(uε)− E(u)

ε
.

On the other hand, assuming C2 regularity on uε and using standard first order variations

we have

lim
ε→0

E(uε)− E(u)

ε
=

∫
Rm

(
δE(u)

δu

)(
∂uε
∂ε

)
udx

where
δE(u)

δu
stands for standard first variations of E. Therefore∫

Rm
〈V,W 〉udx =

∫
Rm

δE(u)

δu
∂εuεdx.

The continuity equation for the curve uε implies that ∂εuε = −∇.(uW ). Hence∫
Rm
〈V,W 〉udx = −

∫
Rm
{δE(u)

δu
∇ · (uW )}dx.

Integrating by parts, we have∫
Rm
〈V,W 〉udx =

∫
Rm
〈∇(

δE(u)

δu
),W 〉udx.

Since W is arbitrary we have

V (x) = ∇δE(u)

δu
(x) for µ-a.e. x. (3.8)

Now assume that a curve µt = utdx satisfies the gradient flow equation (3.7). The

steepest descent equation and (3.8) imply

Vt(x) = −∇δE(u)

δu
(x).
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By plugging Vt into the continuity equation, we have

∂tu = ∇ ·
(
u∇δE(u)

δu

)
. (3.9)

This is the corresponding PDE for the Wasserstein gradient flow of the energy E.

For example the gradient flow of the energy

E(u) =

∫
um−1

m− 1
, m > 1

corresponds to the solution of the porous medium equation

∂tu = ∆um.

Another example which is in particular interesting for us is the Dirichlet energy

E(u) =

∫
Rm
|∇u|2 dx.

The first variation of the energy is given by

δE(u)

δu
= −∆u.

Therefore the corresponding PDE is the thin-film equation:

∂tu = −∇ · (u∇∆u) .

Our well-posedness proofs are based on the minimizing movement scheme as a discrete-

time approximation of a gradient flow which is described here. Let µ0 ∈ D(E), and fix a

step size τ > 0. Recursively define a sequence {Mn
τ }

+∞
n=1 by setting M τ

0 = µ0, and

M τ
n = argmin

µ∈D(E)

{
E(µ) +

1

2τ
W 2

2

(
M τ

n−1, µ
)}

n > 1. (3.10)
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To see why this scheme is an approximation of the gradient flow, we formally calculate

the Euler-Lagrange equation for this minimization problem. The corresponding Euler-

Lagrange is given by

U τ
n ∈ −∂E (M τ

n)

where U τ
n = −

T
Mτ
n−1

Mτ
n
−Id

τ
. Next we define a piecewise constant curve and a corresponding

velocity field by

µτt := M τ
n , V τ

t := U τ
n , for (n− 1)τ < t ≤ nτ .

We have

V τ
t ∈ −∂E(µτt ) ∀t > 0. (3.11)

Therefore this equation formally suggests that µτt is an approximation of the gradient

flow trajectory of E starting from µ0.

There is a standard set of hypothesises on the energy functional that we assume

throughout this chapter. We gather the hypothesises here:

• E is nonnegative, and its sub-level sets are locally compact in the Wasserstein

space.

• E is lower semicontinuous under narrow convergence.

• D(E) ⊆ Pa2 (Rm).

The first two conditions guarantee existence of a solution to the minimization problem

in the minimizing movement scheme (3.10) and convergence of the scheme to a limiting

curve. The third condition ensures that measures of finite energy are absolutely contin-

uous, allowing us to use transport maps rather than more general transportation plans
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for studying the Wasserstein distance. This simplifies the calculations, and allows us to

view the subdifferential as a tangent vector. Note that these conditions can be relaxed

as in [1], but to make the presentation more transparent, we prefer to work in this more

concrete setting which is sharp enough for the energies we are interested in.

The standard condition in the literature that guarantees existence and uniqueness

of the Wasserstein gradient flow of an energy is given by displacement convexity of the

energy. This condition asks for convexity of the energy along geodesics of the Wasserstein

space. Let µs : [0, 1] −→ P2(Rm) be the geodesic between µ0, µ1 ∈ P2(X). An energy

functional E is called displacement convex along µs if

E(µs) 6 (1− s)E(µ0) + sE(µ1) s ∈ [0, 1].

More generally the energy is called λ-displacement convex or in short λ-convex if the

convexity is bounded from below by the constant λ, i.e.

E(µs) 6 (1− s)E(µ0) + sE(µ1)−
λ

2
s(1− s)W 2

2 (µ0, µ1) s ∈ [0, 1]. (3.12)

Furthermore, assuming that E(µs) is smooth as a function of s, one can write a derivative

version of λ-convexity. In this case, E is λ-convex along µs if

d2

ds2
E(µs) > λW 2

2 (µ0, µ1). (3.13)

An energy is called λ-convex if it satisfies (3.12) along all geodesics of P2(Rm). It is

known that under λ-convexity assumption, the gradient flow of an energy exists and is

unique (see [1]). In the next chapter we introduce a relaxed notion of convexity and we

prove that, under the relaxed convexity condition of an energy, its gradient flow exists

and is unique at least locally in time.



Chapter 4

Relaxed λ-convexity and Local

Well-posedness

4.1 Relaxed λ-convexity

In this chapter we start by introducing a generalized notion of convexity which we call

relaxed λ-convexity. Later in this chapter we will show that if the energy satisfies relaxed

convexity, its gradient flow is locally well-posed. Relaxed convexity condition study

the convexity of the energy locally on energy sub level-sets, i.e. in Bδ(µ) ∩ Ec, where

Bδ(µ) =
{
ν
∣∣∣ W2(µ, ν) < δ

}
and Ec =

{
ν
∣∣∣ E(ν) < c

}
Definition 4.1.1 (relaxed λ-convexity.) We say that an energy E is relaxed λ-convex

at µ ∈ D(E), if there exist δ > 0 and c > E(µ) such that E is λ-convex along the geodesics

connecting any pair of measures ν1, ν2 ∈ Bδ(µ) ∩ Ec.

The following lemma has a key role in the arguments of Theorem 4.2.2. It shows how

one can use relaxed λ-convexity assumption to study the subdifferential of an energy.

24
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Figure 4.1: relaxed λ-convexity

Lemma 4.1.2 (Subdifferential and relaxed λ-convexity.) Assume that E is relaxed

λ-convex at µ. Then a vector field ξ ∈ L2(dµ) belongs to the subdifferential of E at µ if

and only if

E(ν)− E(µ) >
∫
X

〈ξ, T νµ − Id〉 dµ+
λ

2
W 2

2 (µ, ν) ∀ν ∈ Bδ(µ) ∩ Ec (4.1)

where Bδ(µ) ∩ Ec is the corresponding relaxed λ-convexity domain at µ.

Proof. First we claim that for studying the subdifferential of the functional, it is enough

to consider the restricted domain Bδ(µ) ∩ Ec. Let ξ ∈ L2(dµ), we have to show that

lim inf
ν→µ

ν∈D(E)

E(ν)− E(µ)−
∫
X
〈ξ, T νµ − Id〉 dµ

W2(µ, ν)
> 0. (4.2)

if and only if

lim inf
ν→µ

ν∈Bδ(µ)∩Ec

E(ν)− E(µ)−
∫
X
〈ξ, T νµ − Id〉 dµ

W2(µ, ν)
> 0. (4.3)

⇓ is trivial.

For ⇑ assume that {νn}∞1 is a minimizing sequence for (4.2).
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In the case that lim infn→∞E(νn)− E(µ) > 0 we have

E(νn)− E(µ)−
∫
X〈ξ, T

νn
µ − Id〉dµ

W2(µ, νn)
>
E(νn)− E(µ)−

(∫
X |ξ|

2 dµ
)1/2 (∫

X

∣∣T νnµ − Id ∣∣2 dµ)1/2
W2(µ, νn)

=
E(ν)− E(µ)

W2(µ, νn)
−
(∫

X
|ξ|2 dµ

)1/2
(∫
X

∣∣T νnµ − Id ∣∣2 dµ)1/2
W2(µ, νn)

=

[
E(ν)− E(µ)

W2(µ, νn)
− |ξ|L2

µ

]
−→ +∞.

Therefore inequality (4.2) is automatically true if lim infn→∞E(νn) − E(µ) > 0. Hence

one only needs to consider sequences {νn}∞1 such that limn→∞E(νn)−E(µ) 6 0. There-

fore, for large enough n we have E(νn) < c. On the other hand, νn
W2−−→ µ. Hence (4.3)

and (4.2) are equivalent.

It is clear that (4.1) implies (4.3). Conversely, let ξ ∈ L2(dµ) satisfy (4.3). Let

ν ∈ Bδ(µ) ∩ Ec. Since E is relaxed λ-convex at µ, we have λ-convexity of E along the

geodesic µs connecting µ to ν. Therefore

E(µs) 6 (1− s)E(µ) + sE(ν)− λ

2
s(1− s)W 2

2 (µ, ν) ∀s ∈ [0, 1].

Dividing by s and reordering, we have

E(µs)− E(µ)

s
6 E(ν)− E(µ)− λ

2
(1− s)W 2

2 (µ, ν). (4.4)

ξ is in the subdifferential of E at µ. Hence

lim inf
s→0+

E(µs)− E(µ)

s
> lim

s→0+

1

s

∫
X

〈ξ, T µsµ − Id〉 dµ

=

∫
X

〈ξ, T νµ − Id〉 dµ
(4.5)

where we used linearity of the interpolate map T µsµ = Id + s(T νµ − Id). Therefore (4.4)

and (4.5) imply

E(ν)− E(µ) >
∫
X

〈ξ, T νµ − Id〉 dµ+
λ

2
W 2

2 (µ, ν).
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�

4.2 Local Existence and Uniqueness

The following lemma is used in Theorem 4.2.2 when we study weak convergence of tangent

vector fields.

Lemma 4.2.1 Let µkt , µt ∈ AC2([0, t̂];Pa2 (Rm)) and let V k
t ∈ L2(dµkt ), Vt ∈ L2(dµt).

Assume that

• µkt
W2−−→ µt uniformly on [0, t̂].

• V k
t weakly converges to Vt in the sense that ∀U ∈ C0

b ([0, t̂]× Rm), we have

lim
k→∞

∫ t̂

0

∫
Rm

〈
V k
t , U(t, x)

〉
dµkt dt =

∫ t̂

0

∫
Rm
〈Vt, U(t, x)〉 dµtdt.

Then ∀ν ∈ P2(Rm)

lim
k→∞

∫ t̂

0

∫
Rm

〈
V k
t , T

ν
µkt
− Id

〉
dµkt dt =

∫ t̂

0

∫
Rm

〈
Vt, T

ν
µt − Id

〉
dµtdt.

Proof. Since V k
t is weakly convergent by uniform boundedness principle we have

supk
∫ t̂
0

∫
Rm |V

k
t |2dµkt dt < +∞. Let

M = sup
k

∫ t̂

0

(

∫
Rm

∣∣V k
t

∣∣2 dµkt +

∫
Rm
|Vt|2 dµt)dt.

Choose Tt ∈ C0
c ([0, t̂]× Rm) such that∫ t̂

0

∫
Rm
|T νµt − Tt|

2dµtdt < ε2.
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We have ∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , T

ν
µkt
− Id

〉
dµkt dt−

∫ t̂

0

∫
Rm

〈
Vt, T

ν
µt − Id

〉
dµtdt

∣∣∣∣∣
6

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , Id

〉
dµkt dt−

∫ t̂

0

∫
Rm
〈Vt, Id〉 dµtdt

∣∣∣∣∣︸ ︷︷ ︸
A

+

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , T

ν
µkt
− Tt

〉
dµkt dt

∣∣∣∣∣︸ ︷︷ ︸
B

+

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , Tt

〉
dµkt dt−

∫ t̂

0

∫
Rm

〈
Vt, T

ν
µt

〉
dµtdt

∣∣∣∣∣︸ ︷︷ ︸
C

We study each of the items separately.

Since µkt is uniformly converging to µt, the second moment of µkt is uniformly bounded.

In particular there is a compact set S ⊂ [0, t̂]× Rm such that

(

∫
Sc
|x|2µtdt+ sup

k

∫
Sc
|x|2µkt dt) < ε2. (4.6)

We have

lim
k→∞

A = lim
k→∞

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , Id

〉
dµkt dt−

∫ t̂

0

∫
Rm
〈Vt, Id〉 dµtdt

∣∣∣∣∣
6 lim

k→∞

∣∣∣∣∫
S

〈
V k
t , Id

〉
dµkt dt−

∫
S

〈Vt, Id〉 dµtdt
∣∣∣∣

+ lim
k→∞

∣∣∣∣∫
Sc

〈
V k
t , Id

〉
dµkt dt−

∫
Sc
〈Vt, Id〉 dµtdt

∣∣∣∣ .
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Because S is compact one can use weak convergence of V k
t on S. Hence the limit of the

first term vanishes and we have

lim
k→∞

A 6 lim
k→∞

∣∣∣∣∫
Sc

〈
V k
t , Id

〉
dµkt dt−

∫
Sc
〈Vt, Id〉 dµtdt

∣∣∣∣
6
ε

2
lim
k→∞

(∫
Sc
|V k
t |2dµkt dt+

∫
Sc
|Vt|2dµtdt

)
+ lim

k→∞

1

2ε

(∫
Sc
|x|2dµkt dt+

∫
Sc
|x|2dµtdt

)
where we used Young’s inequality with the constant ε. By (4.6) we have

lim
k→∞

A 6
εM

2
+
ε

2
.

Since ε is arbitrary we have limk→∞A = 0.

We now study B. Consider the measure γkt on Rm × Rm given by

γkt = (Id× T νµkt )#µ
k
t .

Recall that the measure γkt is the optimal plan with marginals µkt and ν. Since µkt → µt,

by the stability of optimal plans [27, Theorem 5.20], the set of optimal plans between

µkt and ν is compact in the narrow topology and every limit point is an optimal plan

between µt and ν. On the other hand, because µt is an absolutely continuous measure,

Brenier-McCann Theorem ensures that the optimal plan between µt and ν is unique.

This implies that the sequence γkt converges narrowly for all t ∈ [0, t̂]. Furthermore, the

uniform convergence of µkt implies that γkt have uniformly bounded second moment. We

have

γkt = (Id× T νµkt ))#µ
k
t
narrow−−−−→ γt = (Id× T νµt))#µt ∀t ∈ [0, t̂]. (4.7)
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Taking the limit of B yields

lim
k→∞

B = lim
k→∞

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , T

ν
µkt
− Tt

〉
dµkt dt

∣∣∣∣∣
6 lim

k→∞

ε

2

∫ t̂

0

∫
Rm
|V k
t |2dµkt dt+

1

2ε

∫ t̂

0

∫
Rm
|T νµkt − Tt|dµ

k
t dt

6
εM

2
+

1

2ε
lim
k→∞

∫ t̂

0

∫
Rm
|T νµkt − Tt|

2dµkt dt.

by lifting to the optimal plans γkt = (Id× T ν
µkt

)#µ
k
t , we have

lim
k→∞

B 6
εM

2
+

1

2ε
lim
k→∞

∫ t̂

0

∫
Rm×Rm

|y − Tt(x)|2dγkt dt.

Since γkt → γt point-wise, γkt has uniformly bounded second moment, and |y − Tt(x)|2 is

dominated by a constant times |x2 +y2 + 1|, we can use dominated convergence theorem.

Therefore

lim
k→∞

B 6
εM

2
+

1

2ε
lim
k→∞

∫ t̂

0

∫
Rm×Rm

|y − Tt(x)|2dγkt dt

=
εM

2
+

1

2ε

∫ t̂

0

∫
Rm×Rm

|y − Tt(x)|2dγtdt

=
εM

2
+

1

2ε

∫ t̂

0

∫
Rm
|T νµt − Tt|

2dµtdt

6
εM

2
+
ε

2
.

Finally, we study the last term C. We have

lim
k→∞

C = lim
k→∞

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , Tt

〉
dµkt dt−

∫ t̂

0

∫
Rm

〈
Vt, T

ν
µt

〉
dµtdt

∣∣∣∣∣
6 lim

k→∞

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
V k
t , Tt

〉
dµkt dt−

∫ t̂

0

∫
Rm
〈Vt, Tt〉 dµtdt

∣∣∣∣∣
+

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
Vt, T

ν
µt − Tt

〉
dµtdt

∣∣∣∣∣ .
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Since Tt ∈ C0
b we can use weak convergence of V k

t for the first term. Hence

lim
k→∞

C 6

∣∣∣∣∣
∫ t̂

0

∫
Rm

〈
Vt, T

ν
µt − Tt

〉
dµtdt

∣∣∣∣∣
6M

∫ t̂

0

∫
Rm
|T νµt − Tt|

2dµtdt

6Mε2.

�

Theorem 4.2.2 (Existence and uniqueness of the flow) Let E : P2(Rm)→ [0,+∞]

be a lower semicontinuous energy functional with locally compact sub-level sets and let

D(E) ⊆ Pa2 (Rm). Assume E(µ) < +∞ and that E is relaxed λ-convex at µ. Then there

exist t̂ > 0 and a curve µt ∈ AC2
(
[0, t̂];Pa2 (Rm)

)
such that µt is the unique gradient flow

of E starting from µ.

Proof. Let µkt := µτt be a piecewise constant solution to the minimizing movement scheme

(3.10) with τ = 1
k
. The minimizing movement sequence is designed in a way that it

converges to a limiting curve in a very general setting. In [1, Theorem 11.1.6] it has been

proved that, under very weak assumptions which hold here, the minimizing movement

scheme converges sub-sequentially to a limiting curve such that (after relabelling) ∀a > 0

• µkt
W2−−→ µt ∈ AC2 ([0, a];P2(Rm)) uniformly in [0, a].

• The sequence {V k
t } of the velocity tangent vectors to {µkt } converges weakly to

Vt ∈ L2(dµ) in Rm × (0, T ).

• The continuity equation ∂tµt +∇. (µtVt) = 0 holds for the limiting curve.

We need to prove that the limiting curve µt satisfies the steepest descent equation and

that it is unique. Let Bδ(µ) ∩ Ec be the domain of relaxed convexity at µ. Since µt is a
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continuous curve, we can find t̂ such that µt ∈ Bδ/4(µ) for all t ∈ [0, t̂]. We have

E(µt) 6 lim inf
k→∞

E(µkt ) 6 E(µ) < c. (4.8)

The first inequality follows from lower semicontinuity of the energy and the second in-

equality follows from the structure of the minimizing movement scheme (3.10). Hence

µt ∈ Bδ/4(µ) ∩ Ec ∀t ∈ [0, t̂]. (4.9)

Since µkt
W2−−→ µt uniformly in [0, t̂], we can find K ∈ N such that W2(µt, µ

k
t ) < δ/4,

∀k > K and ∀t ∈ [0, t̂]. Without loss of generality we assume that K = 1. Therefore

(4.8) and (4.9) imply

µkt ∈ Bδ/2(µ) ∩ Ec. (4.10)

The Euler-Lagrange equation of minimizing movement (3.11) implies that−V k
t ∈ ∂E(µkt ).

Therefore using (4.10) and the variational formulation of the subdifferential (Lemma

4.1.2) we have

E(ν)− E(µkt ) >
∫
Rm

〈
−V k

t , T
ν
µkt
− Id

〉
dµkt +

λ

2
W 2

2 (µkt , ν) (4.11)

for all ν ∈ Bδ/2(µ)∩Ec. By construction, Bδ/4(µt)∩Ec ⊆ Bδ/2(µ
k
t )∩Ec. Therefore (4.11)

holds for all ν in Bδ/4(µt) ∩ Ec. By integrating (4.11) over t and against a text function

ψ ∈ C∞c ((0, t̂); [0,∞)) we have∫ t̂

0
E(ν)ψ(t)dt−

∫ t̂

0
E(µkt )ψ(t)dt >

∫ t̂

0

∫
Rm

〈
−V k

t , T
ν
µkt
− Id

〉
ψ(t)dµkt dt+

λ

2

∫ t̂

0
W 2

2 (µ
k
t , ν)ψ(t)dt

(4.12)

for all ν in Bδ/4(µt) ∩ Ec.

We take the limit of (4.12) as k →∞. By the lower semicontinuity of E∫ t̂

0

E(ν)ψ(t)dt−
∫ t̂

0

E(µt)ψ(t)dt >
∫ t̂

0

E(ν)ψ(t)dt− lim inf
k→∞

∫ t̂

0

E(µkt )ψ(t)dt.
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Lemma 4.2.1 implies that

lim
k→∞

∫ t̂

0

∫
Rm

〈
V k
t , T

ν
µkt
− Id

〉
ψ(t)dµkt dt =

∫ t̂

0

∫
Rm

〈
Vt, T

ν
µt − Id

〉
ψ(t)dµtdt.

By the triangle inequality

W2(µt, ν)−W2(µ
k
t , µt) 6 W2(µ

k
t , ν) 6 W2(µt, ν) +W2(µ

k
t , µt). (4.13)

Therefore limk→∞W2(µ
k
t , ν) = W2(µt, ν). Furthermore, since µkt

W2−−→ µt uniformly, in-

equality (4.13) implies that W2(µ
k
t , ν) is uniformly bounded. Hence, by dominated con-

vergence theorem

lim
k→∞

∫ t̂

0

W 2
2 (µkt , ν)ψ(t)dt =

∫ t̂

0

W 2
2 (µt, ν)ψ(t)dt.

In conclusion ∀ν ∈ Bδ/4(µt) ∩ Ec and ∀ψ ∈ C∞c ((0, t̂); [0,∞)) we have∫ t̂

0
E(ν)ψ(t)dt−

∫ t̂

0
E(µt)ψ(t)dt >

∫ t̂

0

∫
Rm

〈
−Vt, T νµt − Id

〉
ψ(t)dµtdt+

λ

2

∫ t̂

0
W 2

2 (µt, ν)ψ(t)dt.

(4.14)

Let t0 be a Lebesgue point of the map t 7→
∫ t̂
0
E(µt)ψ(t)dt +

∫
Rm
〈
Vt, T

ν
µt − Id

〉
dµt +

λ
2

∫ t̂
0
W 2

2 (µt, ν)ψ(t)dt. By considering a sequence of smooth mollifiers ψn converging to

the delta function at t0, the inequality (4.14) is reduced to

E(ν)− E(µt0) >
∫
Rm

〈
−Vt0 , T νµt0 − Id

〉
dµt0 +

λ

2
W 2

2 (µt0 , ν). (4.15)

Therefore (4.15) holds for almost all t. By Lemma 4.1.2 we have

Vt ∈ −∂E(µt) for almost all t ∈ [0, t̂].

We now study uniqueness of the solution. The available uniqueness proofs in the case

of λ-convexity can be repeated in the domain of relaxed λ-convexity because as soon as

the flow exists clearly it dissipates the energy and the trajectories of the flow starting
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from µ remain in the domain of relaxed λ-convexity for a short time where one can use

λ-convexity. Hence uniqueness arguments can be repeated similar to the available proofs

such as in [1, Theorem 11.1.4]. Therefore we provide only the key ideas here.

Assume that we have two gradient flows µ1
t and µ2

t both starting from µ. One can

show that W 2
2 (µ1

t , µ
2
t ) is absolutely continuous in time and that, by differentiability of

Wasserstein metric (3.3), for almost all t ∈ [0, t̂] we have

d

dt
W 2

2 (µ1
t , µ

2
t ) 6

∫
Rm

〈
V 2
t , Id− T

µ1t
µ2t

〉
dµ2

t +

∫
Rm

〈
V 1
t , Id− T

µ2t
µ1t

〉
dµ1

t . (4.16)

Consider inequality (4.15) along µ1
t . We have

E(µ2
t )− E(µ1

t ) >
∫
Rm

〈
−Vt, T

µ2t
µ1t
− Id

〉
dµ1

t +
λ

2
W 2

2 (µ1
t , µ

2
t ). (4.17)

Rewriting (4.17) again along µ2
t and using (4.16) result in

1

2

d

dt
W 2

2 (µ2
t , µ

1
t ) 6 −λW 2

2 (µ2
t , µ

1
t ).

Hence

W2(µ
2
t , µ

1
t ) 6 e−λtW2(µ

2
0, µ

1
0) = 0 ∀t ∈ [0, t̂]. (4.18)

�

Remarks. Since the result of Theorem 4.2.2 holds as long as λ is finite, the flow

exists and is unique unless there is a blow up on λ. Also because of the inequality 4.18 the

rate of divergence of the flow starting from two close-by points µ1 and µ2 is controlled by

min {λ1, λ2} where λi is the modulus of relaxed convexity at µi. Therefore the theorem

implicitly results in continuous dependent on the initial data too.



Chapter 5

Wasserstein Gradient Flow of

Dirichlet Energy

In this section we prove a local well-posedness result for the gradient flow of the Dirichlet

energy on S1. In this chapter, we use letter E to refer to the Dirichlet energy

E(µ) =


1

2
(∂xu)2 if µ = udx, u ∈ H1(S1),

+∞ else.

(5.1)

When convenient, we refer to an absolutely continuous measure µ = udx by its density

u. In particular, by a smooth or positive measure we mean a measure with a smooth or

positive density.

5.1 Optimal Transport on S1

The underlying space of the measures that we study in this section is S1. We identify

S1 with R/Z. Because S1 is a manifold, the theory developed in the previous section

should be slightly modified. On a Riemannian manifold, there is the issue of existence

35
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and regularity of the optimal maps. This question has been an active area of research.

Ma-Trudinger-Wang condition in [21] is a famous example that studies this issue. In the

case of Sm, the problem has been addressed and positive results are available such as [17]

and [20]. The results guarantee that between any pair of smooth positive measures µ, ν

on Sm there exists a unique smooth optimal map T νµ . To study the problem on S1 ≡ R/Z,

because of the periodicity, one has to be careful about the optimal map because |T (x)−x|

refers to two different values on S1. As was suggested in [12], this problem can be solved

by relabelling S1. In short, it was proved in [12] that for any two smooth positive mea-

sures µ and ν on S1 there exist an optimal map T : [0, 1] → [T (0), T (0) + 1] between

µ and ν. Further more the optimal map T is monotone and the geodesic distance of

S1 ≡ R/Z coincides with |T (x)− x|.

Let µ0 = u0dx and µ1 = u1dx be two smooth measures on S1 and let T be the optimal

map between them. Then by Monge-Ampère equation (2.3) we have

u1(T (X)) =
u0(x)

T ′(x)
.

Since the geodesics are given by the push forward of linear interpolation of the optimal

map and the identity map, the explicit form of the geodesic us between u0 and u1 is given

by

us((1− s)x+ sT (x)) =
u0(x)

(1− s) + sT ′(x)
.

In the notation of the previous section, if we think of f = T − Id as the tangent vector

field that connects u0 to u1, the geodesic equation can be written as

us(x+ sf(x)) =
u0(x)

1 + sf ′(x)
. (5.2)

We will see in Lemma 5.2.3 that for studying relaxed λ-convexity of the energy, it
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is enough to consider measures with smooth densities. By the derivative formulation of

λ-convexity (3.13) the energy is λ-convex along the geodesic µs connecting µ0 to µ1 if

d2

ds2
E(us) > λW 2

2 (u0, u1). (5.3)

We start by proving that the Dirichlet energy is not λ-convex for any λ. This is known

to the community, and in [12] Carrillo and Slepčev proved that the Dirichlet energy is

not convex on S1. We will study a scalable family of functions to prove the lack of

convexity for any λ ∈ R. Let us be the geodesic connecting u0 = u to u1, and let f be

the corresponding tangent vector field. We compute the second derivative of the energy

along the geodesic

d2E(us)

ds2

∣∣∣∣
s=0

=
d2

ds2

∣∣∣∣
s=0

∫
S1

(∂yus(y))2 dy .

By the Monge-Ampère equation (5.2) and the change of variables y = x+ sf(x) we have

d2E(us)

ds2

∣∣∣∣
s=0

=
d2

ds2

∣∣∣∣
s=0

∫
S1

(
∂x

∂y

∂

∂x

u(x)

1 + sf ′(x)

)2
∂y

∂x
dx

=
d2

ds2

∣∣∣∣
s=0

∫
S1

(
1

1 + sf ′(x)
∂x

u(x)

1 + sf ′(x)

)2

(1 + sf ′(x)) dx

=
d2

ds2

∣∣∣∣
s=0

∫
S1

((1 + sf ′(x))u′(x)− su(x)f ′′(x))2

(1 + sf ′(x))3
dx

= 2

∫
S1

{
(f ′′u)2 + 8(f ′′u)(f ′u′) + 6(f ′u′)2

}
dx.

(5.4)

If the energy E was λ-convex, then∫
S1

{
(f ′′u)2 + 8(f ′′u)(f ′u′) + 6(f ′u′)2

}
dx︸ ︷︷ ︸

A

> λ

∫
S1

f 2u dx︸ ︷︷ ︸
B

. (5.5)

We use (5.5) as a guide to find a counter-example. In the example, u and f are not

smooth, and we cannot directly apply this computation but, Lemma 5.2.3 validates the
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calculations.

We view S1 as the interval [−1/2, 1/2] with the endpoints identified. The construction

of the example is simple: let u = 1 − 4|x| and f ′ = u−1, this forces the integrand of A

to be negative, and the rest follows from a scaling argument. We have to make some

modifications to the functions so that the integral converges and the mass is normalized

to 1. We define u and f ′ as follows

u(x) =



81
16

(1− 4|x|) , 0 6 |x| 6 2
9
,

9
16
, 2

9
6 |x| 6 3

8
,

9
4
(1− 2|x|) , 3

8
6 |x| 6 1

2

f ′(x) =



16
81(1−4|x|) , 0 6 |x| 6 2

9
,

16
11

(3− 8|x|) , 2
9
6 |x| 6 3

8
,

0 , 3
8
6 |x| 6 1

2
.

f '

u

Figure 5.1: Graph of u and f ′

By scaling uh(x) := hu(hx) and f ′h(x) := 1
h
f ′(hx) we have

A = −C1h
2 , B = C2

for some positive constants C1, C2. If the energy is λ-convex then we must have A > λB

and it should hold uniformly for any such u and f . But for a fixed λ, we can choose h
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large enough so that the opposite inequality holds. This means that the Dirichlet energy

is not λ-convex on P2(S
1).

In the example above, by pushing h to larger numbers the lack of convexity becomes

worse. By looking at the equation of u(x), it is clear that the Dirichlet energy of u(x)

gets bigger for larger values of h. This example hints that one of the obstructions against

the λ-convexity of the Dirichlet energy is the magnitude of the energy which can be

controlled on energy sub-level sets.

5.2 Relaxed λ-convexity of Dirichlet Energy

Lemma 5.2.1 (Uniform convergence on energy sub-level sets.) Uniform conver-

gence and Wasserstein convergence are equivalent on energy sub-level sets of Dirich-

let energy on S1. In particular for two measures µ1 = u1dx and µ2 = u2dx with

E(µ1), E(µ2) < c < +∞ we have

W 2
2 (µ1, µ2) > α|u1 − u2|β∞ (5.6)

where α = α(c) and β are constants.

Proof. One side of the equivalence is easy. Assuming un
uniform−−−−−→ u0 we have∫

S1

ψundx −→
∫
S1

ψudx ∀ψ ∈ C0(S1)

which implies Wasserstein convergence of µn = undx to µ = udx by (3.5) and finiteness

of the second moments on S1.
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For the converse inequality, we first study the regularity of a measure with finite

energy. Let ν = vdx ∈ Ec. By Poincare’s inequality and
∫
S1 vdx = 1 we have∫

S1

|v|2dx 6
∫
S1

|v′|2dx+ 2

∫
S1

|v|dx+

∫
S1

dx 6 c+ 3.

Therefore H1-norm of v is bounded by its energy. The Sobolev embedding theorem

implies that v is C0,1/2 continuous and we have

|v(x)− v(y)| 6
(∫

S1

|v′|2dx
)1/2(∫ y

x

dx

)1/2

6
√
c|x− y| ∀x, y ∈ S1. (5.7)

Therefore the modulus of continuity is
√
c. Let µ1 and µ2 be as in the assumption.

Therefore u1 and u2 are C0,1/2 continuous with constant
√
c. Assume that |u1 − u2|∞ >

h > 0. In particular without loss of generality assume that for some point x0 ∈ S1 we

have u1(x0)− u2(x0) > h. For every x ∈ S1, we have

u1(x) > u1(x0)−
√
c|x|

u2(x) 6 u2(x0) +
√
c|x|.

(5.8)

Therefore u1 lies above and u2 is below the star-like shape in Figure (5.2). Call the

star-like shape by S. Consider a rectangle R in the center of S with height h
2

and width

k
3

where k is the width of S at the height u2(x0) + h
4
. We have k = h2

8c
and the area of R

is given by h3

48c
. In order to transport the measure µ1 to µ2, some mass at least equal to

the area of R should be transported outside of S. Therefore

W 2
2 (µ1, µ2) > {area of R}{distance required to move R outside of S}2

>
h3

48c
.(
k

3
)2

>
1

384c3
|u1 − u2|7∞.

�
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x0

u2Hx0L

u1Hx0L

S

u1

u2

k

3

R

Figure 5.2: Wasserstein ⇐⇒ Uniform

Lemma 5.2.2 (Lower Semicontinuity.) The Dirichlet energy is lower semicontinu-

ous with respect to the Wasserstein metric on S1.

Proof. Let un
W2−−→ u. We have to prove E(u) 6 lim infn→∞E(un). Consider a minimizing

subsequnce which (without relabeling) we show it by {un}. Since {un} is bounded, we can

assume that {E(un)} is bounded. This implies that H1-norm of the sequence is bounded.

By Banach–Alaoglu theorem, un has a weak limit point v ∈ H1 with a subsequence unk

converges to v strongly in L2. Since unk is also a minimizing sequence, it is enough to

show that E(u) 6 lim infn→∞E(unk). We claim that v = u. Let ψ ∈ C0(S1) we have∣∣∣∣∫
s1
ψ(x)(u− v)(x)dx

∣∣∣∣ 6 ∣∣∣∣∫
s1
ψ(x)(u− unk)(x)dx

∣∣∣∣+

∣∣∣∣∫
s1
ψ(x)(unk − v)(x)dx

∣∣∣∣
6

∣∣∣∣∫
s1
ψ(x)(u− unk)(x)dx

∣∣∣∣+ (

∫
s1
|ψ|2dx)1/2(

∫
s1
|unk − v|2dx)1/2

By Lemma 5.2.1 the Wasserstein and uniform convergences are equivalent on energy sub-

level sets. Therefore the first term in the last inequality goes to zero. The second term
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also goes to zero because unk converges to v strongly in L2. Hence u = v almost every-

where. Because u and v are continuous, we have u = v. The Dirichlet energy is known

to be lower semicontinuous under weak H1 convergence (for example see [16, Theorem

8.2.1]). Hence we have E(u) = E(v) 6 lim infn→∞E(unk). �

The following lemma validates smooth calculation in the sense that for studying re-

laxed λ-convexity of the energy, one can study relaxed λ-convexity of the energy only on

smooth measures.

Lemma 5.2.3 (Approximation by smooth measures.) Let µ ∈ D(E). Assume that

there exist δ > 0 and c > E(µ) such that the energy is λ-convex along all geodesics with

smooth endpoints in Bδ ∩ Ec. Then E is relaxed λ-convex at µ.

Proof. Let µ0 = u0dx, µ1 = u1dx ∈ Bδ ∩ Ec and let ηk be a standard smooth mollifier

converging to the Dirac delta function. Define uk,i(x) := ηk ∗ ui(x) for i = 0, 1 where ∗

is the convolution on S1. Since uk,i
uniformly−−−−−−→ ui, by Lemma 5.2.1 we have uk,i

W2−−→ ui.

Therefore for large enough k we have uk,i ∈ Bδ(u). The energy also converges, because

E(uk,i) =

∫
S1

(∂x(ui ∗ ηk))2 dx =

∫
S1

((∂xui) ∗ ηk)2 dx −−−→
k→∞

∫
S1

(∂xui)
2 dx = E(ui).

(5.9)

Hence uk,i ∈ Bδ(u) ∩ Ec for large enough k. By smoothness of uk,i and the assumption

of the lemma, we have λ-convexity of the energy along the geodesics uk,s connecting uk,0

to uk,1

E(uk,s) 6 (1− s)E(uk,0) + sE(uk,1)−
λ

2
s(1− s)W 2

2 (un,0, uk,1). (5.10)

Let γk and γ be in order the optimal plan connecting µk,0 = uk,0dx to µk,1 = uk,1dx and

the optimal plan connecting µ0 to µ1. By stability of the optimal plans [27, Theorem
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5.20] γk converges in narrow topology to γ along a subsequence which after relabelling we

assume to be the whole sequence. Equivalence of narrow and Wasserstein convergence

(5.6) on S1 × S1 implies

µk,s =
(
(1− s)Π1 + sΠ2

)
#
γk

W2−−→
(
(1− s)Π1 + sΠ2

)
#
γ = µs

where Πi is the projection to the ith coordinate and µs is the geodesic connecting µ0 to µ1.

The lower semicontinuity of Dirichlet energy 5.2.2 yields E(µs) 6 lim infk→+∞E(µk,s).

Hence by taking the limit of (5.10) we have

E(µs) 6 (1− s)E(µ0) + sE(µ1)−
λ

2
s(1− s)W 2

2 (µ0, µ1).

�

In the following lemma we prove that the energy is finite along a geodesic, provided

that the energies of the endpoints are finite.

Lemma 5.2.4 (Energy of the interpolant.) Let µ0 = u0dx and µ1 = udx be two

smooth measures with E(µ0), E(µ1) < c < +∞ and u0, u1 > m > 0. Then there are

constants ĉ < +∞ and m̂ > 0 depending only on c and m such that E(µs) < ĉ and

us > m̂ along the geodesic µs connecting µ0 to µ1.

Proof. By C0,1/2 continuity of the densities, there existsM = M(c) such that u0(x), u1(x) <

M for all x ∈ S1. Let T : S1 −→ S1 be the the optimal transport map between u0 and

u1. By Monge–Ampère equation (2.3) we have

|T ′(x)| 6 M

m
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By taking the derivative of Monge–Ampère equation (2.3) we have

|T ′′(x)| =
∣∣∣∣u′0(x)u1(T (x))− u0(x)T ′(x)u′1(T (x))

u1(x)2

∣∣∣∣
6
M

m2
|u′0(x)|+ M2

m3
|u′1(x)|.

(5.11)

Now let µs be the geodesic connecting µ0 to µ1. We have

us((1− s)x+ sT (x)) =
u0(x)

(1− s) + sT ′(x)
. (5.12)

Plugging in bounds on T ′ yields

us(x) >
m2

M
.

Hence us > m̂ where m̂ = m̂(c,m). Taking derivative of the equation (5.12) we have

u′s((1− s)x+ sT (x)) =
u′0(x)[(1− s) + sT ′(x)]− su0(x)T ′′(x)

((1− s) + sT ′(x))3

Using the bounds on T ′ and (5.11) we have:

|u′s((1− s) + sT ′(x))| 6 |u′0(x)|
|(1− s) + sT ′(x)|2

+
|u0(x)||T ′′(x)|
|(1− s) + sT ′(x)|3

6 (
M

m
)2|u′0(x)|+ (

M

m
)5|u′0(x)|+ (

M

m
)6|u′1(x)|.

Taking integral from both sides yields E(us) < ĉ where ĉ = ĉ(c,m). �

The idea of the following lemma was suggested by my supervisor Almut Burchard.

This lemma will be used in calculations of the second derivative of the energy in Theorem

5.2.1.

Lemma 5.2.5 (Interpolation inequality.) For every α ∈ R there exists a constant

λ < 0 such that

|f ′′|L2 − α|f ′2|∞ − λ|f |L2 > 0 ∀f ∈ C∞(S1).
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Proof. Consider the Fourier expansion f(x) =
∑

k∈Z ake
i2kπx. We have

|f ′|∞ = sup
x∈S1

|
∑
k∈Z

i2kπake
i2kπx| 6 2π

∑
k∈Z

|kak| = 2π
∑
k∈Z

|k4a2k|
4
10 |a2k|

1
10 |1
k
|

6
10 .

Hölder’s inequality with exponents 4
10

, 1
10

, and 5
10

yields

|f ′|∞ 6 2π

(∑
k∈Z

(|k4a2k|

) 4
10
(∑
k∈Z

|a2k|

) 1
10
(∑
k∈Z

|1
k
|
6
5

) 1
2

.

The term 2π(
∑

k∈Z |
1

k
| 65 )1/2 = d is a constant independent of ak. Therefore

|f ′|∞ 6 d|f ′′|4/5L2 |f |1/5L2 .

By the arithmetic-geometric inequality for a constant β we have

|f ′|∞ 6 d|f ′′|4/5L2 |f |1/5L2

= d(β5/4|f ′′|L2)4/5(β−5|f |L2)1/5

6
4d

5
β5/4|f ′′|L2 +

d

5
β−5|f |L2 .

Putting β = (5
4
αd)

−4
5 and λ = −dαβ

−5

5
yields

α|f ′2|∞ 6 |f ′′|L2 − λ|f |L2 .

�

We are now ready to prove the main theorem of this section which shows that the

Dirichlet energy is relaxed λ-convex at positive measures.

Theorem 5.2.6 (relaxed λ-convexity of the Dirichlet energy.) Let µ = udx be a

measure with E(u) < c < +∞ and u > m > 0. Then ∃λ = λc,m such that E is relaxed

λ-convex at µ.



Chapter 5. Wasserstein Gradient Flow of Dirichlet Energy 46

Proof. We first claim that the second derivative of the energy at a positive measure ν is

uniformly bounded from below along any smooth vector field. Let ν = vdx be a measure

with E(v) < c and v > m. Let ν1 be another smooth measure and let f be the vector

field defining the geodesic νs = (Id+ sf)#ν that connects ν to ν1. By (5.4) we have

d2E(νs)

ds2

∣∣∣∣
s=0

= 2

∫
S1

(f ′′v)2 + 8(vf ′′)(v′f ′) + 6(v′f ′)2dx.

Recall that W 2
2 (ν, ν1) =

∫
S1 f(x)2v(x)dx. By (5.3) the energy is λ-convex at v, if for all

such vector fields

2

∫
S1

(vf ′′)2 + 8(vf ′′)(v′f ′) + 6(v′f ′)2dx− λ
∫
S1

vf 2dx > 0.

By completing the squares we have

2

∫
S1

{(vf ′′)2+8(vf ′′)(v′f ′)+6(v′f ′)2}dx−λ
∫
S1

vf2dx >
∫
S1

{f ′′2v2−52f ′2v′2}dx−λ
∫
S1

vf2dx.

The lower bound on the density v > m yields∫
S1

{f ′′2v2 − 52f ′2v′2}dx− λ
∫
S1

vf 2dx > m2

∫
s1
f ′′2dx− 52

∫
s1
f ′2u′2dx−mλ

∫
s1
f 2dx.

Hölder’s inequality and energy bound E(u) < c imply

m2

∫
s1
f ′′2dx− 52

∫
s1
f ′2u′2dx−mλ

∫
s1
f 2dx > m2

∫
s1
f ′′2dx− 52c|f ′2|∞ −mλ

∫
s1
f 2dx.

By reordering and absorbing the constants in λ, the energy is λ-convex along νs at ν if

∀f ∈ C∞(S1) we have

|f ′′|2L2 − α|f ′|2∞ − λ|f |2L2 > 0 (5.13)

where α = 52c
m2 . By Lemma 5.2.5 the claim has been proved.

Now consider the energy sub-level set Ec. By Theorem 5.2.1 Wasserstein convergence

implies uniform convergence on Ec. Therefore there exists a δ = δc such that we have
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v > m for all ν = vdx ∈ Ec ∩ Bδ(µ). Assume that ν0, ν1 ∈ Ec ∩ Bδ(ν). Let νs be the

geodesic connecting ν0 to ν1. By Lemma 5.2.4 there exist m̂ and ĉ depending only on c

and m such that E(νs) < ĉ < +∞ and vs > m̂ > 0. By the argument at the beginning

of the proof there exists a λ̂ = λ̂m,c such that E is λ̂-convex along the geodesic νs. The

constant λ̂ is uniform for all pairs of smooth measures inside Ec ∩ Bδ(µ). Therefore, by

Lemma 5.2.3 E is relaxed λ̂-convex at µ. �

Corollary 5.2.7 The gradient flow trajectory of the Dirichlet energy on S1 with a posi-

tive initial data exists and is unique at least for a short period of time.

Corollary 5.2.8 The positive periodic solutions of the thin-film equation ∂tu = −∂x(u∂3xu)

are locally well-posed.



Chapter 6

Other Equations of Fourth and

Higher Order

In this chapter, we show that the theory developed in the last two chapters can be applied

to a wide class of energy functionals and evolution equations. Note that the result of

Theorem 4.2.2 is general and it can be applied to any energy functional, provided that it

is relaxed λ-convex. The corresponding lemmas from Chapter 5 for the energies studied

here can be derived in a similar fashion with minor modifications. Hence, we discuss the

proofs only briefly.

6.1 Higher Order Equations

The family that we study here is of the form E(u) = 1
2

∫
S1 |u(k)|2dx for k ∈ N. The

flow of this family of energies corresponds to the solution of the higher order non-linear

equations of the form ∂tu = (−1)k∂x(u∂
2k+1
x u).

48
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Consider u ∈ D(E). Finiteness of |u|Hk in particular implies that the H1-norm of u

is bounded. Since we only used the H1-norm bounds in Lemmas 5.2.1, 5.2.2, and 5.2.3,

they automatically follow for this class of energies. Therefore, Wasserstein and uniform

convergence are equivalent on energy sub-level sets, E is lower semicontinuous, and one

can use approximation by smooth functions to study convexity.

In Lemma 5.2.4 we derived bounds on T ′′ by taking derivatives of the explicit formula

of T ′ given by the Monge–Ampère equation. In the same fashion, one can find bounds on

higher derivatives of the optimal map by taking more derivatives of the Monge–Ampère

equation. For generalization of Lemma 5.2.5, we will have to show that ∀α ∃λ such that

|f (m+1)|2L2 − α|f (m)|2∞ − λ|f |2L2 > 0

for every smooth vector field f . We will now use induction. Assume that for any αm > 0

there exists λm 6 0 such that

|f (m)|2∞ 6
1

αm
|f (m+1)|2L2 − λm|f |2L2 . (6.1)

Let αm+1 > 0 be given. By applying Lemma 5.2.5 to f (m+1), there exists a λ̂ 6 0 such

that

|f (m+1)|2∞ 6
1

2αm+1

|f (m+2)|2L2 − λ̂|f (m)|2L2 . (6.2)

Put αm = −2λ̂, by (6.1) there exists λm 6 0 such that

|f (m)|2∞ 6
−1

2λ̂
|f (m+1)|2L2 − λm|f |2L2 .

|f (m)|2L2 6 |f (m)|2∞ on R/Z. Therefore

−λ̂|f (m)|2L2 6
1

2
|f (m+1)|2L2 + λ̂λm|f |2L2 .
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Plugging into (6.2) yields

|f (m+1)|2∞ 6
1

2αm+1

|f (m+2)|2L2 +
1

2
|f (m+1)|2L2 + λ̂λm|f |2L2 .

Therefore

|f (m+1)|2∞ −
1

2
|f (m+1)|2L2 6

1

2αm+1

|f (m+2)|2L2 + λ̂λm|f |2L2 .

By |f (m+1)|2L2 6 |f (m+1)|2∞ and by setting λm+1 = −1
2
λ̂λm, we have

∀αm+1 > 0 ∃λm+1 6 0 s.t. |f (m+1)|2∞ >
1

αm+1

|f (m+2)|2L2 − λm+1|f |2L2 . (6.3)

In conclusion, all the lemmas in the previous section can be applied to higher order

energies. We now study convexity of the energies along smooth vector fields on a measure

µ = udx with positive density u > m and finite energy E(u) < c <∞.

d2

ds2
|s=0E(us) =

d2

ds2
|s=0

∫
S1

(∂kyus(y))2dy

=
d2

ds2
|s=0

∫
S1

{(∂x
∂y

∂

∂x
)k

u(x)

1 + sf ′(x)
}2 ∂y
∂x
dx.

Since we study all the different orders at the same time, we consider the general form

given by a polynomial P which is determined by the order of the energy. We have

d2

ds2
|s=0E(us) =

∫
S1

|uf (k)|2 + P (u, u(1), ..., u(k); f, f (1), ..., f (k−1))dx

where P is of order at most 2 with respect to each of its entries, and the order of the

derivative of each term in P is at most k. At a measure with positive density and finite

energy, we have u > m and |u(i)|∞ < M for all i < k where M depends only on E(u).

Also |f (i)|L2 6 |f (k−1)|∞ for all i < k−1. Therefore similar to the calculation of Theorem

4.2.2, for positive constants β1, β2 we have

d2

ds2
|s=0E(us) > β1|f (k)|2L2 − β2|f (k−1)|2∞.
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Therefore E is relaxed convex at u if we can find λ such that

β1|f (k)|2L2 − β2|f (k−1)|2∞ > λ

∫
S1

uf 2dx.

This implies that the energy is relaxed λ-convex at u because by (6.3) for α = αm,c there

exists λ such that

|f (k)|2L2 − α|f (k−1)|2∞ − λ|f |2L2 > 0 ∀f ∈ C∞(S1)

Hence we have proved the following theorem.

Theorem 6.1.1 The energies of the form

E(u) =


∫
S1 |∂kxu(x)|2dx µ = udx, u ∈ Hk(S1),

+∞ else.

are relaxed λ-convex on the positive measures with finite energy. In particular, periodic

gradient flow solutions of

∂tu = (−1)k∂x(u∂
2k+1
x u)

with positive initial data exist and are unique for a short time.

6.2 Other Equations of Fourth Order

Consider the energies of the form E(u) =
∫
S1 g(u, ∂xu)dx. We start by calculating the

second derivative of the energy along a geodesic induced by a vector field f ∈ C∞(S1).

d2

ds2
|s=0E(us) =

d2

ds2
|s=0

∫
S1

g(us(y), ∂yus(y))dy

=
d2

ds2
|s=0

∫
S1

g

(
u(x)

1 + sf ′(x)
,
∂x

∂y

∂

∂x
(

u(x)

1 + sf ′(x)
)

)
∂y

∂x
dx

=
d2

ds2
|s=0

∫
S1

g

(
u(x)

1 + sf ′(x)
,

1

1 + sf ′(x)
∂x(

u(x)

1 + sf ′(x)
)

)
(1 + sf ′(x))dx
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where we used the change of variable y = x+ sf(x). Therefore we have

d2

ds2
|s=0E(µs) =

∫
s1

[
f ′ f ′′

]
A

 f ′

f ′′

 dx (6.4)

where the matrix A is given by

A =

 2u′g(0,1) + 4u′2g(0,2) + 4uu′g(1,1) + u2g(2,0) 2ug(0,1) + 2uu′g(0,2) + u2g(1,1)

2ug(0,1) + 2uu′g(0,2) + u2g(1,1) u2g(0,2)


Note that if A is positive definite, then the energy is convex. We study the class of

the form

g(u, ∂xu) = |∂x(ua)|2 a > 0.

Finiteness of the energy implies that ua is C0, 1
2 continuous with modulus of continuity

smaller than the energy. Because a > 0, u is continuous and since
∫
S1 udx = 1, there

exists a point x0 with u(x0) = 1. Without loss of generality we assume x0 = 0. We have

|u(x)a − 1| 6
√
c|x| ⇒ u(x) 6 (1 +

√
c|x|)

1
a .

Therefore there exists a uniform M <∞ such that u < M for all u ∈ Ec. We now briefly

discuss the corresponding lemmas from Chapter 5.

Equivalence of Wasserstein and uniform convergence on energy sub-level

sets. Let u2(x0) − u1(x0) > h. Then we have ua2(x) > ua2(x0) −
√
c|x− x0| and

ua1(x) 6 ua1(x0) +
√
c|x− x0|. Therefore the star-like shape in Lemma 5.2.1 should be re-

placed by a modified version, given by (ua2(x0)−
√
c|x− x0|)

1
a and (ua1(x0)+

√
c|x− x0|)

1
a ,

and the rest of the proof goes similarly. Hence, we have equivalence of the Wasserstein

and uniform convergence on the energy sub-level sets.
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Lower semicontinuity and smooth approximation. Having Lemma 5.2.1 for

this class of energies, the proof of Lemmas 5.2.2 and 5.2.3 can be repeated by replacing

u with ua. Hence the energy E(u) =
∫
S1 |∂xua|dx is lower semicontinuous and one can

use approximation by smooth functions.

Energy of the interpolant. Let u be bounded away from zero u > m > 0. When

a > 1

m2(a−1)
∫
S1

|∂xu|2dx 6 E(u) =

∫
S1

u2(a−1)|∂xu|2dx 6 M2(a−1)
∫
S1

|∂xu|2dx (6.5)

and when 0 < a < 1

M2(a−1)
∫
S1

|∂xu|2dx 6 E(u) =

∫
S1

u2(a−1)|∂xu|2dx 6 m2(a−1)
∫
S1

|∂xu|2dx. (6.6)

By equivalence of Wasserstein and uniform convergence, there exists δ such that v > m

for all v ∈ Bδ(u) ∩ Ec. Also we have proved that v < M for all v ∈ Ec. Therefore we

can refer to the calculation for the Dirichlet energy and just compare the energy of the

geodesic with the corresponding Dirichlet energy using (6.5) and (6.6) to find a bound

on the energy of interpolate points along a geodesic.

In conclusion, all of the required lemmas are true. By (6.4), along a geodesic induced

by a smooth vector field f we have

d2

ds2
|s=0E(us) =

∫
S1

2a2u2(a−1)
(
(uf ′′)2 + 4(1 + a)(uf ′′)(u′f ′) + (1 + a)(1 + 2a)(u′f ′)2

)
dx

>
∫
S1

α1(u
af ′′)2 − α2((u

a)′f ′)2dx

for some constants α1, α2. Similar to (5.13), we have

d2

ds2
|s=0E(us)−mλ

∫
S1

uf 2dx > |f ′′|2L2 − α|f ′|2∞ − λ|f |2L2 > 0
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where the last inequality follows from Lemma 5.2.5. We have proved the following theo-

rem.

Theorem 6.2.1 For every a > 0

E(u) =


∫
S1 |∂xu(x)a|2dx µ = udx, u ∈ H1(S1)

+∞ else.

is relaxed λ-convex on positive measures with finite energy. In particular, periodic gradi-

ent flow solutions of

∂tu = −2a∂x(u∂x(u
a−1∂2xu

a))

with positive initial data exist and are unique for a short time.

An interesting example is the Fisher Information

E(u) =
1

2

∫
S1

|∂xu(x)
1
2 |2dx

which corresponds to the quantum drift diffusion equation [7]

∂tu = −∂x(u∂x
∂2x
√
u√
u

).

Therefore we have local well-posedness of periodic solutions of the quantum drift diffu-

sion equation with positive initial data.

Another interesting case is the limiting case a = 0. The corresponding energy can be

written as E(u) = 1
2

∫
S1 |∂x log u|2dx. Finiteness of the energy result in C0, 1

2 continuity of

log u. All of the lemmas can be repeated in a similar fashion for this energy. Furthermore,

finiteness of the energy implies a lower bound for the measure because

| log u(x)− log(1)| 6
√
c|x| =⇒ e−

√
c 6 u(x) 6 e

√
c. (6.7)
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Therefore positivity is preserved along the flow. By (6.4) we have

d2

ds2
|s=0E(µs) =

∫
S1

2(f ′′)2 + 4(f ′′)(
u′

u
f ′)− 2(

u′

u
f ′)2dx.

By 5.2.5 there exists λ such that

d2

ds2
|s=0E(µs) > |f ′′|2L2 − 6ce

√
c|f ′|2∞ − λ|f |L2 > 0.

Hence E is relaxed λ convex at u ∈ Ec. Furthermore, since there is a uniform lower bound

e−
√
c for all v ∈ Ec, the constant λ is uniformly bounded along the flow. Therefore, the

gradient flow is globally well-posed and we have the following theorem.

Theorem 6.2.2 Wasserstein gradient flow of the energy

E(u) =


1
2

∫
S1 |∂x log u|2dx µ = udx, u ∈ H1(S1)

+∞ else.

is globally well-posed. Hence the equation

∂tu = −∂x(u∂2x
∂xu

u2
)

with periodic boundary condition is well-posed.

Remarks. There are several directions to extend the developed method to other

classes of energies and equations. As a simple application, one can construct other classes

of relaxed λ-convex functionals by combining the ones already studied. For example, the

gradient flow of the energy E(u) =
∫
S1{|∂xu|2 + ε 1

u2
}dx, which is the Dirichlet energy

with a perturbation, is globally well-posed. The reason is that the second term forces the

solution to remain positive. One more challenging problem is the analysis of equations

in higher dimensions. Our method is utilizing Sobolev embedding theorem on energy
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sub-level sets which is getting weaker on higher dimensions. An interesting question is

whether it is possible to solve this problem with studying higher order energies. Another

interesting question is to study wellposedness of gradient flows on the Wasserstein space

with mobility. The difficulty here is that one needs to find the form of the geodesics in

the Wasserstein space with mobility at least for close-by points.
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