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4.2 The Pólya-Szegő inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Talenti’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Transportation methods for geometric inequalities 43
5.1 Monge’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 A transportation proof of the isoperimetric inequality . . . . . . . . . . . . . . . . 44
5.3 The sharp Sobolev inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2



1 The symmetric decreasing rearrangement
Rearrangements manipulate the shape of a geometric object while preserving its size. They are
used in the Calculus of Variations to find extremals of geometric functionals. Here, we will study
the symmetric decreasing rearrangement, which replaces a given nonnegative function f by a
radial function f ∗.

1.1 Definition and basic properties
Let A be a measurable set of finite volume in Rn. Its symmetric rearrangement A∗ is the open
centered ball whose volume agrees with A,

A∗ =
{
x ∈ Rn | ωn|x|n < Vol(A)

}
.

Figure 1.1: A∗ is the centered ball of the same volume as A.

Let f be a nonnegative measurable function that vanishes at infinity, in the sense that all its
positive level sets have finite measure,

Vol
(
{x | f(x) > t}

)
<∞ , (for all t > 0) .

We define define the symmetric decreasing rearrangement f ∗ of f by symmetrizing its the level
sets,

f ∗(x) =

∫ ∞

0

X{f(x)>t}∗ dt .

Then f ∗ is lower semicontinuous (since its level sets are open), and is uniquely determined by the
distribution function

µf (t) = Vol
(
{x | f(x) > t}

)
. (1.1)

By construction, f ∗ is equimeasurable with f , i.e., corresponding level sets of the two functions
have the same volume,

µf (t) = µf∗(t) , (all t > 0) . (1.2)
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Figure 1.2: f∗ is radially decreasing and equimeasurable with f .

Exercise 1.1 Convince yourself that the definitions of A∗ and f ∗ are consistent,

XA∗ =
(
XA
)∗
,
{
x | f(x) > t

}∗
=
{
x | f ∗(x) > t

}
.

Exercise 1.2 For a, b > 0, find the symmetric decreasing rearrangement of the function

f(x) =


1− ax , 0 ≤ x ≤ a−1 ,
1 + bx , −b−1 ≤ x ≤ 0 ,
0 , otherwise .

Question 1.3 If f is smooth, does it follow that f ∗ is differentiable?

1.2 Functions and their level sets

Our definition of f ∗ used a special case of the layer-cake decomposition, which expresses a
nonnegative function f in terms of its level sets as

f(x) =

∫ ∞

0

X{f(x)>t} dt . (1.3)

Note that the characteristic function X{f(x)>t} is jointly measurable in x and t, provided that f is
measurable. This allows to reduce statements about functions to statements about their level sets:

Lemma 1.4 (Rearrangement preserves Lp-norms) For every nonnegative function f in Lp(Rn),

||f ||p = ||f ∗||p 1 ≤ p ≤ ∞ , (1.4)
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(a) Layer-cake decomposition. (b) Co-area formula.

Figure 1.3: A nonnegative function and its level sets.

PROOF. We use the layer-cake decomposition and Fubini’s theorem to write∫
Rn

|f(x)|p dx =

∫
Rn

∫ ∞

0

X{f(x)p>t} dtdx

=

∫ ∞

0

Vol
(
{f(x)p > t}

)
dt

=

∫ ∞

0

Vol(
(
{f(x) > s}

)
psp−1 ds

=

∫ ∞

0

µf (s) ps
p−1 ds .

The claim follows since f ∗ is equimeasurable with f . �

Exercise 1.5 Prove that symmetric decreasing rearrangement is order-preserving

f(x) ≤ g(x) for all x ∈ Rn =⇒ f ∗(x) ≤ g∗(x) for all x ∈ Rn . (1.5)

Lemma 1.6 (Hardy-Littlewood inequality) If f and g are nonnegative measurable functions
that vanish at infinity, then ∫

fg ≤
∫
f ∗g∗ , (1.6)

in the sense that the left hand side is finite whenever the right hand side is finite.

PROOF. Consider first the case where f = XA and g = XB are characteristic functions of
measurable sets A and B of finite volume. The rearrangements A∗ and B∗ are centered balls, and
their intersection A∗ ∩B∗ is the smaller of the two balls. Thus,

Vol(A∗ ∩B∗) = min{Vol(A),Vol(B)} ≥ Vol(A ∩B) ,
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which proves the inequality in this case. In general, the layer-cake decomposition and Fubini’s
theorem allow to rewrite the left hand side of Eq. (1.6) as∫

Rn

f(x)g(x) dx =

∫
Rn

∫ ∞

0

∫ ∞

0

X{f(x)>s}X{g(x)>t} dsdtdx

=

∫ ∞

0

∫ ∞

0

Vol
(
{f > s} ∩ {g > t}

)
dsdt ,

and correspondingly for the right hand side. Since we have already shown that the integrand
increases under rearrangement, the claim follows. �

Exercise 1.7 Prove that the symmetric decreasing rearrangement decreases Lp-distances

||f − g||p ≥ ||f ∗ − g∗||p 1 ≤ p ≤ ∞ . (1.7)

Hint: Write

|f(x)− g(x)|p = p

∫ ∞

0

[f(x)− t]p−1
+ X{g(x)≤t} + [g(x)− t]p−1

+ X{f(x)≤t} dt ,

then replace X{f(x)≤t} by 1−X{f(x)>t} and correspondingly for g.

It is clear from the proofs that Eq. (1.6) and Eq. (1.7) hold with equality, if f and g have the
same family of level sets, i.e., if and only if

(
f(x)− g(x)

)(
f(y)− g(y)

)
≥ 0 for almost all x, y.

We next introduce a useful tool that replaces the layer-cake decomposition for integrals that
involve the gradient of a function f ∈ W 1,p. The co-area formula says that∫

g(x)|∇f(x)| dx =

∫ ∞

0

∫
f−1(t)

g(x) dσ(x)dt

for every measurable function g such that the left hand side is well-defined. Some care is needed
when evaluating the right hand side: We assign to f(x) the value of the Lebesgue density limit
of f (whenever defined), and the integration dσ is with respect to (n − 1)-dimensional Hausdorff
measure. An immediate consequence of the co-area formula is the identity

||∇f ||1 =

∫ ∞

0

Per({f > t}) dt .

If f is smooth, then the co-area formula defines a local change of variables in any region where
∇f does not vanish. But note that the co-area formula gives no information on the set of critical
points of f . For instance,∫ t2

t1

∫
f−1(t)

|∇f |−1 dσdt = Vol
(
{x | t1 < f(x) ≤ t2 , |∇f(x)| 6= 0}

)
(1.8)

for every interval (t1, t2].
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Exercise 1.8 Prove Eq. (1.8), using

|∇f(x)|−1 = lim
ε→0+

(
ε+ |∇f(x)|

)−1

and the co-area formula. Why can you exchange the limit with the integrals?

1.3 Classical rearrangement inequalities
By construction, the symmetric decreasing rearrangement concentrates the mass of functions near
the origin. A subtle expression of this concentration is Riesz’ inequality∫

Rn

f(x) g∗h(x) dx ≤
∫

Rn

f ∗(x) g∗∗h∗(x) dx . (1.9)

This implies that g∗ ∗ h∗ dominates g ∗ h in the sense that∫
B

(g ∗ h)∗(x) dx = sup
C:Vol(C)=Vol(B)

∫
C

g ∗ h(x) dx ≤
∫
B

g∗ ∗ h∗(x) dx

for every centered ball B.
Many applications of Riesz’ inequality require only the (much simpler) special case where

h(x) = H(|x|) is a known strictly symmetrically decreasing function,∫
Rn

∫
Rn

f(x)g(y)H(|x− y|) dxdy ≤
∫

Rn

∫
Rn

f ∗(x)g∗(y)H(|x− y|) dxdy , (1.10)

such as the Coulomb kernel |x− y|−1 on R3 or the heat kernel (4πt)−n/2e−
|x−y|2

4t . Note that we can
recover the Hardy-Littlewood inequality from Eq. (1.10) by letting t→ 0 in the heat kernel.

The Pólya-Szegő inequality

||∇f ||p ≥ ||∇f ∗||p , 1 ≤ p ≤ ∞ , (1.11)

implies in particular that the kinetic energy in quantum mechanics will decrease under symmetric
deceasing rearrangement of the wave function. The case p = 1 contains as a limit the isoperimetric
inequality

Per(A) ≥ Per(A∗) , (1.12)

which means that balls minimize surface area among all bodies of given volume.

Let f be a nonnegative smooth function with compact support in Rn, and let u and v be the
unique solutions of

−∆u = f , −∆v = f ∗ (1.13)

that decay at infinity. Talenti’s inequality says that

u∗(x) ≤ v(x) (1.14)

7



for all x ∈ Rn. More general versions of the inequality compare an elliptic problem on a general
domain Ω with a radial problem on Ω∗. They are powerful tool for establishing existence and
regularity for weak solutions of elliptic equations under minimal regularity assumptions on the
coefficients, the data, and the right hand side.

Talenti’s inequality is related with a special case of Riesz’ inequality as follows. The function
u is the electrostatic potential associated with f , given by

u(x) = C(n)

∫
Rn

|x− y|−(n−2)u(y) dy ,

and correspondingly for v. Riesz’ inequality guarantees that v dominates u in the sense that∫
B

u∗(x) dx ≤
∫
B

v(x) dx (1.15)

for every ball B. Talenti’s pointwise inequality (1.14) considerably strengthens Eq. (1.15).

Exercise 1.9 Rewrite the isoperimetric inequality from Eq. (1.12) in the form

Per(A) ≥ C(n)
(
Vol(A)

)α(n)
.

What is the correct exponent α(n)? Determine the sharp constant C(n) in terms of ωn, the volume
of the unit ball.

Figure 1.4: The Minkowski sum of two sets

Exercise 1.10 Define the Minkowski sum of two sets B,C ⊂ Rn by B + C = {b+ c | b ∈ B, c ∈
C}. The Brunn-Minkowski inequality says that

Vol(B + C)1/n ≥ Vol(B)1/n + Vol(C)1/n (1.16)

for every pair of nonnegative measurable sets of finite volume. Reformulate this inequality as a
geometric relation between the sets B∗, C∗, and (B + C)∗.

8



Exercise 1.11 Let f be a smooth nonnegative function with compact support in Rn. The function

u(t, x) =
1

4πt

∫
Rn

e−
|x−y|2

4t f(y) dy

satisfies the heat equation ∂tu = ∆u with initial values u(0, x) = f(x). Combine this with Riesz’
inequality to prove the p = 2 case of the Pólya-Szegő inequality.

Hint: Differentiate I(t) =
∫
u(t, x)f(x) dx at t = 0.

Exercise 1.12 Let f be a smooth, compactly supported function on Rn, and let u and v be the
solutions of Laplace’s equations in Eq. (1.13). Show that

||∇u||2 ≤ ||∇v||2 .

Discuss this inequality in light of the Pólya-Szegő inequality.

1.4 Some applications
Theorem 1.13 (The Faber-Krahn inequality) Let Ω be an open set of finite volume in Rn. Let
λ1(Ω) be the principal eigenvalue of the Dirichlet Laplacian on Ω, i.e., the smallest value of λ for
which the problem {

∆u = λu , in Ω
u = 0 , on ∂Ω

has a non-trivial solution. Then
λ1(Ω) ≥ λ1(Ω

∗) . (1.17)

PROOF. The Rayleigh-Ritz principle characterizes the principal eigenvalue as a minimum,

λ1(Ω) = inf
||φ||L2(Ω)=1

∫
Ω

|∇φ|2 .

Let φ1 be the normalized minimizing eigenfunction. Since replacing φ1 with |φ1| does not change
the objective function, we may take φ1 to be nonnegative. It follows from the Pólya-Szegő inequal-
ity that

λ1(Ω) =

∫
Ω

|∇φ1|2 ≥
∫

Ω∗
|∇φ∗1|2 .

Since ||φ∗1||L2(Ω∗) = ||φ1||L2(Ω) = 1, the Rayleigh-Ritz principle for Ω∗ implies that∫
Ω∗
|∇φ∗1|2 ≥ inf

||φ||L2(Ω)=1

∫
Ω

|∇φ|2 = λ1(Ω
∗) ,

and Eq. (1.17) follows. �
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The Sobolev inequality says that for each 1 ≤ p < n, p∗ = np
n−p there exists a constant C such

that for every function f in W 1,p(Rn),

||∇f ||p ≥ C||f ||p∗ .

The sharp constant is given by

CSobolev(n, p) = inf
||f ||p∗=1

||∇f ||p .

If we replace f with |f | and then with |f |∗ and apply the Pólya-Szegő inequality, we see that
it suffices to minimize over symmetric decreasing functions. This transforms the maximization
problem to a single-variable problem, which makes it easier to prove that a maximizer exists, and
reduces the Euler-Lagrange equation from a partial to an ordinary differential equation. However,
this ODE is not easy to analyze, because powers of the radial variable r appear in the coefficients
of the differential operators.

Similarly, the optimal constants in the Hardy-Littlewood-Sobolev inequality, given by

CHLS(p, q, n) = sup
||f ||p=||g||q=1

∫
Rn

∫
Rn

f(x)g(y)

|x− y|λ
dxdy ,

(
1

p
+

1

q
+
λ

n
= 2

)
and in Young’s inequality, given by

CY oung(p, q) = sup
||f ||p=||g||q=||h||r=1

∫
Rn

∫
Rn

f(g)g(y)h(x− y) dxdy ,

(
1

p
+

1

q
+

1

r
= 2

)
are determined by maximizing over symmetric decreasing functions. Reducing to the radial prob-
lem is again a mixed blessing, because the convolution then takes a complicated form.

Exercise 1.14 The quantum mechanical ground state energy of the hydrogen atom is given by

inf
||ψ||2=1

{
1

2

∫
R3

|∇ψ(x)|2 dx−
∫

R3

Const.

|x|
|ψ(x)|2 dx

}
.

Here, ψ is a complex-valued function on R3 that represents the wave function. The minimizing
wave function — which is known to be unique up to multiplication by a scalar — is called the
ground state. Argue that ψ is symmetric decreasing.

Exercise 1.15 Let A be a bounded open set in Rn with smooth boundary. Its perimeter is just the
surface area that we know from multivariable calculus. Sketch three proofs of the isoperimetric
inequality, along the following lines: (a) Assume the Pólya-Szegő inequality (1.11). Let φδ be a
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nonnegative smooth function that increases from 0 to 1 across a strip of some small width δ, and
approximate the perimeter by

Per(A) ≈
∫
|∇φδ| dx ;

(b) assume the Brunn-Minkowski inequality (1.16), let Bδ be the centered ball of radius δ, and
approximate the perimeter by

Per(A) ≈ 1

δ
Vol
(
(A+Bδ) \ A

)
;

(c) assume Riesz’ inequality (1.9) or Eq. (1.10), and approximate the perimeter by

Per(A) ≈ C(n)

δn+1

∫
A

XAc ∗ XBδ
(x) dx ,

where C(n) =
(∫∞

0
X{xn<0} ∗ XB(s en) ds

)−1
= n+1

ωn−1
.

Figure 1.5: Approximations of the perimeter.

1.5 Selected textbooks and monographs
[HLP] G. H. Hardy, J. E. Littlewood, and G. Pólya, “Inequalities”. Cambridge University Press

(1952, translated from the 1934 German original).

Chapter 10 contains the first systematic treatment of rearrangement inequalities. The main results dis-
cussed there are the Hardy-Littlewood inequality (1.6) and Riesz’ inequality (1.9). These inequalities
are reduced to sums by discretization and the layer-cake decomposition.

[PS] G. Pólya and G. Szegő, “Isoperimetric inequalities in Mathematical Physics”. Annals of
Mathematics Studies, Vol. 27, Princeton University Press (1951).

A natural complement to [HLP] dedicated to the physical and geometrical problems that motivate the
study of rearrangements.
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[CR] K. M. Chong and N. M. Rice, “Equimeasurable rearrangements of functions”. Queen’s
Papers in Pure and Applied Mathematics, Vol. 28, Queen’s University (1971).

A much-cited little book, now sadly out of print.

[B] C. Bandle, Isoperimetric inequalities and applications. Monographs and Studies in Mathe-
matics, Vol. 7 (1980).

Dedicated to geometric boundary value problems and eigenvalue problems. The Pólya-Szegő in-
equality and Talenti’s comparison principle are derived from the isoperimetric inequality with the
co-area formula.

[K] B. Kawohl, “Rearrangements and convexity of level sets in PDE”. Springer Lecture Notes
in Mathematics, Vol. 1150 (1985)

A comprehensive account of rearrangement methods in PDE. Many different rearrangements are
discussed in addition to the symmetric decreasing rearrangement.

[LL] E. H. Lieb and M. Loss, “Analysis”. AMS Graduate Studies in Mathematics, Vol. 14 (1987,
second edition 2001).

Chapter 3 covers much of the same ground as [HLP, Chapter 10], but from a functional analytic
point of view. Chapter 4 contains the proofs of Riesz’ inequality and the Hardy-Littlewood-Sobolev
inequality to be discussed below.

[AFP] L. Ambrosio, N. Fusco, and D. Pallara, “Functions of bounded variation and free disconti-
nuity problems”. Clarendon Press, Oxford (2000).

Chapters 2 and 3 provide background on sets of finite perimeter, the co-area formula, and the isoperi-
metric inequality.

[Ke] S. Kesavan, “Symmetrization and applications.” World Scientific Series in Analysis, Vol. 3
(2008).

An exposition at the advanced undergraduate level, in the spirit of [B]. Chapter 5 contains recent
applications to geometric eigenvalue problems.
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2 Approximation by simpler rearrangements

2.1 Steiner’s argument
In two dimensions, the isoperimetric inequality says that the disk minimizes perimeter among all
shapes of a given area. Though this was known in antiquity, it took a long time to assemble a proof.

Around 1830, Steiner proposed to prove the inequality for convex sets in two dimensions as
follows. Consider a set C ⊂ R2 that minimizes perimeter among all convex sets of the same area,

Per(C) = inf
{
Per(A) | A ⊂ R2 convex , V ol(A) = Vol(C)

}
.

Parametrize the upper boundary of C by a function h+, and the lower boundary by h−, so that

C =
{
(x, y) | a ≤ x ≤ b, h−(x) ≤ y ≤ h+(x)

}
.

The area of C can be computed by

Vol(C) =

∫ b

a

h+(x)− h−(x) dx ,

and its perimeter by

Per(C) =
(
h+(a)− h−(a)

)
+
(
h+(b)− h−(b)

)
+

∫ b

a

√
1 + (h′+)2 +

√
1 + (h′−)2 dx .

Steiner argues that C must be symmetric under reflection at some horizontal line y = y0. To see
this, he compares it with the set

SC =
{
(x, y) | a ≤ x ≤ b, |y| ≤ 1

2

(
h+(x)− h−(x)

)}
,

which is symmetric about y = 0, convex, and has the same area as C.

Figure 2.1: The Steiner symmetrization of a convex set C.

Moreover, by the strict convexity of the function t→
√

1 + t2, its perimeter satisfies

Per(C) > Per(SC)
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unless h′+(x) = −h′−(x). It follows that the optimal set C must be symmetric under reflection at
some horizontal line line y = y0. By the same argument, C is symmetric about some vertical line
x = x0, and in fact about every line through (x0, y0). Thus C is a disk, and we conclude that for
any convex set A ⊂ R2

Per(A) ≥ Per(A∗) = 2
√
π
(
Vol(A)

) 1
2 , (2.1)

with equality if and only if A is a disk. �

Exercise 2.1 Find and discuss all places in Steiner’s argument where the convexity of C is used.

Exercise 2.2 LetA ⊂ R2 be an open set whose boundary is given by a curve of finite length. Prove
that the convex hull of A has larger volume, but smaller perimeter than A. Use scaling to extend
Eq. (2.1) from convex to general planar sets. What happens to this argument in higher dimensions?

Question 2.3 What does Steiner’s argument prove, what are its strengths and weaknesses?

The essence of Steiner’s idea is to reduce the two-dimensional isoperimetric inequality to a
one-dimensional problem by using a rearrangement along one-dimensional cross sections. His
construction can be extended to n dimensions in several ways. If A is a measurable set in Rn, its
Steiner symmetrization SA is defined by replacing its intersection with each line x1, . . . xn−1 =
Const. by a symmetric interval. Explicitly, if we write x = (x̂, xn) with x̂ ∈ Rn−1, and let
Ax̂ = {t |

(
x̂, t) ∈ A}, then

SA =
{
(x̂, t) ∈ Rn × R | t ∈ (Ax̂)

∗} .
Similarly, we define the Schwarz symmetrization T A ofA by replacing its intersection with each
hyperplane xn = Const. by a centered ball. If we write At = {x̂ |

(
x̂, t) ∈ A} in Rn−1, then

T A =
{
(x̂, t) ∈ Rn × R | x̂ ∈ (At)∗

}
.

Steiner and Schwarz symmetrization preserve n-dimensional volume by Fubini’s theorem. They
also define equimeasurable rearrangements of functions via the layer-cake representation.

2.2 Polarization
Let us carry Steiner’s idea one step further and define an even simpler rearrangement that can
reduce many inequalities to zero-dimensional, i.e., combinatorial or algebraic problems. Let X0

be a hyperplane in Rn that does not contain the origin. Denote by X+ the resulting open half-space
that contains the origin, and by X− the complementary half-space, and let σ be the reflection that
exchanges the two half-spaces. The two-point rearrangement, or polarization of a function f at
X0 is defined by

fσ(x) =


max{f(x), f(σx)} x ∈ X+ ,
min{f(x), f(σx)} x ∈ X− ,
f(x) x ∈ X0 .
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Exercise 2.4 If f is a nonnegative measurable function that vanishes at infinity, show that fσ is
equimeasurable with f . You may find it useful to define the polarization of a set A by

Aσ ∩X+ = (A ∪ σA) ∩X+ ,
Aσ ∩X− = (A ∩ σA) ∩X− ,
Aσ ∩X0 = A ∩X0 .

Figure 2.2: Polarization of a set at a hyperplane.

Lemma 2.5 (Polarization improves the modulus of continuity) Suppose that f is a uniformly
continuous function on Rn, i.e., for every ε > 0 there exists a δ(ε) > 0 such that for all x, y ∈ Rn,

|x− y| < δ(ε) =⇒ |f(x)− f(y)| < ε .

Then, for every reflection σ, the polarization fσ is uniformly continuous with the same modulus of
continuity,

|x− y| < δ(ε) =⇒ |fσ(x)− fσ(y)| < ε .

PROOF. Let ε > 0 be given, and consider two points x, y with |x− y| < δ(ε). If x, y ∈ X+, then

|fσ(x)− fσ(y)| =
∣∣max{f(x), f(σx)} −max{f(y), f(σy)}

∣∣
≤ max

{
|f(x)− f(y)|, |f(σx)− f(σy)|

}
< ε ,

since |σx − σy| = |x − y| < δ(ε). If x, y ∈ X−, we replace max by min in the above argument.
If the two points lie in different half-spaces, then

|fσ(x)− fσ(y)| ≤ max
{
|f(x)− f(y)|, |f(σx)− f(y)|, |f(x)− f(σy)|, |f(σx)− f(σy)|

}
< ε ,

since |σx− y| = |x− σy| ≤ |x− y| < ε. �
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Note that the above proof compared only the values of f at four points. A similar reduction
occurs for the simple case of Riesz’ inequality, which we show next. In the proof, we will use the
elementary fact that{

(UV+uv)W +(Uv+uV )w
}
−
{
(Uv+uV )W +(UV+uv)w

}
= (U−u)(V−v)(W−w) . (2.2)

Lemma 2.6 (Simple case of Riesz’ inequality for polarization) Let H be a nonincreasing func-
tion on the positive half-line with H(t) → 0 as t → ∞. Then, for every pair of nonnegative
measurable functions f, g on Rn,∫ ∫

f(x)g(y)H(|x− y|) dxdy ≤
∫ ∫

fσ(x)gσ(y)H(|x− y|) dxdy . (2.3)

If H is strictly decreasing, then equality holds (with a finite and nonzero value of the functional) if
and only if either f = fσ and g = gσ, or else f = fσ ◦ σ, g = gσ ◦ σ almost everywhere.

PROOF. Rewrite the integral on the left hand side as

I(f, g) =

∫
X+

∫
X+

{
f(x)g(y) + f(σx)g(σy)

}
H(|x− y|) +

+
{
f(x)g(σy) + f(σx)g(y)

}
H(|x− σy|) dxdy .

(We have used that |x− y| = |σx− σy| and |x− σy| = |σx− y|.)

Figure 2.3: |x− y| = |σx− σy| < |x− σy| = |σx− y| .

We claim that the integrand increases pointwise under polarization. To see this, fix x, y and
consider four cases. If f(x) ≥ f(σx) and g(y) ≥ g(σy), then polarization has no effect on
the values of the functions at the points x, y, σx, σy. If f(x) < f(σx) and g(y) < g(σy), then
polarization switches the values of f, g at x, y with their values at σx, σy, and the integrand is
again unchanged. If f(x) ≥ f(σx) but g(y) < g(σy), then the values are switched for g but not
for f , and the integrand increases by the difference(

f(x)− f(σx)
)(
g(σy)− g(y)

)(
H(|x− y|)−H(|x− σy|)

)
≥ 0 ,
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and correspondingly for the remaining case. Set K(x, y) = H(|x − y|) − H(|x − σy|). Since
K(x, y) ≥ 0 for x, y ∈ X+, we conclude with Eq. (2.2) that

I(fσ, gσ)− I(f, g) =

∫
X+

∫
X+

[(
f(x)− f(σx)

)(
g(y)− g(σy)

)]
−K(x, y) dxdy

≥ 0 .

If H is strictly decreasing, then K(x, y) > 0 for x, y ∈ X+, proving the equality statement. �

Exercise 2.7 (Hardy-Littlewood inequality for polarization) Prove that for every pair of non-
negative measurable functions f , g ∫

fg ≤
∫
fσgσ ,

with equality if and only if
(
f(x)− f(σx)

)(
g(x)− g(σx)

)
≥ 0 almost everywhere on Rn. What is

the underlying algebraic identity?

Exercise 2.8 (Polarization decreases Lp-distances) Let Φ be a smooth function defined on the
positive quadrant of R2 that vanishes if s = 0 or t = 0. Assume that ∂s∂tΦ(s, t) ≥ 0 for all
s, t > 0. If f and g be nonnegative measurable functions that vanish at infinity, show that∫

Φ
(
f(x), g(x)

)
dx ≤

∫
Φ
(
fσ(x), gσ(x)

)
dx .

Conclude that polarization deceases Lp-distances

||f − g||p ≥ ||fσ − gσ||p .

Exercise 2.9 Define reflections and polarizations on the unit sphere Sn ⊂ Rn+1. Which of the
polarization inequalities proved above remain valid?

2.3 From polarization to symmetric decreasing rearrangement
We would like to use the polarization inequalities from the preceding subsection to prove the
corresponding inequalities for the symmetric decreasing rearrangement. Following is the main
result from this section.
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Theorem 2.10 (Simple case of Riesz’ inequality) Let H be a nonincreasing function on the pos-
itive real line with H(t) → 0 as t → ∞. Then, for any pair f, g of nonnegative measurable
functions on Rn that vanish at infinity,∫

Rn

∫
Rn

f(x)g(y)H(|x− y|) dxdy ≤
∫

Rn

∫
Rn

f ∗(x)g∗(y)H(|x− y|) dxdy .

If H is strictly decreasing, then equality (with a finite and nonzero value of the integral) occurs
only if there exists a translation τ such that f = f ∗ ◦ τ and g = g∗ ◦ τ almost everywhere.

We want to make Steiner’s argument from Section 2.1 work for polarization. The strategy is
to use Lemma 2.5 to show that a maximizer of I exists in a suitable class of functions, and then
identify that f ∗, g∗ are among the maximizers with the following lemma:

Lemma 2.11 (Characterization of symmetric decreasing functions) Let f be a nonnegative func-
tion on Rn that vanishes at infinity. Then

f = f ∗ ⇐⇒ f = fσ for all σ ,

and
f = f ∗ ◦ τ for some translation τ ⇐⇒ for all σ, either f = fσ or f = fσ ◦ σ .

Figure 2.4: Polarization rearranges balls into balls.

PROOF. In both cases, the ⇒ implications are straightforward. To prove the reverse implication in
the first case, suppose that f is not radially decreasing, and fix two points x1, x2 with |x1| < |x2| but
f(x1) < f(x2). Let σ be the reflection that maps x1 to x2, and let X be the invariant hyperplane.
Then x1 lies in the half space X+ that contains the origin, and x2 lies in the complementary half
space X−. By definition, fσ(x1) = f(x2) and fσ(x2) = f(x1), showing that fσ 6= f .

For the reverse implication in the second case, we assume (by approximation with a fat layer

fε = min
{
ε−1, [f − ε]+

}
, (2.4)
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that f is bounded and integrable. After a suitable translation, its center of mass lies at the origin.
Since the center of mass for gσ lies in X+, we conclude that gσ = g for all σ. The proof is
completed by using the first case. �

Exercise 2.12 Extend Lemma 2.11 to the unit sphere Sn ⊂ Rn+1.

Lemma 2.11 can be combined with Lemma 2.5 to approximate the symmetric decreasing rear-
rangement f ∗ by repeated polarizations of f :

Proposition 2.13 (Approximation of f ∗ by polarizations) Assume that f is a nonnegative con-
tinuous function with compact support in Rn, and let

Polf =
{
fσ1,...,σk | k ≥ 0, σ1, . . . , σk reflections

}
be the set of all functions that can be reached by applying a finite sequence of polarizations to f .
There exists a sequence {gk}k≥1 in Polf such that

gk → f ∗ uniformly . (2.5)

PROOF. Let H be a fixed, strictly decreasing, bounded function on R+ with H(t) → 0 as t→∞,
and define an auxiliary functional by

I(f) =

∫
f(x)H(|x|) dx .

Since Polf is relatively compact in Cc by Lemma 2.5 and the Arzelà-Ascoli theorem, the functional
I assumes its maximum at some function g in the closure of Polf . We will show that g = f ∗.

Let {gk}k≥1 be a sequence in Polf that converges uniformly to g. Every polarization gσ lies
also in the closure of Polf because gσk converges uniformly to gσ, and hence I(g) ≥ I(gσ) by
the maximality of g. On the other hand, I(g) ≤ I(gσ) by Exercise 2.7. Thus I(g) = I(gσ).
Exercise 2.7 further implies that

(
g(x) − g(σx)

)(
H(|x|) − H(|σx|)

)
≥ 0, which means that

g(x) = gσ(x). Since x and σ were arbitrary, we can use Lemma 2.11 to see that g is radially
decreasing. Since g is equimeasurable to f (being a uniform limit of such functions), we conclude
that g = f ∗, proving Eq. (2.5). �

This is easily extended to simultaneous polarizations of m-tuples of functions (f1, . . . , fm).
We are finally ready to prove the main result of this section:

PROOF OF THEOREM 2.10. Denote the simple Riesz functional by

I(f, g) =

∫ ∫
f(x)g(y)H(|x− y|) dxdy .
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Suppose for the moment that f and g are continuous and compactly supported, and that H is
bounded. By Proposition 2.13, there exists a sequence {(fk, gk)}k≥1 in the set Polf,g that converges
uniformly to (f ∗, g∗). By Lemma 2.6 and the continuity of I ,

I(f, g) ≤ I(fk, gk) → I(f ∗, g∗) ,

proving the inequality for continuous functions of compact support. Since such functions are dense
in Lp for 1 ≤ p <∞, and I is continuous, the inequality holds also there. If f is just measurable,
we approximate it with a fat layer as in Eq. (2.4) and correspondingly for g and H . The inequality
follows in the the limit ε→ 0 from the monotone convergence theorem.

For the equality statement, assume that H is strictly decreasing, and suppose that I(f, g) =
I(f ∗, g∗) is finite and non-zero. Then I(f, g) = I(fσ, gσ) for every polarization σ. By Lemma 2.6,
either fσ = f or fσ = f ◦ σ, and correspondingly for g. Since this holds for every σ, Lemma 2.11
implies that f = f ∗◦τ for some translation τ , and similarly for g. Furthermore, the two translations
must agree. �

Exercise 2.14 If f is a uniformly continuous nonnegative function on Rn that vanishes at infinity,
prove that f ∗ is uniformly continuous with the same modulus of continuity.

Exercise 2.15 Let f be a nonnegative measurable function on Rn that vanishes at infinity, and
let Polf be the set of functions that can be reached by finitely many polarizations, as in Proposi-
tion 2.13. Show that there exists a sequence {gk}k≥1 in Polf such that

gk → f ∗ in measure .

If, moreover, f ∈ Lp, the sequence can be chosen to converge converge strongly in Lp; if f ∈ W 1,p,
then also

∇gk → ∇f ∗ weakly in Lp .

Hint: Consider a fat layer of f , as in Eq. (2.4), and approximate it with a smooth function of
compact support. Then apply Proposition 2.13.

The simple case of Riesz’ inequality in Eq. (2.3) can be extended to more general integrands
Φ(t1, . . . , tm), with a suitable integral kernel h(x1, . . . , hm). The crucial condition is that Φ should
be supermodular, in the sense that all its second (mixed) distributional derivatives should be
nonnegative. Here is the corresponding version of the Hardy-Littlewood inequality:

Exercise 2.16 (Hardy-Littlewood inequality for general integrands) Let Φ be a smooth func-
tion on the positive cone of Rm that vanishes on the boundary of the cone. Assume that Φ is
supermodular, i.e., its mixed derivatives satisfy ∂i∂jΦ(t1, . . . , tm) ≥ 0 for all i 6= j. Let f1, . . . , fm
be nonnegative measurable functions on Rn that vanish at infinity.∫

Rn

Φ
(
f1(x), . . . , fm(x)

)
dx ≤

∫
Φ
(
f ∗1 (x), . . . , f ∗m(x)

)
dx .

Hint: Use polarization. For (s1, . . . , sm) and (t1, . . . , tm) in the positive cone, show that

Φ(s1, . . . , sm) + Φ(t1, . . . , tm) ≤ Φ
(
max{s1, t1}, . . . ,max{sm, tm}

)
+Φ
(
min{s1, t1}, . . . ,min{sm, tm}

)
.
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2.4 Steiner’s argument, revisited
Steiner’s argument has two weaknesses: It does not prove that a perimeter-minimizing set exists,
and it it relies on a classical definition of perimeter as surface measure that is not appropriate for
general measurable sets. Both have been addressed by more resent results in geometric measure
theory.

By definition, a measurable set A ⊂ Rn has finite perimeter, if there exists a vector-valued
Radon measure ν of finite total mass such that the integration-by-parts formula∫

A

divF dx = −
∫
F (x) · dν(x)

holds for every smooth compactly supported vector field F on Rn. It turns out that for a set of finite
perimeter, ν is concentrated on the essential boundary of A, where both A and Ac have positive
density in the sense of Lebesgue. In fact, if σ denotes the n − 1dimensional Hausdorff measure
on the essential boundary of A, then unit outward normal N(x) to A can be defined σ-almost
everywhere, and dν(x) = −N(x)dσ. The upshot is that the measure ν, the essential perimeter,
and the outward unit normal of A do not depend on sets of measure zero.

In this framework, the existence of a perimeter-minimizing set is guaranteed by De Giorgi’s
compactness theorem: If {Ak}k≥1 is a sequence of measurable sets lying in a common large ball
B ⊂ Rn, and if their perimeters are finite and uniformly bounded, then there exists a subsequence
{Akj

}i≥1 that converges with respect to symmetric difference to some limiting set A,

lim
j→∞

Vol
(
Akj

\ A
)

+ Vol
(
A \ Akj

)
= 0 .

A useful fact is that the volume functional is continuous and the perimeter functional is lower
semicontinuous,

Vol(A) = lim
j→∞

Vol
(
Akj

)
, Per(A) ≤ lim inf

j→∞
Per
(
Akj

)
.

Theorem 2.17 (Isoperimetric inequality) If A ⊂ Rn has finite perimeter, then

Per(A) ≥ Per(A∗) ,

with equality if and only if A differs from a ball by a set of measure zero.

PROOF. Compactness. Let B ⊂ Rn be a large closed ball, and let {Ak}k≥1 be a minimizing
sequence for the perimeter for a given value of the volume. By De Giorgi’s compactness theorem,
there exists a subsequence, again denoted by Ak, that converges in symmetric difference to a
limiting set A of the same volume. Since the perimeter functional is lower semicontinuous, it
follows that A minimizes perimeter for the given volume.

Identification of the minimizer. The next step is to show that the equality Per(A) = Per(SA)
implies that almost all vertical cross sections ofA are intervals. Since this holds for every direction,
A must be convex. Now Steiner’s argument implies that A is a ball. �
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Exercise 2.18 (Approximation of Steiner symmetrization by polarizations) Under the assump-
tions of Proposition 2.13, show that there exists sequences in Polf that converge uniformly to the
Steiner symmetrization Sf . Conclude that Steiner symmetrization improves the modulus of conti-
nuity.

Exercise 2.19 (Approximation of f ∗ by Steiner symmetrizations) Assume that f is a nonnega-
tive continuous function with compact support, and let Steinerf be the set of all functions that can
be reached by applying a finite sequence of Steiner symmetrizations in different directions. Argue
as in Proposition 2.13 that there exists a sequence in Steinerf that converges uniformly to f ∗.
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3 Competing symmetries
In the last lecture, we discussed approximating the symmetric decreasing rearrangement by se-
quences of simpler rearrangements. However, we did not construct the approximating sequence
explicitly, but relied instead on compactness properties to show that an approximating sequence
exists (see Proposition 2.13).

Today we will discuss how symmetrization can be used to construct strongly convergent opti-
mizing sequences in geometric variational problems. Suppose we want to maximize a functional I
over a subsetX of some function space. The basic idea is to take advantage of two non-commuting
operations (the “competing symmetries”) that both improve the functional. The first operation, S,
is a symmetrization that satisfies S2 = S and strictly improves I ,

I(f) < I(Sf) ,

unless f = Sf . The second operation,R is a transformation that destroys the symmetry introduced
by S and satisfies

I(f) ≤ I(Rf) .

Typically, R is an isometry of X defined by a Euclidean or conformal transformation that leaves
the functional invariant. The goal is to show that the sequence

fk = (SR)kf

converges to a maximizer.
Below, we will illustrate the technique for two examples, the conformally invariant case of

the Hardy-Littlewood-Sobolev inequality for which it as first developed, and the approximation of
symmetric decreasing rearrangement by Steiner symmetrizations.

3.1 Conformal invariance and the Hardy-Littlewood-Sobolev inequality
We begin with a brief review of the inequality.

Theorem 3.1 (Hardy-Littlewood 1928, Sobolev 1938.) Let p, q > 1 and 0 < λ < n be such that
1/p+ 1/q + λ/n = 2. There exists a constant C(n, λ, p) such that∫

Rn

∫
Rn

f(x)g(y)|x− y|−λ dxdy ≤ C(n, λ, p)||f ||p||g||q (3.1)

for all f ∈ Lp(Rn), g ∈ Lq(Rn).

One may ask for the value of the best constant C(n, λ, p), and, if it is achieved, for the family
of optimizers. In 1983, Lieb showed that for every admissible choice of n, p, q there exist functions
f and g with ||f ||p = ||g||q = 1 that maximize the right hand side. For p = q, he identified all
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maximizers, and computed the best constant C(n, p). This maximal value is achieved precisely
when f = g are scaled and translated multiples of

h(x) =

(
1

1 + |x|2

)n/p
.

In his proof that maximizers exist, Lieb showed how to modify an arbitrary maximizing sequence
so that it converges in Lp. The difficulty in this step is related to the many symmetries of the Hardy-
Littlewood-Sobolev functional, particularly the translation and scaling symmetries, which make it
easy for a maximizing sequence to converge weakly to zero. On the other hand, he crucially used
the symmetries of the equation to identify the optimizers in the case when p = q.

For p = q, the goal is to maximize the functional

I(f) =

∫
Rn

∫
Rn

f(x)f(y)|x− y|−λ dxdy

subject to the constraint ||f ||p = 1. Let Sf = f ∗ denote the symmetric decreasing rearrangement
of f . By the simple case of Riesz’ inequality in Theorem 2.10,

I(f) ≤ I(Sf) ,

with equality if and only if f is a translate of its symmetric decreasing rearrangement.
At the same time, I is conformally invariant, in the following sense. A map γ defined on an

open set Ω in Rn is called conformal, if for every pair of smooth curves C1, C2 that intersect at
some point x0 ∈ Ω, the images γ(C1) and γ(C2) intersect at the same angle as the original curves.
Equivalently, there exists a scalar function h on Ω such that the derivative of γ satisfies

∀x ∈ Ω, ∀u, v ∈ Rn : 〈Dγ(x)u,Dγ(x)v〉 = h(x)2〈u, v〉 .

The function h(x), which defines the local expansion or contraction of g, is called the conformal
factor. The Jacobian of γ is given by | detDγ(x)| = h(x)n.

If γ is a conformal transformation on Rn with conformal factor h, then

Uγf(x) = f(γ(x))h(x)n/p

defines a linear isometry on Lp(Rn). Conformal invariance means that

I(f) = I(Uγf) (3.2)

for all conformal transformations γ. This clearly holds for translations, rotations, and dilations For
the inversion γ(x) = x

|x|2 , we compute∣∣∣∣ x|x|2 − y

|y|2

∣∣∣∣2 =
|x− y|2

|x|2|y|2
.

Taking y → x implies that tangent vectors at x are scaled by a conformal factor |x|−2. Volumes are
scaled by detDγ(x) = |x|−2n, and it follows from the Change of Variables formula that invariance
holds also here. Every conformal transformation on Rn ∪ {∞} can be written as a composition of
translations, rotations, dilations and the inversion.
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Exercise 3.2 We have implicitly used that γ is conformal with conformal factor h, if and only if

∀x ∈ Ω, ∀u ∈ Rn : |Dγ(x)u| = h(x) |u| .

Prove this!

The conformal invariance of the functional I allows to rewrite it as an integral over the unit
sphere Sn ⊂ Rn+1, as follows. The map given by

φ(x) =
1

|x|2 + 1

(
2x, |x|2 − 1

)
∈ Rn × R

defines a one-to-one correspondence from Rn ∪ {∞} to Sn. The inverse function φ−1 is called the
stereographic projection of Sn to Rn ∪ {∞}.

Figure 3.1: The stereographic projection.

We compute for x, y ∈ Rn

|φ(x)− φ(y)|2 =
|x− y|2

(1 + |x|2)(1 + |y|)2
.

Here, the distance on the left hand side is the Euclidean norm on Rn+1. This shows that φ is
conformal, with conformal factor

h(x) =
1

1 + |x|2
.

Thus, we can define a linear isometry from Lp(Sn) to Lp(Rn) by setting

UφF (x) = F (φ(x))h(x)n/p .

If f = UφF , then

I(f) =

∫
Sn

∫
Sn

F (ξ)F (η)|ξ − η|−λ dξdη .
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The right hand side defines a conformally invariant functional on Lp(Sn). Abusing notation, we
will denote it by I(F ). The point is that certain conformal transformations that look complicated
on Rn take a simple form on Sn. Among these are the rotations on Sn that do not fix the poles.
Together with the translations, rotations and dilations on Rn, these generate the entire conformal
group.

Exercise 3.3 Which conformal transformation on Sn corresponds to the inversion on Rn?

Proposition 3.4 (Competing symmetries for conformally invariant functionals on Sn) ForF ∈
Lp(Sn), define SF by applying the the symmetric decreasing rearrangement to the corresponding
function on Rn,

SF = Uφ−1
(
UφF )∗ ,

and let RF be given by the rotation

RF (ξ1, . . . , ξn+1) = F (ξ1, . . . , ξn−1,−ξn+1, ξn) .

If F ≥ 0, then (SR)kF converges strongly in Lp to the constant function (nωn)
−1/p||F ||Lp · 1.

Figure 3.2: The competing symmetries S and R.

Note that SF is symmetric decreasing about the south pole, i.e., SF (ξ) is a nonincreasing
function of the last component ξn+1. By Riesz’ inequality and conformal invariance,

I(F ) ≤ I(SF ) , I(F ) = I(RF ) .
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One complicating factor is that equality in Riesz’ inequality occurs whenever f is symmetric de-
creasing about some point, not necessarily the origin. In the proof, we introduce the auxiliary
functional

J(F ) =

∫
Sn

F (ξ) dξ .

Using the isometry of Lp(Sn) with Lp(Sn), we can write

J(F ) =

∫
Rn

f(x)h(x)n/q dx ,
1

p
+

1

q
= 1 ,

where f = UφF . By the Hardy-Littlewood inequality and conformal invariance,

J(F ) ≤ J(SF ) , J(F ) = J(RF ) .

Equality in the Hardy-Littlewood inequality implies that f is already symmetrically decreasing. In
particular, F (ξ) can depend only on the last component ξn+1.

PROOF OF PROPOSITION 3.4. Compactness. Assume, by approximation, that F is bounded.
Since constant functions are invariant under S andR and both operations are order-preserving, the
sequence Fk = (SR)kF is uniformly bounded. Furthermore, the functions Fk(ξ) are decreasing
functions of ξn+1 for k ≥ 1. We select a subsequence Fkj

that converges on all rational points, and
thus, (by monotonicity) pointwise almost everywhere to some limiting function G. This is known
as Helly’s selection principle. By dominated convergence, Fkj

converges to G strongly in Lp.

Identification of the limit. By construction, G depends only on ξn+1. On the other hand,
RG(ξ) also depends only on ξn+1, forcing G to be constant. To see this, we use that the value of
the auxiliary functional J increases along the sequence, and so J(Fk) → J(G) along the entire
sequence. It follows that

J(G) ≤ J(SRG) = lim
k→∞

J(SRFk) = lim
k→∞

J(Fk+1) = J(G) ,

which implies that J(RG) = J(SRG), proving the claim. Since S and R preserve Lp-norms, we
conclude that G = (nωn)

−1/p||F ||p · 1. We have shown that Fkj
→ G. Since this limit does not

depend on the subsequence, the entire sequence converges and the lemma follows. �

Proposition 3.4 implies that for every nonnegative function F ∈ Lp(Sn),

I(F ) ≤ I(Fk) → ||F ||2Lp(nωn)
−2/p

∫
Sn

∫
Sn

|ξ − η|−λ dξdη ,

with equality certainly if F is equivalent to a constant under a conformal change of variables. (Lieb
used the sharp rearrangement inequality for I to show that these are all the equality cases.) The
sharp Hardy-Littlewood-Sobolev inequality on Rn follows by transforming back to Lp(Rn). �
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Exercise 3.5 (Conformal invariance of the L2-norm of the gradient) Set r = 2∗ = 2n
n−2

for n ≥
3. If γ is a conformal transformation on Rn with conformal factor h, define by

Uγf(x) = f(γ(x))h(x)n/r

the corresponding isometry of Lr onto itself. Verify that the functional

J(f) =

∫
Rn

|∇f |2

is invariant under Uγ .

Exercise 3.6 Set r = 2∗ = 2n
n−2

for n ≥ 3. Use competing symmetries to prove that the sharp
Sobolev constant in Rn for n ≥ 3

C(n, 2) = inf
||∇f ||2
||f ||r

, (r = 2∗ =
2n

n− 2
)

is assumed for

f(x) =
1

(1 + |x|2)n/r
.

3.2 Iterated Steiner and Schwarz symmetrizations
As a second example, we show how to approximate the symmetric decreasing rearrangement by
simpler partial symmetrizations. In Section 2.1 we defined the Steiner symmetrization SA of a
measurable set A by symmetrizing its intersection with each line x1, . . . xn−1 = Const., and its
Schwarz symmetrization T A by symmetrizing the n − 1-dimensional cross section At = {x̂ |(
x̂, t) ∈ A} in Rn−1.

Exercise 3.7 Give an example of a set A ⊂ R2 and a non-trivial rotation R in the plane such that
T SRA = A but A is not a ball. In particular, the sequence (T SR)kA does not converge to A∗ in
symmetric difference.

Proposition 3.8 (Competing symmetries for Steiner-Schwarz symmetrization) Let A be a set
of finite volume in Rn. Let T SA be the Steiner-Schwarz symmetrization of A, and let R be a
rotation that acts in the x1 − xn-coordinate plane as a rotation by an angle θ that is an irrational
multiple of π, and fixes the remaining n− 2 coordinates. Then

(T SR)kA→ A∗ (k →∞)

with respect to symmetric difference.
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Figure 3.3: Steiner and Schwarz symmetrization.

PROOF. Compactness. Assume by approximation that A is bounded, i.e., A lies in a centered ball
B. Set Ak = (T SR)kA. By definition of the Steiner and Schwarz symmetrization, there exist
nonnegative, nonincreasing functions hk on the real line such that

Ak =
{
(x̂, xn) ∈ Rn | |x̂| < hk(|xn|)

}
.

Since Steiner and Schwarz symmetrization preserve centered balls and reduce symmetric differ-
ences, Ak ⊂ B, and thus the functions hk are uniformly bounded and their support is contained in
a common compact interval.

By Helly’s selection principle, we can select a subsequence hkj
that converges on all ratio-

nal points, and thus, (by monotonicity) pointwise almost everywhere to some limiting function.
By dominated convergence, the sets Akj

converge with respect to symmetric difference to some
limiting set C.

Identification of the limit. Consider the auxiliary functional

J(A) =

∫
A

e−(x2+y2) .

It has the property that
J(A) ≤ J(T SA) , J(A) = J(RA), ,

with equality in the first inequality only if A agrees with T SA up to a null set. In particular, A
must be symmetric under reflection at the xn = 0 hyperplane and under rotation about the xn-axis.
By monotonicity, the value of J converges along the entire sequence Ak,

lim
k→∞

J(Ak) = J(C) .

It follows that
J(C) = J(T SRC) .
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By construction C, is symmetric about the xn-axis, and by the strict rearrangement inequality for
J , RC is also symmetric about the xn-axis. We conclude that C is symmetric under all rotations
at two axes that enclose an angle θ. These rotations generate a dense subgroup of the full rotation
group, and thus C = A∗. This shows that Akj

→ A∗ in symmetric difference. Since the limit does
not depend on the subsequence, the entire sequence converges. �

Exercise 3.9 Let f be a nonnegative continuous function with compact support on Rn. Let R be
the rotation from Proposition 3.8, and set Rf = f ◦ R−1. Prove that

(T SR)kf → f ∗ uniformly .

Question 3.10 How do the sequences obtained by sompeting symmetries differ from the approxi-
mations constructed in the previous section, specifically Exercise 2.19?

These convergence results can be strengthened in different ways. If A is compact, one can
show that Ak → A∗ also with respect to the Hausdorff metric. In fact, both the in-radius and the
out-radius converge to the radius of the ball A∗. Furthermore, Ak has finite perimeter for k ≥ 2,
and

Per(Ak) → Per(A∗) .

If f is a nonnegative measurable function that vanishes at infinity, it is not hard to show that

(T SR)kf → f ∗ in measure .

If f ∈ Lp, the sequence converges strongly in Lp; if f ∈ W 1,p, then also

∇(T SR)kf → ∇f ∗ weakly in Lp .

Convergence results analogous to Proposition 3.8 can be proved for many other sequences of
rearrangements. The following sequence was used by Brascamp, Lieb, and Luttinger (1974):

Question 3.11 Denote by Si Steiner symmetrization with respect to the i-th coordinate axis, and
letR be a rotation in Rn. Under what conditions onR does the sequence (Sn . . .S1R)kA converge
to A∗ in symmetric difference for every set A ⊂ Rn of finite volume?
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4 Proof of the classical inequalities

4.1 Riesz’ inequality
We turn to the general case of Riesz’ inequality, where all three functions may vary.

Theorem 4.1 (Riesz’ rearrangement inequality) Let f, g, h be nonnegative measurable functions
on Rn that vanish at infinity. Then∫ ∫

f(x)g(y)h(x− y) dxdy ≤
∫ ∫

f ∗(x)g∗(y)h∗(x− y) dxdy ,

in the sense that the left hand side is finite whenever the right hand side is finite.

The theorem was first proved by Riesz (1930) in one dimension. An alternate proof appears in
the book of Hardy, Littlewood and Pólya. Sobolev (1937) extended the result to Rn by an induction
over the dimension, similar to our argument above. Brascamp, Lieb, and Luttinger (1974) showed
that functionals of the form ∫

(Rk)m

m∏
i=1

fi

(
n∑
j=1

ηijxj

)
dx1, . . . dxn

can only increase under rearrangement. Here, the ηij form an arbitrary real n×m matrix.
One interesting property that Riesz’ inequality shares with the Brascamp-Lieb-Luttinger in-

equality is invariance under affine transformations: If L is a linear transformation of determinant
±1, and a = b+ c ∈ Rn, then replacing f(x) with f(Lx+ a), g(x) with g(Lx+ b) and h(x) with
h(Lx+ c) changes neither f ∗, g∗ and h∗ nor the value of the integral.

The characterization of equality cases is complicated, but if two of the three functions are
known to have level sets of arbitrary volume, then equality implies that f , g, and h are related to
f ∗, g∗, and h∗ by an affine transformation. If f , g, and h are characteristic functions of measurable
sets A, B, and C, then the equality cases depend very much on the relative sizes of the three sets
(Burchard 1994).

PROOF OF THEOREM 4.1. By the layer-cake principle, its suffices to show that for every triple
of subsets A, B, C of finite volume in Rn,∫

A

XB ∗ XC ≤
∫
A∗
XB∗ ∗ XC∗ .

Denote the left hand side of this inequality by I(A,B,C). We proceed by induction over the
dimension.

Base case: n = 1. We will use a sliding argument due to Brascamp, Lieb and Luttinger.
Consider first the case where A, B, and C are intervals, given by

A = a0 + A∗ , B = b0 +B∗ , C = c0 + C∗ .
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Interpolate between the symmetric rearrangements and the original intervals by setting

A(t) = a0e
−t + A∗ , B(t) = b0e

−t +B∗ , C(t) = c0e
−t + C∗ ,

so that A(0) = A and A(t) → A∗ (in symmetric difference) as t → ∞. Changing variables, we
obtain

I(A(t), B(t), C(t)) =

∫
(a0−b0−c0)e−t+A∗

XB∗ ∗ XC∗ .

The integrand is an explicitly computable, symmetric decreasing function. It follows that the value
I(A(t), B(t), C(t)) is nondecreasing in t. This proves the case of single intervals.

(a) The Riesz functional on intervals. (b) The BLL sliding process.

Figure 4.1: Proof of Riesz’ inequality in one dimension.

If A is a finite union of intervals

A =
⋃̀
i=1

Ai ,

we first replace any pair of intervals whose closures intersect by their union. The remaining inter-
vals all have positive distance from each other. Set

A(t) =
⋃̀
i=1

Ai(t) , t ≤ t1

where t1 is the time when the closures of the subintervals Ai(t) first empty intersect. At t1, fuse
the collided intervals these intervals, and continue with the new collection of intervals. Proceed
in the same way with the sets B and C. We have already shown that the functional increases
with t, and conclude that the claimed inequality holds for finite unions of intervals. For general
sets, the inequality follows by approximation, using that I is continuous with respect to symmetric
difference, and that Steiner and Schwarz symmetrization can only decrease symmetric difference.
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Inductive step: Suppose we have established Riesz’ rearrangement inequality in dimensions
1 and n − 1. Let A,B,C ⊂ Rn. For x̂ ∈ Rn−1, denote by Ax̂ the intersection of A with the
line through (x̂, 0), and correspondingly for B and C. With Fubini’s theorem, we can write the
functional as

I(A,B,C) =

∫
Rn−1

∫
Rn−1

I
(
Ax̂, Bŷ, Cx̂−ŷ

)
dx̂dŷ ,

and we obtain from the one-dimensional case of Riesz’ inequality that I increases under Steiner
symmetrization,

I(A,B,C) ≤ I(SA,SB,SC) .

Similarly, the n − 1-dimensional case of the inequality implies that I increases under Schwarz
symmetrization,

I(A,B,C) ≤ I(T A, T B, T C) .

I is clearly invariant under simultaneous rotations of A, B, and C. It follows from Proposition 3.8
that

I(A,B,C) ≤ I
(
(T SR)kA, (T SR)kB, (T SR)kC

)
→ I(A∗, B∗, C∗) . �

Exercise 4.2 Let A be a finite union of disjoint intervals, and let A(t) be the set obtained with the
Brascamp-Lieb-Luttinger sliding process from the proof of Theorem 4.1. Prove that the center of
gravity

a(t) = Vol(A)−1

∫
A(t)

x dx

satisfies d
dt
a(t) = −a(t).

Exercise 4.3 Extend the Brascamp-Lieb-Luttinger sliding process to a semigroup of contractions
on Lp(R) for 1 ≤ p <∞.

We next explore the relationship with a fundamental tool of convex analysis, the Brunn-
Minkowski inequality. The inequality says that for any pair of non-empty measurable sets of
finite measure

Vol(B + C)1/n ≥ Vol(B)1/n + Vol(C)1/n ,

see Exercise 1.6. It is often written in rescaled form as

Vol((1− t)B + tC)1/n ≥ (1− t)Vol(B)1/n + tVol(C)1/n , 0 ≤ t ≤ 1 .

A particular implication is that the cross sectional area of a convex body is a log-concave function
of the height. In particular, if the convex body is symmetric under x 7→ −x, then its largest cross
section occurs at height 0.

Exercise 4.4 Show that Riesz’ inequality (with A = B + C) implies that the Brunn-Minkowski
inequality holds for every pair for non-empty open sets of finite volume.
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Hint: Convince yourself that

B + C =
{
x ∈ Rn | XB ∗ XC(x) > 0

}
,

and show that (B + C)∗ ⊃ B∗ + C∗.

Exercise 4.5 It is known that equality in the Brunn-Minkowski inequality occurs if and only if B
and C are obtained by removing null sets from two scaled and translated versions of the same
closed convex set. Use this fact to construct two sets B and C and a polarization σ such that

Vol(B + C)1/n < Vol(Bσ + Cσ)1/n .

Exercise 4.6 (Riesz’ functional does not satisfy a polarization inequality) Use Exercises 4.2 and
4.3 to demonstrate by example that the Riesz functional

I(f, g, h) =

∫ ∫
f(x)g(y)h(x− y) dxdy

may decrease as well as increase under polarization.

4.2 The Pólya-Szegő inequality
Theorem 4.7 (Pólya-Szegő inequality) If f ∈ W 1,p(Rn) for some 1 ≤ p ≤ ∞, then

||∇f ||p ≥ ||∇f ∗||p , (1 ≤ p ≤ ∞) .

We will give two different proofs of the Pólya-Szegő inequality. The first uses the fact that the
Pólya-Szegő functional is invariant under polarization:

Lemma 4.8 (Pólya-Szegő identity for polarization) If f ∈ W 1,p(Rn) for some 1 ≤ p ≤ ∞, and
σ is a reflection, then |∇fσ| is equimeasurable with |∇f |. In particular,

||∇f ||p = ||∇fσ||p , (1 ≤ p ≤ ∞)

PROOF. Since the maximum and minimum of W 1,p-functions is again in W 1,p, the polarization fσ

is also in W 1,p. By the usual density arguments, it suffices to compute the gradient for piecewise
linear functions away from the singularities. If x ∈ X+, we obtain for f(x) ≥ f(σx) that

∇fσ(x) = ∇f(x) , ∇fσ(σx) = ∇f(σx) ,

and for f(x) ≤ f(σx) that

∇fσ(x) = σ∇f(σx) , ∇fσ(σx) = σ∇f(x) .

Since σ preserves the Euclidean length, this proves the claim. �
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PROOF OF THEOREM 4.7 BY POLARIZATION. For p = ∞, f is Lipschitz continuous, and ||∇f ||∞
is its Lipschitz constant. Since rearrangement improves the modulus of continuity, f ∗ is again
Lipschitz with the same constant, proving the claim in this case.

For 1 ≤ p <∞, we use again the approximation by a fat layer, as in Eq. (2.4). Note that

|∇fε| = |∇f |X{ε<f(x)<ε+ε−1} ,

which converges monotonically to |∇f | as ε → 0. So we may assume that f is bounded and
integrable. We next approximate f by a sequence {gk} in S(f) that converges to f strongly in Lp.
Since ||∇gk||p = ||∇f ||k by Lemma 4.8, the sequence of gradients is uniformly bounded, and we
may choose a subsequence, again denoted by gk, such that

∇gk → ∇f ∗ weakly in Lp .

Since the p-norm is convex, it is weakly lower semicontinuous, and we conclude that

||∇f ||p = lim ||∇gk||p ≥ ||∇f ∗||p ,

as claimed. �

Exercise 4.9 (Concentration inequality for the gradient) Prove that for every ε > 0

sup
A:Vol(A)=ε

∫
A

|∇f | dx ≥ sup
A:Vol(A)=ε

∫
A

|∇f ∗| dx .

Characterizing the equality cases in the Pólya-Szegő inequality turns out to be quite compli-
cated — and the proof we just presented gives no information. More can be inferred from the
following proof:

PROOF OF THEOREM 4.7 FROM THE ISOPERIMETRIC INEQUALITY. By the co-area formula,∫
|∇f(x)|p dx =

∫ ∞

0

∫
f−1(t)

|∇f |p−1 dσdt .

Consider the inner integral on the right hand side. Jensen’s inequality, applied to the convex func-
tion s 7→ s−(p−1) gives

∫
f−1(t)

|∇f |p−1 dσ

Per
(
{f > t}

) ≥ (∫
f−1(t)

|∇f |−1 dσ

Per
(
{f > t}

))−(p−1)

. (4.1)

If we replace f with f ∗, the perimeter of the level set decreases, but what happens to the remaining
integral?
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Since the volume of the set of critical points decreases under symmetric decreasing rearrange-
ment, the right hand side of Eq. (1.8) increases. Looking at the left hand sides of Eq. (1.8) for f
and f ∗, we see that for almost every t > 0∫

f−1(t)

|∇f |−1 dσ ≤
∫

(f∗)−1(t)

|∇f ∗|−1 dσ .

We combine this with the isoperimetric inequality and Eq. (4.1) to arrive at∫
f−1(t)

|∇f |p−1 dσ ≥ Per
(
{f > t}

)p · (∫
(f)−1(t)

|∇f |−1 dσ

)−(p−1)

≥ Per
(
{f ∗ > t}

)p · (∫
(f∗)−1(t)

|∇f ∗|−1 dσ

)−(p−1)

=

∫
(f∗)−1(t)

|∇f ∗|p−1 dσ .

In the last step, we have used that Jensen’s inequality in Eq. (4.1) holds with equality when f = f ∗,
because |∇f ∗| is constant on the level surface. The claim follows upon integration over t. �

Suppose that ||∇f ||p = ||∇f ∗||p for some function f ∈ W 1,p and some p < ∞. It follows
from the equality statement for the isoperimetric inequality that all level sets of f are balls. For
p = 1, nothing more can be said. For p > 1 one might hope that these level sets should also be
concentric. but that is false unless the critical points of f with values strictly between 0 and sup f
form a null set.

Exercise 4.10 Let Ψ be a convex increasing function on the positive half-line with Ψ(0) = 0. Use
the co-area formula to prove that∫

Ψ
(
|∇f(x)|

)
dx ≥

∫
Ψ
(
|∇f ∗(x)|

)
dx .

Hint: The function s 7→ sΨ(s−1) is convex and decreasing.

4.3 Talenti’s inequality
Theorem 4.11 (Talenti’s comparison principle for the Laplacian) Let f be a smooth nonnega-
tive function with compact support on Rn for some n > 2, and let f ∗ be its symmetric decreasing
rearrangement. If u and v vanish at infinity and solve

−∆u = f , −∆v = f ∗ ,

then u∗(x) ≤ v(x) for all x ∈ Rn.
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Note that u and v exist, and are uniquely determined by the equation. Both are nonnegative
by the maximum principle. The assumptions on f can be replaced by the condition that f is
measurable and decays suitably at infinity.

Exercise 4.12 Show that necessarily v = v∗.

PROOF OF THEOREM 4.11. The idea is to bound the distribution function of u, given by

µ(t) = Vol
{
x | u(x) > t}

)
,

in terms of f ∗. Since µ is non-increasing, it is differentiable at almost every value t > 0. By
Eq. (1.8), its derivative satisfies for almost every t > 0

−µ′(t) ≥
∫
{u=t}

|∇u|−1 dσ .

Writing the integrand on the right hand side as

|∇u(x)|−1 = sup
ε>0

{
2ε− ε2|∇u(x)|

}
, (4.2)

we see that

−µ′(t) ≥ sup
ε>0

{
2ε

∫
{u=t}

1 dσ − ε2

∫
{u=t}

|∇u| dσ
}
. (4.3)

The first term on the right hand side is given by∫
{u=t}

1 dσ = Per
(
{u > t}

)
≥ Per

(
{u∗ > t}

)
.

For the second term, we use that ∇u(x) is a negative multiple of the exterior normal N(x) to the
level set {u = t}, and apply Gauss’ divergence theorem to see that∫

{u=t}
|∇u| dσ = −

∫
{u=t}

∇u ·N dσ =

∫
{u>t}

−∆u(y) dy .

From the elliptic equation for u and the Hardy-Littlewood inequality, we obtain∫
{u=t}

|∇u| dσ =

∫
{u>t}

f(y) dy ≤
∫
{u∗>t}

f ∗(y) dy .

We insert the inequalities into Eq. (4.3) and minimize over ε to arrive at

−µ′(t) ≥
(
Per({u∗ > t)

)2(∫
ωn|y|n<µ(t)

f ∗(y) dy

)−1

.
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The key observation is that the quantity on the right hand side is determined solely by the distribu-
tion functions of u and f . Collecting terms results in

−µ′(t)
∫
ωn|y|n<µ(t)

f ∗(y) dx ≥ (nωn)
2

(
µ(t)

ωn

)2− 2
n

.

To express this differential inequality in terms of u∗, we write

u∗(x) = η(|x|)

for some nonincreasing function η, and change variables t = η(r). Since µ ◦ η(r) = ωnr
n by the

definition of the distribution function, we compute for the derivatives µ′(t)η′(r) = nωnr
n−1. In

the new variables, we obtain after collecting terms

−η′(r) ≤
(
nωnr

n−1
)−1
∫
|y|<r

f ∗(y) dy . (4.4)

The change of variables is justified so long as t = η(r) is a regular value of u∗, i.e., if µ does not
jump there. But Eq. (4.4) also holds if µ jumps at t = η(r), because η′(r) must vanish there while
the left hand side is nonnegative. Integrating, and using that η vanishes at infinity, we arrive at

η(r) ≤ 1

nωn

∫ ∞

r

∫
|y|<s

f ∗(y)s−n+1 dyds .

If f is already symmetric decreasing, then all the above inequalities hold with equality. We may
exchange the integration with Fubini’s theorem and compute the integral over s explicitly. This
gives

u∗(x) ≤ v(x) =
1

n(n− 2)ωn

∫
Rn

f ∗(y)
(
max{|x|, |y|}

)−n+2
dy .

The representation for v agrees with the standard representation for v in terms of the fundamental
solution of Laplace’s equation. �

Exercise 4.13 Simplify the proof of Talenti’s inequality by replacing Eq. (4.2) with Jensen’s in-
equality in Eq. (4.1). When do these inequalities hold with equality?

Talenti’s inequality allows to bound the norm of the solution of an elliptic PDE in any rearrangement-
invariant Sobolev space by the norm of the solution of an associated radially symmetric problem.
This is particularly useful for defining solutions when the right hand side is only measurable. The
inequality extends to elliptic problems of the form

−
n∑

−i,j=1

∂iaij(x)∂ju = f ,
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where the matrix
(
aij
)n
i,j=1

is symmetric and satisfies the ellipticity condition

n∑
i,j=1

aij(x) ξiξj ≥
n∑
i=1

ξ2
i , (for all x, ξ ∈ Rn) .

It is valid also for Dirichlet problems on bounded domainsA ⊂ Rn; the symmetrized problem then
is a Dirichlet problem on A∗.

Exercise 4.14 (Talenti’s principle for Schrödinger equations) Let V be a smooth nonnegative
function on Rn that grows at infinity in the sense that for each t > 0, the set

{x | V (x) < t}

has finite measure. Formulate and prove Talenti’s comparison principle for the Schrödinger equa-
tion with potential V ,

−∆u+ V (x)u = f .

Hint: Define the symmetric increasing rearrangement of V by V∗ = − log
(
e−V

)∗, so that

{x | V (x) < t}∗ = {x | V∗(x) < t}

for all t > 0. The nonnegativity of V guarantees the existence, uniqueness, and positivity of the
solution u.

Exercise 4.15 (Talenti’s principle for the p-Laplacian) Fix 1 < p < ∞, and let f be a smooth
nonnegative function with compact support. Use the identity

1

a
= sup

ε>0

{
εq − q

p
εpa

p
q

}
,
(
a > 0,

1

p
+

1

q
= 1
)
.

to extend Talenti’s comparison principle to the equation

−div
(
|∇u|p−2∇u

)
= f .

Remark: The expression on the left hand side is called the p-Laplacian of u. It is quasilinear, but
for p 6= 2 it is not linear. Weak solutions for this equation can be constructed as minimizers of the
convex functional

1

p

∫
Rn

|∇u|p dx−
∫

Rn

fu dx

in the Sobolev space W 1,p. Solutions of this equation satisfy a maximum principle; in particular,
u ≥ 0 if f ≥ 0.

Exercise 4.16 Use Talenti’s principle for the p-Laplacian to show that the solutions of the equa-
tions

−div
(
|∇u|p−2∇u

)
= f , −div

(
|∇v|p−2∇v

)
= f ∗

satisfy
||∇u||p ≤ ||∇v||p , (1 < p <∞) .
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5 Transportation methods for geometric inequalities

5.1 Monge’s problem
Rearrangements can be viewed as special instances of transportation plans, which move a given
mass distribution to another distribution of the same total mass. To give a proper definition, let µ
and ν be measures on Rn, with the same total mass µ(Rn) = ν(Rn) < ∞. We say that a map
T : Rn → Rn pushes µ forward to ν, if for every ν-integrable function b on Rn,∫

b(x) dµ(x) =

∫
b(y) dν(y) .

In that case, we write T#µ = ν.
Monge’s problem consists of minimizing a cost functional

C(µ, ν) =

∫
c(x, Tx) dµ(x)

among all maps that push µ forward to ν. Here, c(x, y) is the infinitesimal cost of transporting
a unit of mass from the point x to the point y, typically given by an increasing function of the
distance |x− y|. In general, a minimizing solution to Monge’s problem need not exist. The key to
solving the problem is a weak formulation due to Kantorovich that replaces the transport map by
a transportation plan, which is a measure on Rn × Rn that specifies the source and destination
location for each piece of mass.

The case where the infinitesimal cost function is given by c(x, y) = |x − y|2 on Rn plays a
special role. In that case, the problem is known to have a unique solution. If the measures dµ(x) =
F (x) dx and ν(y) = G(y) dy are absolutely continuous with respect to Lebesgue measure, then
Brenier’s theorem states that the solution is given by a transport map T = ∇φ(x), where φ is a
convex function. The transport map is determined uniquely µ-almost everywhere by the condition
that T = ∇φ(x) for a convex function φ : Rn → R.

For the applications we will discuss below, we need only the fact that there exists a convex
function φ on Rn such that ∇φ pushes F (x) dx forward to G(y) dy. This means that∫

b(∇φ(x))F (x) dx =

∫
b(y)G(y) dy (5.1)

for all ν-integrable functions b. If φ is twice continuously differentiable and F and G are strictly
positive, the Change of Variables formula implies the Monge-Ampère equation

F (x) = G(∇φ(x)) detD2φ(x) . (5.2)

Caffarelli regularity theory provides conditions on F andG that guarantee that φ solves the Monge-
Ampère equation in the classical sense. McCann proved that even if φ is just convex, the Monge-
Ampère equation holds µ-almost everywhere, if the second derivative is interpreted pointwise (as
a limit of a difference quotient, wherever it exists).
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Exercise 5.1 In one dimension, the Brenier map is given by a non-decreasing function. If dµ(x) =
F (x) dx and dν(y) = G(y) dy are probability measures that are absolutely continuous and have
positive density with respect to Lebesgue measure, describe this map, and prove that it is continu-
ous and has a continuous inverse.

Exercise 5.2 (Interpolation by displacement) Let ∇φ be the Brenier map that pushes a prob-
ability measure µ forward to another probability measure ν. Define, for 0 ≤ t ≤ 1 the map
Tt = (1− t)I + t∇φ, and set νt = Tt#µ. Prove that

supp (νt) ⊂ (1− t) supp (µ) + t support (ν) .

5.2 A transportation proof of the isoperimetric inequality
Consider a bounded set A ⊂ Rn with smooth boundary, and denote by A∗ be the centered ball
of the same volume. We will sketch an argument that Brenier’s theorem implies the isoperimetric
inequality

Per(A) ≥ Per(A∗) .

Let T = ∇φ be the Brenier map that pushes the uniform distribution on A forward to the
uniform distribution on A∗, i.e., for every C ⊂ Rn,

Vol(C ∩ A) = Vol
(
∇φ(C) ∩ A∗) .

The Monge-Ampère equation takes the form

detD2φ(x) = 1 , (x ∈ A) .

Denote the radius of A∗ by R. Since ∇φ maps A to A∗, we must have |∇φ(x)| ≤ R for all x ∈ A.
Thus

Per(A) =

∫
∂A

1 dσ ≥ 1

R

∫
∂A

∇φ(x) ·N(x) dσ(x) =
1

R

∫
A

∆φ(x) dx , (5.3)

where N is the outward unit normal to ∂A, and we have applied Gauss’ divergence theorem in the
last step. Since φ is convex, its Hessian matrix is positive semidefinite, and its eigenvalues satisfy

1

n
(λ1 + · · ·+ λn) ≥ (λ1 · · ·λn)1/n

by the arithmetic-geometric mean inequality. We conclude from the Monge-Ampère equation that

1

n
∆φ(x) ≥

(
detD2φ(x)

)1/n
= 1 .

Inserting this into Eq. (5.3) we arrive at

Per(A) ≥ n

R

∫
A

1 dx = nωnR
n−1 = Per(A∗) ,
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proving the claim. �

We have not discussed under what hypotheses on A the change of variables and the divergence
theorem are applicable, and whether φ is indeed twice differentiable. These questions become
relevant for the characterization of equality cases, where A is a priori just a measurable set with
finite perimeter and no further regularity properties.

Exercise 5.3 (Brunn-Minkowski from optimal transportation) Let µ, ν be the uniform measures
of density one on two sets A,B ⊂ Rn of finite and equal volume, and let νt = Tt#µ be the inter-
polation defined in Exercise 5.2. Prove that ν is absolutely continuous with respect to Lebesgue
measure,

dνt(x) = ρt(x) dx ,

and that its density satisfies ρt(x) ≤ 1.
(a) Conclude that

Vol
(
(1− t)A+ tB

) 1
n ≥ (1− t)Vol(A)

1
n + tVol(B)

1
n .

Hint: The function t 7→
(
detDTt

) 1
n is concave (why?).

(b) Use a scaling argument to obtain the Brunn-Minkowski inequality for setsA,B of arbitrary
finite (not necessarily equal) volume, in its more standard form

Vol(A+B)
1
n ≥ Vol(A)

1
n + Vol(B)

1
n .

5.3 The sharp Sobolev inequality
Theorem 5.4 Fix 1 < p < n, let q = p

p−1
be the dual Hölder index, and set p∗ = np

n−p . There exists
a constant C(n, p) such that

||∇f ||p ≥ C(n, p)||f ||p∗ , (5.4)

provided that |f | vanishes at infinity and |∇f | ∈ Lp.

PROOF. We will show that

n(n− p)

(n− 1)p
· sup
g∈C∞c (Rn)

∫
g(y)

n−1
n
p∗ dy(∫

g(y)p∗|y|q
) 1

q ||g||p∗
= inf

f∈C∞c (Rn)

||∇f ||p
||f ||∗p

. (5.5)

The extremals on the two sides of the equation are assumed for the function h(x) = (1 + |x|q)−
n
p∗ ,

i.e.,

C(n, p) =
||∇h||p
||h||p∗

=
n(n− p)

(n− 1)p
·

∫
h(y)

n−1
n
p∗ dy(∫

h(y)p∗|y|q
) 1

q ||h||p∗
.
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To establish Eq. (5.5) and the theorem, it suffices to consider smooth functions f and g with
compact support that have been normalized to ||f ||p∗ = ||g||p∗ = 1. By Brenier’s theorem, there
exists a convex function φ that pushes the probability measure F (x)dx forward to the probability
measure G(x)dx. We apply the transportation equation in Eq. (5.1) and express the integral in the
numerator on the left hand side of Eq. (5.5) as∫

G(y)1− 1
n dy =

∫
F (x)G(∇φ(x))−

1
n dx =

∫
F (x)1− 1

n

(
detD2φ(x)

) 1
n dx . (5.6)

In the second step, we have used the Monge-Ampère equation in Eq. (5.2) to write

G
(
∇φ(x)

)− 1
n = F (x)−

1
n

(
detD2φ(x)

) 1
n .

Since φ is convex, the matrix D2φ(x) is positive semidefinite, and the arithmetic-geometric mean

inequality for its eigenvalues says that
(
detD2φ(x)

) 1
n ≤ 1

n
∆φ(x), which integrates to∫

F (x)1− 1
n

(
detD2φ(x)

) 1
n dx ≤ 1

n

∫
F (x)1− 1

n ∆φ(x) dx . (5.7)

We next express F in terms of f , integrate by parts, and apply Hölder’s inequality

1

n

∫
F (x)1− 1

n ∆φ(x) dx = − (n− 1)p

n(n− p)

∫
f(x)

n(p−1)
n−p ∇φ(x) · ∇f(x) dx

≤ (n− 1)p

n(n− p)

(∫
f(x)p

∗|∇φ(x)|q dx
)1/q

||∇f ||p . (5.8)

To eliminate ∇φ, we use once more the transportation property in Eq. (5.1)∫
F (x)|∇φ(x)|q dx =

∫
G(y)|y|q dy .

Finally, we insert Eqs. (5.7) and (5.8) into Eq. (5.6) and collect terms to arrive at

n(n− p)

(n− 1)p
·
∫
g(y)

n−1
n
p∗ dy ·

(∫
g(y)p

∗|y|q dy
)− 1

q

≤ ||∇f ||p .

Since f and g are arbitrary except for the normalization in Lp∗ , this inequality remains valid if the
left hand side is maximized over g and the right hand side is minimized over f . We conclude that
the left hand side of Eq. (5.5) is a lower bound for the right hand side.

For the complementary bound, it suffices to exhibit a pair of functions f, g with ||f ||p∗ =
||g|p∗ = 1 such that all steps of the proof hold with equality. Consider first Eq. (5.7). Equality
in the arithmetic-geometric mean inequality holds if D2φ(x) is a diagonal matrix. Let us pick
φ(x) = 1

2
|x|2 so that ∇φ(x) = x. This means that the transport map is the identity and f = g.

Next, look at Hölder’s inequality in Eq. (5.8). Equality occurs, if ∇f(x) and ∇φ(x) always point
in opposite directions and |∇f |p = c · fp∗|∇φ|q for some constant c. A direct computation verifies
that f(x) = h(x) and ∇φ(x) = x satisfy this condition. �
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Exercise 5.5 Verify that the Sobolev functional on the right hand side of Eq. (5.5) is invariant
under translation, rotation, dilation, and multiplication by constants. Conclude that the Sobolev
optimizers include at least the n + 2-parameter family of translates, dilates and multiples of h. If
h is replaced by another member of this family, what happens to φ? What are the symmetries of
the left hand side of Eq. (5.5)?

Exercise 5.6 (Displacement convexity) Let ρ be a nonnegative integrable function on Rn, and
assume that φ is convex. Define a measure dµ(x) = ρ(x) dx, and let ρt be the density of the

push-forward of µ under Tt = (1 − t)I + t∇φ. Prove that the function t 7→
∫

Rn ρ
1− 1

n
t (x) dx is

convex.
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