1 Introduction

1.1 Description of the problem

Lack of compactness is the main analytical difficulty in the study of functionals on unbounded domains. Ever since the Strauss radial lemma [1], it has been well-known that symmetry plays an important role in understanding the compactness in such problems. For many symmetric functionals, the existence of minimizers can be established by first restricting the problem to radially symmetric functions with the help of a rearrangement inequality, and then using the additional compactness of symmetric functions to find a convergent minimizing sequence. Particular examples where this strategy has been used are the determination of the sharp constants in the Sobolev and Hardy-Littlewood-Sobolev inequalities [2-4], and the determination of ground states [5]. On the other hand, it is also known that certain dynamical stability problems can be reduced to the study of related variational problems [6]. Here, it is the compactness of an arbitrary minimizing sequences, not only the existence of the minimizers, that plays the key role. In a series of famous papers [7, 8], a general abstract concentration compactness principle was introduced which has lead to many applications. It should be pointed out that in order to apply this principle to establish compactness for a specific problem, some additional analysis is usually needed.

In a series of recent investigations of stable galaxy configurations [9-14], a splitting trick is combined with the crucial scaling property of the energy functional to establish compactness of all symmetric minimizing sequences. This allows to construct symmetric galaxy configurations, and to show that they are dynamically stable under symmetric perturbations. The restricted stability is of interest in itself and had been open for a long time. In order to show stability among all possible perturbations, an argument in the spirit of the concentration compactness principle was employed to allow for possible translations.

The objective of this article is to closely examine the role of translations for minimizing sequences via elementary knowledge of their symmetrizations. We demonstrate that the difference...
between a minimizing sequence and the corresponding sequence of symmetrized functions is characterized by appropriate translations. In many cases, this implies that every minimizing sequence converges strongly modulo scalings and translations. Besides the interest of our results in classical analysis, this characterization also suggests a practical two-step procedure for proving compactness on an unbounded domain: Step 1. Show compactness of all symmetric minimizing sequences. This implies the existence of minimizers; it is also a necessary ingredient in the proof that these minimizers are dynamically stable under symmetric perturbations. Step 2: Show compactness up to translations for general minimizing sequences, assuming that their symmetrizations are compact. This implies dynamical stability under more general perturbations. The main part of this article is devoted to Step 2 for two classes of functionals that appear in many applications of the concentration compactness principle. We hope that our approach can give another perspective on concentration compactness for symmetric functionals.

1.2 Main results

The first class of functionals we consider is given by convolution integrals of the form

$$\mathcal{I}(f) = \int \int f(x)K(x-y)f(y) \, dx \, dy,$$

where $K \in L^1_{\text{loc}}(\mathbb{R}^n)$ is a nonnegative symmetrically decreasing function on \mathbb{R}^n. Riesz’ rearrangement inequality says that convolution integrals generally increase under symmetric decreasing rearrangement [15, 16]. In particular

$$\mathcal{I}(f) \leq \mathcal{I}(f^*). \quad (1.2)$$

Here, f is a nonnegative measurable function that vanishes at infinity, and f^* is its symmetric decreasing rearrangement. If either K or f^* is known to be strictly symmetrically decreasing, and $\mathcal{I}(f^*) < \infty$, then equality in Eq. (1.2) can occur only if f is a translate of f^* [5, 17]. The second class consists of gradient integrals of the form

$$\mathcal{J}(f) = \int F(|\nabla f|) \, dx,$$

where F is an increasing convex function on \mathbb{R}^+ with $F(0) = 0$. It is well-known that

$$\mathcal{J}(f) \geq \mathcal{J}(f^*) \quad (1.4)$$

for every nonnegative measurable function f on \mathbb{R}^n that vanishes at infinity. If F is strictly convex, $\mathcal{J}(f^*) < \infty$, and the distribution function of f is absolutely continuous, then equality in Eq. (1.4) occurs only when f is a translate of f^* [18].

We are interested in applying the rearrangement inequalities in Eqs. (1.2) and (1.4) to sequences of functions. Let f_n be a sequence of nonnegative functions on \mathbb{R}^n that vanish at infinity, and let g be a symmetric decreasing function. It is easy to see that both inequalities are preserved under
taking limits: Using Eq. (1.2) and the continuity of \(\mathcal{I} \) with respect to the norm defined by the positive definite quadratic form \(\mathcal{I} \), we clearly have

\[
\lim_{n \to \infty} \mathcal{I}(f_n^* - g) = 0 \quad \implies \quad \lim_{n \to \infty} \mathcal{I}(f_n) \leq \lim_{n \to \infty} \mathcal{I}(f_n^*) = \mathcal{I}(g) .
\]

Likewise, combining Eq. (1.4) with Fatou’s lemma shows that

\[
\lim_{n \to \infty} \mathcal{J}(f_n^* - g) = 0 \quad \implies \quad \lim_{n \to \infty} \mathcal{J}(f_n) \geq \lim_{n \to \infty} \mathcal{J}(f_n^*) \geq \mathcal{J}(g) .
\]

Setting \(f_n \equiv f \) and \(g = f^* \), we recover Eqs. (1.2) and (1.4). Our main result is that equality in either Eq. (1.5) or Eq. (1.6) implies, under suitable assumptions on \(K, F, \) and \(g \), that the sequence \(f_n \) converges to \(g \) modulo translations.

Theorem 1 Let \(\mathcal{I} \) be a convolution functional as given in Eq. (1.1), where \(K \) is a strictly symmetrically decreasing function that defines a positive definite kernel on \(\mathbb{R}^m \). Let \(g \) be a symmetrically decreasing function on \(\mathbb{R}^m \) with \(0 < \mathcal{I}(g) < \infty \), and let \(\{f_n\}_{n \geq 1} \) be a sequence of non-negative functions on \(\mathbb{R}^m \) which vanish at infinity, with symmetric rearrangements \(f_n^* \). Assume that the sequence of symmetric decreasing rearrangements \(f_n^* \) approaches \(g \) in the sense that

\[
\lim_{n \to \infty} \mathcal{I}(f_n^* - g) = 0 .
\]

If the values of the functional converge to \(\mathcal{I}(g) \) along the sequence,

\[
\lim_{n \to \infty} \mathcal{I}(f_n) = \mathcal{I}(g) ,
\]

then the functions \(f_n \) converge to \(g \) modulo translations, in the sense that then there exists a sequence of translations \(T_n \) on \(\mathbb{R}^m \) such that

\[
\lim_{n \to \infty} \mathcal{I}(T_n f_n - g) = 0 .
\]

The positive definiteness of \(K \) ensures that \(\mathcal{I}(f - g) = 0 \) only for \(f = g \). The assumption is not needed if the functional \(\mathcal{I}(f) \) is replaced by \(\mathcal{I}(|f|) \). The classical equality statement for Eq. (1.2) is recovered by taking \(f_n \equiv f \) and \(g = f^* \).

Theorem 2 Let \(\mathcal{J} \) be a gradient functional of the form in Eq. (1.3), where \(F \) is a convex, strictly increasing function on \(\mathbb{R}^m \) with \(F(0) = 0 \). Let \(g \) be a symmetrically decreasing function on \(\mathbb{R}^m \) that vanishes at infinity and satisfies \(0 < \mathcal{J}(g) < \infty \), and let \(\{f_n\}_{n \geq 1} \) be a sequence of non-negative measurable functions on \(\mathbb{R}^m \) which vanish at infinity, with symmetrically decreasing rearrangements \(f_n^* \). Assume that the symmetric decreasing rearrangements \(f_n^* \) approach \(g \) in the sense that

\[
\lim_{n \to \infty} \mathcal{J}(f_n^* - g) = 0 ,
\]

and that the values of the functional along the sequence converge to \(\mathcal{J}(g) \),

\[
\lim_{n \to \infty} \mathcal{J}(f_n) = \mathcal{J}(g) .
\]

Then the following statements hold.
1. If F is strictly convex and the distribution function of g is absolutely continuous on the interval where it is finite and positive, then there exists a sequence of translations T_n on \mathbb{R}^m such that

$$\lim_{n \to \infty} J \left(\frac{1}{2}(T_n f_n - g) \right) = 0. \quad (1.12)$$

2. If $F(t) = t$, then there exists a sequence of translations T_n such that $T_n f_n$ is compact in $L^{m-T}(\mathbb{R}^m)$ and $\nabla(T_n f_n)$ is tight in $L^1(\mathbb{R}^m)$. If $f \in BV$ is a limit of a convergent subsequence, then $f^* = g$, and all level sets of f are balls.

The purpose of the factor $1/2$ in Eq. (1.12) is to guarantee that that $\inf_T J(T f_n - g) < \infty$. The factor can be dropped under additional assumptions on F, in particular if $F(t) = t^p$ for some $p > 1$ or if F is linearly bounded. The equality statement for Eq. (1.4) due to Brothers and Ziemer is again recovered by setting $f_n \equiv f$ and $g = f^*$.

In many applications to variational problems, assumptions (1.8) and (1.11) hold naturally for minimizing sequences, while assumptions (1.7) and (1.10) are related to compactness for symmetric minimizing sequences. Theorems 1 and 2 provide weak bounds on the asymmetry of a function in terms of the symmetrization deficit $I(f^*) - I(f)$ or $J(f) - J(f^*)$: Setting $f_n^* = g$ for all n, we see that the symmetrization deficits can be small only when f_n is close to a translate of g.

1.3 Description of the proofs

Mathematically, our results are inspired by so-called asymmetry inequalities, which estimate the difference between a function or a body and a symmetric one by a related symmetric functional. Classical examples are the Bonnesen-style isoperimetric inequalities, which give lower bounds on the excess perimeter of a planar set, as compared with the disc of the same area, in terms of geometric quantities such as the in-radius [19] (see [20]). The most powerful result in that direction is quantitative isoperimetric inequality due to Hall [21], which bounds the symmetric difference between a measurable set and a (suitably translated) ball in terms of the isoperimetric deficit (a recent application of this result appears in [22]). Related statements have been proved for logarithmic capacity in two dimensions and for the capacity of convex sets in higher dimensions [23]. We are not aware of estimates for the difference between the two sides of Riesz’ rearrangement inequality in the literature, even though such estimates are readily obtained for the simpler two-point rearrangement [24, 25]. We expect that asymmetry inequalities should hold for large classes of symmetric functionals, including the Coulomb electrostatic energy.

Our strategy for the proofs of Theorems 1 and 2 is as follows. We first write each function as the sum of a bounded function supported on a set of finite volume, and a function whose contribution to the functional is negligible (Section 2). To ensure that this decomposition commutes with translations and rearrangements, we use a well-known slicing technique closely related to the layer-cake principle [26, Theorem 3.9]. In the second step, we consider the symmetrization deficits $I(f^*) - I(f)$ and $J(f) - J(f^*)$ for a bounded function whose support has finite volume (Sections 3.1 and 4.1). We show that a function with a small symmetrization deficit must be almost supported on a suitably translated ball whose size we control (Lemmas 3.1 and 4.2). This is a key
step that provides some basic compactness. It has the role that Lieb’s compactness lemma [27] has played in many minimization problems (see, for example, [28, 29]). In the third step (Sections 3.2 and 4.2), we pick subsequences that converge weakly up to translations, and identify their weak limits with the help of the classical equality statements for the rearrangement inequalities in Eqs. (1.2) and (1.4). This step is motivated by the missing term in Fatou’s lemma [30] (see [16, Theorem 1.9]). The proof is completed in Sections 3.3 and 4.3 by combining the three steps. In the final section, we discuss some applications.

2 Preliminaries

2.1 Definitions and notation

Let \(f \) be a nonnegative measurable function on \(\mathbb{R}^m \). We say that \(f \) vanishes at infinity, if for every \(t > 0 \), the level set \(\{ x \in \mathbb{R}^m \mid f(x) > t \} \) has finite measure. The distribution function of \(f \) is given by

\[
\mu(t) = \int 1_{\{f(x) > t\}} \, dx .
\]

The symmetric decreasing rearrangement, \(f^* \) of \(f \) is the symmetrically decreasing, lower semi-continuous function equimeasurable to \(f \),

\[
f^*(x) = \sup \{ t > 0 \mid \mu(t) > \omega_m |x|^m \}
\]

where \(\omega_m \) is the volume of the unit ball in \(\mathbb{R}^m \). We say a function \(g \) is symmetrically decreasing if \(g^* = g \).

2.2 Slicing

In the proofs of Theorems 1 and 2, we it useful to write a given function \(f \) as a sum of slices, \(f = f^b + f^u \), where

\[
f^b = \left[\min \{ f, f^*(R^{-1}) \} - f^*(R) \right]_+
\]

is bounded and has level sets of bounded measure, and

\[
f^u = f - f^b = \min \{ f, f^*(R) \} + [f - f^*(R^{-1})]_+
\]

will be negligible for \(R \) sufficiently large (see Fig. 1). If \(f \) is equimeasurable to \(g \), then \(f^b \) and \(f^u \) are equimeasurable to \(g^b \) and \(g^u \), respectively. By construction, slicing commutes with rearrangements and translations. The following lemma will be used to obtain uniform bounds on the sequence \(f^b_n \).

Lemma 2.1 Let \(I \) be a convolution functional of the form given in Eq. (1.1) with \(K \) symmetrically decreasing and not identically zero, and let \(J \) be a gradient functional as defined in Eq. (1.3) with \(F \) convex and strictly increasing. For a nonnegative measurable function \(f \) that vanishes at
infinity, define f^b by Eq. (2.3). Fix $R > 1$ and $I_0, J_0 > 0$. There exist constants $C_1(R, I_0)$ and $C_2(R, J_0)$ such that
\[||f^b||_\infty \leq C_1(R, I_0) \] (2.5)
for all functions f with $I(f^*) \leq I_0$, and
\[||f^b||_\infty \leq C_2(R, J_0) \] (2.6)
for all f with $J(f^*) \leq J_0$.

Proof. Since $||f^b||_\infty$ decreases with R, it suffices to prove the claim for large values of R. To see the first claim, we use the fact that K and f^* are symmetrically decreasing to estimate
\[I(f^*) \geq \int \int_{|x|,|y|<R^{-1}} f^*(x)K(x,y)f^*(y) \, dy \, dx \]
\[\geq K(2R^{-1})(m\omega_m R^{-m} f^*(R^{-1}))^2 \]
\[\geq K(2R^{-1})(m\omega_m R^{-m} ||f^b||_\infty)^2. \] (2.7)
In the last line, we have used that $||f^b||_\infty = f(R^{-1})$ by construction. Eq. (2.5) follows since $K(2R^{-1}) > 0$ for R sufficiently large by assumption. To see the second claim, define the function γ on \mathbb{R}^+ by $|\nabla f^*(x)| = \gamma(|x|)$, and compute in polar coordinates
\[J(f^*) \geq \int_{R^{-1}}^R F(\gamma(r) m\omega_m r^{m-1}) \, dr \]
\[\geq m\omega_m R^{1-m}(R - R^{-1}) F \left(\int_{R^{-1}}^R \gamma(r) \frac{dr}{R - R^{-1}} \right) \] (2.8)
\[\geq m\omega_m R^{2-m} F \left(\frac{||f^b||_\infty}{R} \right). \]
In the second step, we have estimated the factor r^{m-1} from below by R^{1-m}, then applied Jensen’s inequality. Since $tF(x/t)$ is nonincreasing in t, we can replace $R - R^{-1}$ by R in the third step. The bound on $||f^b||_\infty$ claimed in Eq. (2.6) follows since F is strictly increasing.

It is easy to see that the assumptions of Theorem 2 hold also for the slices f^b_n and g^b of the functions f_n and g:

Figure 1: Construction of the slices f^b and f^u.

Lemma 2.2 Let \mathcal{J} be a gradient functional of the form in Eq. (1.3) with F convex and nondecreasing, and let g be a symmetric decreasing function with $\mathcal{J}(g) < \infty$. Fix $R > 1$, and decompose $f_n = f_n^b + f_n^u$, $f_n^* = f_n^b + f_n^{*u}$, and $g = g^b + g^u$, as in Eqs. (2.3)-(2.4). If
\[
\lim_{n \to \infty} \mathcal{J}(f_n^* - g) = 0 ,
\] then
\[
\lim_{n \to \infty} \mathcal{J}(f_n^b - g^b) = 0 , \quad \lim_{n \to \infty} \mathcal{J}(f_n^{*u} - g^u) = 0 .
\] If, additionally,
\[
\lim_{n \to \infty} \mathcal{J}(f_n) = \mathcal{J}(g) ,
\] then
\[
\lim_{n \to \infty} \mathcal{J}(f_n^b) = \mathcal{J}(g^b) , \quad \lim_{n \to \infty} \mathcal{J}(f_n^{*u}) = \mathcal{J}(g^u) .
\]

PROOF. Since
\[
\nabla f^{*b}(x) = \nabla f^*(x) 1_{R^{-1} \leq |x| \leq R} , f^*(R^{-1}) ,
\]
we can rewrite Eq. (2.9) as
\[
\lim_{n \to \infty} \{ \mathcal{J}(f_n^b - g^b) + \mathcal{J}(f_n^{*u} - g^u) \} = 0 ,
\]
which clearly implies that both summands converge to zero, as claimed in Eq. (2.10).

To see the second claim, we note that
\[
\nabla f^b(x) = \nabla f(x) 1_{f^*(R) \leq f(x) \leq f^*(R^{-1})} ,
\]
and rewrite Eq. (2.11) as
\[
\lim_{n \to \infty} \{ (\mathcal{J}(f_n^b) - \mathcal{J}(g^b)) + (\mathcal{J}(f_n^{*u}) - \mathcal{J}(g^u)) \} = 0 .
\]
The claim follows since the limit of each summand is nonnegative by Eq. (1.6). ■

The corresponding statement holds for the functional \mathcal{I} appearing in Theorem 1.

Lemma 2.3 Let \mathcal{I} be a convolution functional of the form in Eq. (1.1) with K positive definite and symmetrically decreasing, and let g be a symmetric decreasing function with $\mathcal{I}(g) < \infty$. Fix $R > 1$, and decompose $f_n = f_n^b + f_n^u$, $f_n^* = f_n^b + f_n^{*u}$, and $g = g^b + g^u$, as in Eqs. (2.3)-(2.4). If
\[
\lim_{n \to \infty} \mathcal{I}(f_n^* - g) = 0 ,
\] then
\[
\lim_{n \to \infty} \mathcal{I}(f_n^b - g^b) = 0 , \quad \lim_{n \to \infty} \mathcal{I}(f_n^{*u} - g^u) = 0 .
\] If, additionally,
\[
\lim_{n \to \infty} \mathcal{I}(f_n) = \mathcal{I}(g) ,
\] then
\[
\lim_{n \to \infty} \mathcal{I}(f_n^b) = \mathcal{I}(g^b) , \quad \lim_{n \to \infty} \mathcal{I}(f_n^{*u}) = \mathcal{I}(g^u) .
\]
The proof requires some auxiliary estimates. The first lemma contains some tail estimates for symmetric decreasing functions g in terms of $\mathcal{I}(g)$.

Lemma 2.4 If K and g are nonnegative and symmetrically decreasing, then, for any $R > 0$,

\[
\mathcal{I}(g) \geq K(2R) \left(\int_{|x| \leq R} g(x) \, dx \right)^2, \tag{2.21}
\]

\[
\mathcal{I}(g) \geq \left(\int_{|x| \geq 2R} g(x) K(|x| + R) \, dx \right) \left(\int_{|x| < R} g(x) \, dx \right). \tag{2.22}
\]

Furthermore, for every $h \in L^1(\mathbb{R}^m)$ supported in the ball $|x| \leq R_0$, and every $\varepsilon > 0$ there exists a number $R > 0$ which depends only on K, R_0, and ε such that

\[
\int_{|x| \geq R} g(x) K h(x) \, dx \leq \varepsilon ||h||_1 \mathcal{I}(g)^{1/2}. \tag{2.23}
\]

Proof. Eqs. (2.21)-(2.22) follow immediately from the fact that both K and g are nonnegative and symmetrically decreasing. To see the weak tail estimate in Eq. (2.23), we separate two cases. If $\varepsilon \geq 3/2$ then we have for $R > R_0$

\[
\int_{|x| \geq R} g(x) K h(x) \, dx \leq ||h||_1 ||g||_1 K (R - R_0) \leq ||h||_1 \frac{(3/2)^{d-1} K(R - R_0)}{\varepsilon} \mathcal{I}(g)^{1/2}, \tag{2.25}
\]

and Eq. (2.23) follows by choosing R large enough such that $K(R - R_0)(3/2)^{m-1} \leq \varepsilon^2$. If, on the other hand,

\[
\int_{|x| < R_1} g(x) \, dx > \frac{(3/2)^{m-1}}{\varepsilon} \mathcal{I}(g)^{1/2} \tag{2.26}
\]

for some $R_1 \geq R_0$, then we estimate for $R \geq 4R_1$,

\[
\int_{|x| \geq R} g(x) K h(x) \, dx \leq ||h||_1 \int_{|x| \geq 4R_1} g(x) K(|x| - R_1) \, dx. \tag{2.27}
\]

The integral on the right hand side is bounded by

\[
\int_{|x| \geq 4R_1} g(x) K(|x| - R_1) \, dx \leq \int_{|x| \geq 2R_1} g(x) K(|x| + R_1) \left(\frac{|x| + 2R_1}{|x|} \right)^{d-1} \, dx
\]

\[
\leq \frac{I(g)}{\int_{|x| \leq R_1} g(x) \, dx} \leq \varepsilon \mathcal{I}(g)^{1/2}. \tag{2.28}
\]

In the first step, we have estimated $g(x) \leq g(|x| - 2R_1)$ and changed variables in polar coordinates. In the second step, have used that $|x| + 2R_1 \leq (3/2)|x|$ and applied Eq. (2.22). In the last step, we have used Eq. (2.26). The claim follows by inserting Eq. (2.28) into Eq. (2.27).
Lemma 2.5 Let g_n and g be non-negative, symmetric decreasing functions on \mathbb{R}^m which vanish at infinity, and define their slices by Eq. (2.3) for some $R > 1$. Assume that $\mathcal{I}(g) < \infty$, where \mathcal{I} is defined by Eq. (1.1) with a symmetrically decreasing, positive definite kernel K. If

$$\lim_{n \to \infty} \mathcal{I}(g_n - g) = 0 ,$$

then

$$\lim_{n \to \infty} \mathcal{I}(g_n^b - g^b) = 0 , \quad \lim_{n \to \infty} \mathcal{I}(g_n^u - g^u) = 0 .$$

PROOF. It suffices to establish that a subsequence of g_n converges to g pointwise almost everywhere; the claim then follows by applying Fatou’s lemma to

$$\int \int \{ [g_n(x) + g(x)][g_n(y) + g(y)] - [g_n^b(x) - g^b(x)][g_n^b(y) - g^b(y)] \} K(x - y) \, dx \, dy \quad (2.31)$$

for $\# = b, u$.

In order to prove pointwise convergence, we first notice that

$$\lim_{n \to \infty} \mathcal{I}(g_n) = \mathcal{I}(g) \quad (2.32)$$

by Eq. (1.5). By Cauchy-Schwarz, this implies

$$\lim_{n \to \infty} \int \int g_n(x) K(x - y) h(y) \, dx \, dy = \int \int g(x) K(x - y) h(y) \, dx \, dy \quad (2.33)$$

for any function h with $\mathcal{I}(h) < \infty$. This means that $K \ast g_n$ converges to $K \ast g$ in the sense of distributions. The sequence g_n is uniformly bounded in L^1_{loc} by Eq. (2.21). Since the functions g_n are symmetrically decreasing, we can choose a subsequence (still denoted by g_n) such that

$$g_n \to a\delta_0 + g_0 \quad \text{weakly in } L^1_{loc} , \quad g_n \to g_0 \quad \text{pointwise a.e.} \quad (2.34) \quad (2.35)$$

Here $a \geq 0$, δ_0 is the Dirac mass at the origin, and $g_0 \geq 0$ is a symmetrically decreasing function with $\mathcal{I}(g_0) < \infty$. It suffices to show $a = 0$. To this end, fix any $h \in C_0^\infty$. Since $\sup_{n \geq 1} \mathcal{I}(g_n) < \infty$, Eq. (2.23) of Lemma 2.4 implies that there exists for each $\varepsilon > 0$ a number $R > 0$ such that

$$\sup_{n \geq 1} \int_{|x| \geq R} g_n(x) |K \ast h(x)| \, dx \leq \varepsilon \quad .$$

Combining Eq. (2.36) with Eq. (2.34) shows that

$$\int [K \ast g] h = \lim_{n \to \infty} \int g_n(x) K \ast h(x) \, dx$$

$$= \lim_{R \to \infty} \lim_{n \to \infty} \int_{|x| \leq R} g_n(x) K \ast h(x) \, dx$$

$$= \int [K \ast (a\delta_0 + g_0)] h .$$
Since h is arbitrary, we conclude that
\[K \ast \{a\delta_0 + g_0\} = K \ast g \ , \quad (2.37) \]
which implies that $a\delta_0 + g_0 = g$ and $g = g_0$, by the positive definiteness of K. Pointwise convergence then follows from Eq. (2.35). This completes the proof of the lemma.

Proof of Lemma 2.3. Applying Lemma 2.5 to the sequence f_0^n of symmetric decreasing rearrangements, we see that Eq. (2.17) implies Eq. (2.18). To see that Eq. (2.19) implies Eq. (2.20), we note that
\[\lim_{n \to \infty} \mathcal{I}(f_n^b) \leq \mathcal{I}(g^b) , \quad \lim_{n \to \infty} \mathcal{I}(f_n^u) \leq \mathcal{I}(g^u) \quad (2.38) \]
by Eq. (1.5). Similarly, using first Riesz’ rearrangement inequality and then the continuity with respect to the norm defined by the positive definite quadratic form \mathcal{I}
\[\lim_{n \to \infty} \int f_n^b(x) K(x-y) f_n^u(y) \, dx \, dy \leq \int g^b(x) K(x-y) g^u(y) \, dx \, dy . \quad (2.39) \]
Adding the inequalities in Eqs. (2.38)-(2.39) yields
\[\lim_{n \to \infty} \mathcal{I}(f_n) \leq \mathcal{I}(g) , \quad (2.40) \]
with equality only if Eqs. (2.38)-(2.39) hold with equality. This proves the second claim.

3 Convolution integrals

3.1 Confinement to a ball

Lemma 3.1 Let \mathcal{I} be the convolution functional defined in Eq. (1.1), with some symmetrically decreasing kernel K. Let f be a nonnegative measurable function that vanishes at infinity, and assume that the symmetrically decreasing rearrangement \hat{f}^* is supported on a ball of radius R_0 and satisfies $\mathcal{I}(f^*) < \infty$. For any $R_1 > 2R_0$ there exists a translation T such that
\[\mathcal{I}(f^*) - \mathcal{I}(f) \geq \left(K(2R_0) - K(R_1) \right) \left(\int_{|x| > R_1} T f(x) \, dx \right)^2 . \quad (3.1) \]

Proof. We decompose the kernel as
\[K = [K - K(2R_0)]_+ + \min [K, K(2R_0)] . \quad (3.2) \]
Since both summands are nonnegative and symmetrically decreasing, Riesz’ rearrangement inequality implies
\[\mathcal{I}(f^*) - \mathcal{I}(f) \geq \int \int f^*(x) f^*(y) \min [K(x-y), K(2R_0)] \, dx \, dy \]
\[- \int \int f(x) f(y) \min [K(x-y), K(2R_0)] \, dx \, dy \]
\[\geq 0 . \quad (3.3) \]
The first integral on the right hand side of Eq. (3.3) can be rewritten as
\[
\int \int f^*(x)f^*(y) \min[K(x-y), K(2R_0)] = \int f^*(x)f^*(y)K(2R_0) \, dx \, dy = \int f(x)f(y)K(2R_0) \, dx \, dy ,
\]
where we have used that \(f \) is supported on the ball of radius \(R_0 \) in the first step, and the equimeasurability of \(f \) with \(f^* \) in the second. Inserting Eq. (3.4) into Eq. (3.3), we obtain
\[
\mathcal{I}(f^*) - \mathcal{I}(f) \geq \int \int f(x)f(y)\{K(2R_0) - \min[K(2R_0), K(x-y)]\} \, dx \, dy \geq \{K(2R_0) - K(R_1)\} \int \int f(x)f(y)1_{|x-y| \geq R_1} \, dx \, dy .
\]
(3.5)
Letting \(h(y) = \int f(x)1_{|x-y| \geq R_1} \, dx \), by the mean value theorem, we deduce that there exists a point \(x_0 \) so that
\[
\int f(y)h(y) \, dy \geq h(x_0) \int f(y) \, dy .
\]
(3.6)
We thus obtain
\[
\mathcal{I}(f^*) - \mathcal{I}(f) \geq \{K(2R_0) - K(R_1)\} \int f(y) \, dy \times \int f(x)1_{|x-x_0| \geq R_1} \, dx \geq \{K(2R_0) - K(R_1)\} \left(\int f(x)1_{|x-x_0| \geq R_1} \, dx \right)^2 .
\]
(3.7)
Setting \(T f(x) \equiv f(x + x_0) \) completes the proof.

3.2 Identification of the limit

Lemma 3.2 Let \(f_n \) be a sequence of nonnegative functions in \(L^2 \), and let \(\mathcal{I} \) be as in Eq. (1.1), with a symmetrically decreasing kernel \(K \) that vanishes at infinity. If \(f_n \to f \) and \(f_n^* \to g \) in \(L^2 \) for some functions \(f \) and \(g \), then
\[
\mathcal{I}(f) \leq \mathcal{I}(g) .
\]
(3.8)
If \(K \) is strictly symmetrically decreasing and \(\mathcal{I}(g) < \infty \), then equality in Eq. (3.8) implies that there exists a translation \(T \) such that \(T f = g \).

Proof. For any nonnegative function \(h \in L^2 \), we have
\[
\int f h = \lim_{n \to \infty} \int f_n h \, dx \leq \lim_{n \to \infty} \int f_n^* h^* \, dx = \int g h^* \, dx .
\]
(3.9)
Since \(f \) and \(f^* \) are equimeasurable, it follows from the bathtub principle that
\[
\int_{|x| < R} f^* \, dx = \sup_{A: \text{Vol}(A)=\omega m R^m} \int_A f^* \, dx \leq \sup_{A: \text{Vol}(A)=\omega m R^m} \int_A f \, dx \leq \int_{|x| < R} g(x) \, dx \quad (3.10)
\]
for any $R > 0$. Applying the layer-cake principle we conclude that

$$
\int f^* h \leq \int gh \, dx
$$

(3.11)

for every symmetric decreasing function h. If h is strictly symmetrically decreasing and the integrals are finite, then equality in Eq. (3.11) can occur only for $f^* = g$.

It follows with Riesz’ rearrangement inequality that

$$
\mathcal{I}(f) \leq \mathcal{I}(f^*) \leq \int f^* K \ast g \, dx \leq \mathcal{I}(g),
$$

(3.12)

where we have applied Eq. (3.11) twice, with first with $h = K \ast f^*$ and then with $h = K \ast g$. If K is strictly symmetrically decreasing, then equality in the Riesz rearrangement inequality implies that there exists a translation T such that $T f = f^*$. Furthermore, since $K \ast f^*$ and $K \ast g$ are again strictly spherically decreasing, equality the last step of Eq. (3.12) implies that $f^* = g$. ■

3.3 Proof of Theorem 1

Let f_n, g, and K be as in the statement of the theorem, and assume for the moment that the functions f_n are uniformly bounded, and that their symmetric decreasing rearrangements are supported in a ball of radius R. By Lemma 3.1, there exists a sequence of translations T_n, such that

$$
\int_{|x| \geq 3R} T_n f_n(x) \, dx \leq \left(\frac{\mathcal{I}(f_n^*) - \mathcal{I}(f_n)}{K(2R) - K(3R)} \right)^{1/2} \rightarrow 0 \quad (n \rightarrow \infty).
$$

(3.13)

Since $||T_n f_n||_2 = ||f_n^*||_2$ is uniformly bounded, the sequence $T_n f_n$ is weakly compact in L^2, that is, there exists a subsequence, again denoted by f_n and a function f with

$$
T_n f_n \rightharpoonup f \quad (n \rightarrow \infty)
$$

(3.14)

in L^2. In light of Lemma 3.2, the value $\mathcal{I}(f)$ is finite. Our goal is to show $\mathcal{I}(T_n f_n - f) \rightarrow 0$ as $n \rightarrow \infty$. To this end, fix $\varepsilon > 0$, and split

$$
K = K 1_{|x|<\varepsilon} + K 1_{|x|\geq\varepsilon} \equiv K_s + K_c,
$$

(3.15)

so that

$$
\mathcal{I}(T_n f_n - f) = \int_{|x|<3R} (T_n f_n - f) K_c \ast (T_n f_n - f) \, dx
$$

(3.16)

$$
+ \int_{|x|\geq3R} (T_n f_n - f) K_c \ast (T_n f_n - f) \, dx + \int (T_n f_n - f) K_s \ast (T_n f_n - f) \, dx \rightarrow 0.
$$

By the Hilbert-Schmidt theorem, the sequence $\{(K_c \ast T_n f_n^b) 1_{|x|<3R}\}_{n \geq 1}$ is compact in L^2, and

$$
(K_c \ast T_n f_n^b) 1_{|x|<3R} \rightharpoonup K_c \ast f 1_{|x|<3R} \quad (n \rightarrow \infty).
$$

(3.17)
Therefore, the first term on the right side of (3.17) goes to zero. On the other hand, for the second and the third terms on the right, notice that

\[
\int T_n f_n (K_c \ast T_n f_n) 1_{|x| \geq 3R} \leq \|K_c\|_\infty \|f\|_1 \int_{|x| \geq 3R} f_n(x) \, dx \to 0 \quad (n \to \infty) \tag{3.19}
\]

by Eq. (3.13). Furthermore,

\[
\int T_n f_n (x) K_s \ast f_n(x) \, dx \leq \|f_n\|_\infty \|f_n\|_1 \int_{|x| \leq \varepsilon} K(x) \, dx \tag{3.20}
\]

which can be made small by choosing \(\varepsilon\) small. Combining Eqs. (3.14)-(3.18) and by Cauchy-Schwarz, we conclude that \(I(T_n f_n - f) \to 0\). Since \(I(f) = I(g^*)\) by assumption, Lemma 3.2 implies that \(T_0 f = g\) for some translation \(T_0\). Thus we have shown that

\[
\inf_T I(T f_n - g) \leq I(T_0 T_n f_n - g) \to 0 \quad (n \to \infty) \tag{3.21}
\]

at least along a suitable subsequence. Since the limit does not depend on the subsequence, this proves the claim in the special case that the rearrangements \(f_n^*\) are uniformly bounded and supported on a common ball.

Given a sequence of functions \(f_n\), which satisfy the convergence assumptions of the theorem. If the functions \(f_n\) and \(g\) are not uniformly bounded or have level sets of large measure, we write them as a sum of slices, \(f_n = f_n^b + f_n^u\) and \(g = g^b + g^u\), according to Eqs. (2.3)-(2.4), where \(R > 1\) is a large number that will be chosen below. By Cauchy-Schwarz, and using that \(T f_n\) is equimeasurable with \(f_n\), we can estimate

\[
\inf_T I(T f_n - g) \leq 3 \left\{ \inf_T I(T f_n^b - g^b) + I(f_n^u) + I(g^u) \right\} . \tag{3.22}
\]

By Lemma 2.1, the functions \(f_n^b\) are uniformly bounded, and by construction, their symmetric decreasing rearrangements are supported on the ball of radius \(R\). By Lemma 2.3, the functions \(f_n^b\) satisfy the assumptions of of the theorem as well, with \(g\) replaced by \(g^b\). We have shown in the first part of the proof that

\[
\lim_{n \to \infty} \inf_T I(T f_n^b - g^b) = 0 . \tag{3.23}
\]

Furthermore, by Lemma 2.3, we have

\[
\lim_{n \to \infty} I(f_n^u) = I(g^u) . \tag{3.24}
\]

Taking limits in Eq. (3.22), we obtain

\[
\lim_{n \to \infty} \inf_T I(T f_n - g) \leq 6 I(g^u) . \tag{3.25}
\]

Since the right hand side can be made arbitrarily small by choosing \(R\) large enough, this completes the proof. \(\blacksquare\)
Figure 2: Proof of Lemma 4.1. The perimeter of the set is at least as large as the perimeter of two balls of size $V(t)$ and $V_0 - V(t)$, minus twice the area of the interface.

4 Convex gradient functionals

4.1 Confinement to a ball

We begin with a lower bound for the isoperimetric deficit in terms of a volume integral. The following lemma can be obtained as a corollary of a quantitative isoperimetric inequality due to R. Hall [21]; for the convenience of the reader, we give here a direct proof. Denote by $Vol(A)$ the m-dimensional Lebesgue measure of a set $A \subset \mathbb{R}^m$, and by $Per(A)$ its perimeter.

Lemma 4.1 If $A \subset \mathbb{R}^m$ has finite perimeter, then

$$\frac{Per(A) - Per(A^*)}{Per(A^*)} \geq \frac{\alpha_m}{R^{2m}} \int_A \int_A 1_{|x-y|\geq \beta_m R} \, dx \, dy,$$

(4.1)

where R is the radius of A^*, $\alpha_m = (2^{1/m} - 1)/4m \omega_m^2$, and $\beta_m \equiv -4\sqrt{m} \log(1 - 2^{-1/m})$.

Proof. We will use a simplified version of Hall’s argument to show that all but a fraction of the volume of A can be enclosed in a large box in \mathbb{R}^m, and use that to bound the integral in Eq. (4.1).

Since the right hand side of Eq. (4.1) is bounded above by $(2^{1/m} - 1)/(4m) < 1/2$, we may assume without loss of generality that $(Per(A) - Per(A^*))/Per(A^*) < 1/2$. Let $V(t)$ be the volume of A to the left of the hyperplane $x_1 = t$, see Fig. 2. We may assume that $y(0) = 1/2$, that is, half of the volume of A lies in the negative half-space. Applying the isoperimetric inequality to the parts of A on either side of the hyperplane $x_1 = t$, and subtracting twice the area of the interface, we obtain for the perimeter of A

$$Per(A) \geq m \omega_m \left(\left\{ \frac{V(t)}{\omega_m} \right\}^{1-1/m} + \left\{ \frac{Vol(A) - V(t)}{\omega_m} \right\}^{1-1/m} \right) - 2V'(t).$$

(4.2)
Let \(y(t) = V(t)/\text{Vol}(A) \) be the volume fraction of \(A \) to the left of the hyperplane \(x_1 = t \). Using that \(\text{Vol}(A) = \omega_m R^m, \text{Per}(A^*) = m \omega_m R^{m-1} \), and solving for \(y' \), we obtain
\[
\frac{2R}{m} y'(t) \geq y^{1-1/m} + (1 - y)^{1-1/m} - 1 - \frac{\text{Per}(A) - \text{Per}(A^*)}{\text{Per}(A^*)} \tag{4.3}
\]
We next use the concavity of the function \(u \to u^{1-1/m} \) to see that
\[
1 - \frac{(1 - y)^{1-1/m}}{y} \leq 1 - \frac{(1/2)^{1-1/m}}{1/2} = 2 - 2^{1/m} < 1. \tag{4.4}
\]
so long as \(y \leq 1/2 \). Inserting Eq. (4.4) this into Eq. (4.3), it follows that
\[
\frac{2R}{m} y'(t) \geq y^{1-1/m} - y, \tag{4.5}
\]
so long as
\[
\frac{\text{Per}(A) - \text{Per}(A^*)}{\{2^{1/m} - 1\}\text{Per}(A^*)} \leq y \leq 1/2. \tag{4.6}
\]
Since the right hand side of Eq. (4.5) is strictly positive, we can separate variables and obtain by direct integration
\[
t_2 - t_1 \leq 2R \int_{y_1}^{y_2} \frac{1}{y^{1-1/m} - y} \, dy = 2R \left(- \log(1 - y_2^{1/m}) + \log(1 - y_1^{1/m}) \right), \tag{4.7}
\]
provided Eq. (4.6) holds for \(t \in (t_1, t_2) \). Plugging in \(y_1 = \frac{\text{Per}(A) - \text{Per}(A^*)}{(2^{1/m} - 1)\text{Per}(A^*)} > 0 \), \(y_2 = 1/2 \) and \(t_2 = 0 \), we conclude that all but a fraction \(y_1 \) of the volume of \(A \) lies to the right of the hyperplane \(t = 2R \log(1 - 2^{-1/m}) \). Repeating the argument for the right half of \(A \) and for the other \(m - 1 \) coordinate directions, we see that all but a fraction \(2my_1 \) of the volume of \(A \) is contained in a box of side length \(-4R \log(1 - 2^{-1/m}) \). Since the diameter of this box is \(\beta_m R \), it follows that
\[
\int_A \int_A \mathbf{1}_{|x-y| \geq \beta_m R} \, dx \, dy \leq 2(2my_1)\text{Vol}(A)^2 = \frac{R^{2m}}{\alpha_m} \frac{\text{Per}(A) - \text{Per}(A^*)}{\text{Per}(A^*)}, \tag{4.8}
\]
as claimed.

Lemma 4.2 Let \(F \) be a nondecreasing convex function on \(\mathbb{R}^+ \) with \(F(0) = 0 \), define \(\mathcal{J} \) by Eq. (1.3), and assume that \(f \) is a nonnegative function on \(\mathbb{R}^m \) with \(\mathcal{J}(f) < \infty \). Assume that the symmetric decreasing rearrangement \(f^* \) of \(f \) is supported in the ball of radius \(R \). Then there exists a translation \(T \) such that, for any \(\varepsilon > 0 \),
\[
\mathcal{J}(f) - \mathcal{J}(f^*) \geq \frac{\alpha_m}{R^{2m} \mathcal{J}(f^*)} \left(\mathcal{J}(\min(f^*, \varepsilon)) \int_{|x| \geq \beta_m R} 1_{Tf(\varepsilon) \geq x} \, dx \right)^2, \tag{4.9}
\]
where \(\alpha_m \) and \(\beta_m \) are defined in Lemma 4.1.
PROOF. The convexity of F implies, via the co-area formula and Jensen’s inequality, that

$$J(f) \geq \int_0^\infty \text{Per}(\{ f > h \}) G(|r'(h)|) \, dh ,$$ \hspace{1cm} (4.10)

where $G(z) = zF(z^{-1})$ is a nonnegative, nonincreasing and convex function on \mathbb{R}^+, $r(h)$ is the radius of the ball $\{ x \in \mathbb{R}^m \mid f(x) > h \}$, and $r'(h)$ is its derivative from the left [18, Eqs. (33)-35]. (Note that the convexity of $F^{1/p}$ assumed there is obsolete, see [31, Proposition 4.1].) We set $G(|r'(h)|) = 0$ if h is a singular value of f^* . Since Eq. (4.10) is an identity when $f = f^*$, we have

$$J(f) - J(f^*) \geq \int_0^\infty \left[\text{Per}(\{ f > h \}) - \text{Per}(\{ f^* > h \}) \right] G(|r'(h)|) \, dh .$$ \hspace{1cm} (4.11)

Applying Lemma 4.1 to the integrand results in

$$J(f) - J(f^*) \geq \frac{\alpha_m}{R^{2m}} \int \int \left[\text{Per}(\{ f^* > h \}) \right] G(|r'(h)|) \, dxdydh$$ \hspace{1cm} (4.12)

In the second step, we have exchanged the order of integration and used that $r(h) \leq R$ by our assumption on the support of f^*. To simplify notation, set

$$j(t) = J(\min(f^*, t)) = \int_0^t \text{Per}(\{ f^* > h \}) G(|r'(h)|) \, dh .$$ \hspace{1cm} (4.13)

Clearly,

$$\min(j(t_1), j(t_2)) \leq \frac{j(t_1)j(t_2)}{J(f^*)} ,$$ \hspace{1cm} (4.14)

and Eq. (4.12) implies

$$J(f) - J(f^*) \geq \frac{\alpha_m}{R^{2m}J(f^*)} \int \int j(f(x)) \mathbf{1}_{|x-y| \geq \beta_m R} J(f(y)) \, dxdy .$$ \hspace{1cm} (4.15)

It follows as in the proof of Lemma 3.1 that there exists a translation T such that

$$J(f) - J(f^*) \geq \frac{\alpha_m}{R^{2m}J(f^*)} \left(\int |Tf(x)| \geq \beta_m R \right) \left(j(Tf(x)) \right) \right)^2 .$$ \hspace{1cm} (4.16)

The claim follows by estimating, for any $\varepsilon > 0$,

$$\int_{|x| \geq \beta_m R} j(Tf(x)) \, dx \geq j(\varepsilon) \int |x| \geq \beta_m R \mathbf{1}_{\{Tf(x) \geq \varepsilon\}} \, dx .$$ \hspace{1cm} (4.17)
4.2 Identification of the limit

Lemma 4.3 Let \(\{f_n\}_{n \geq 1} \) be a sequence of nonnegative functions in \(W^{1,1}(\mathbb{R}^m) \) and let \(\mathcal{J} \) be a gradient functional of the form given in Eq. (1.3), with \(F \) strictly convex and increasing. Assume that \(f_n \to f \) in \(L^1 \). Assume furthermore that the rearrangements \(f_n^* \) are supported on a common ball and converge weakly to some symmetrically decreasing function \(g \in W^{1,1} \) with \(\mathcal{J}(g) < \infty \). If \(\mathcal{J}(f_n) \to \mathcal{J}(g) \) then \(f \in W^{1,1} \), and \(\mathcal{J}(f) = \mathcal{J}(g) \). If the distribution function of \(g \) is absolutely continuous, then \(T f = g \) for some translation \(T \).

Proof. It is well-known that any convex increasing function \(F \) with \(F(0) = 0 \) can be written in the form
\[
F(t) = \int_0^t \int_{0 \leq \tau < h} d\nu(\tau) dh = \int_0^\infty (t - \tau)_+ d\nu(\tau) ,
\]
where the measure \(\nu \) is defined on \(\mathbb{R}^+ \) by the derivative of \(F \) from the left,
\[
\nu([0, h]) = F'(h) .
\]
Since \(F \) is strictly convex, \(\nu \) assigns positive weight to every interval of positive length. By assumption, \(\lim \mathcal{J}(f_n) = \mathcal{J}(g) \), that is,
\[
\lim_{n \to \infty} \int_0^\infty \int (|\nabla f_n| - \tau)_+ dx d\nu(\tau) = \int_0^\infty \int (|\nabla g| - \tau)_+ dx d\nu(\tau) .
\]
Since for every \(\tau \geq 0 \),
\[
\lim_{n \to \infty} \int (|\nabla f_n| - \tau)_+ dx \geq \int (|\nabla g| - \tau)_+ dx
\]
by Eq. (1.6), we conclude that
\[
\lim_{n \to \infty} \int (|\nabla f_n| - \tau)_+ dx = \int (|\nabla g| - \tau)_+ dx
\]
for almost every \(\tau > 0 \) at least along a subsequence (again denoted by \(f_n \)). By by continuity and monotonicity in \(\tau \), Eq. (4.22) holds for all \(\tau \geq 0 \). For any \(a > 0 \), the sequence
\[
\nabla f_n 1_{\{ |\nabla f_n| \leq a \}}
\]
is uniformly bounded in \(L^1 \cap L^\infty \) and hence weakly compact in \(L^1 \). The remainder is bounded by
\[
\int |\nabla f_n| 1_{\{ |\nabla f_n| \geq a \}} dx \leq 2 \int (|\nabla f_n| - a/2)_+ dx \to 2 \int (|\nabla g| - a/2)_+ (n \to \infty) ,
\]
where we have used that \(t \leq 2(t - a/2) \) for \(t \geq a \) in the first step, and Eq. (4.22) in the second step. The last term can be made small by choosing \(a \) sufficiently large, and we conclude that the sequence \(\nabla f_n \) is weakly compact in \(L^1 \). Choosing a subsequence (again denoted by \(f_n \)), we may
assume that $\nabla f_n \rightharpoonup z$ in L^1. By the uniqueness of weak limits, we have $\nabla f_n \rightharpoonup \nabla f$, proving that $f \in W^{1,1}$. By the continuity of the symmetric decreasing rearrangement in L^1,

$$f^* = \lim_{n \to \infty} f_n^* = g .$$

Since

$$\mathcal{J}(f^*) \leq \mathcal{J}(f) \leq \lim_{n \to \infty} \mathcal{J}(f_n) = \mathcal{J}(g) ,$$

it follows that $\mathcal{J}(f) = \mathcal{J}(f^*)$. If the distribution function of g is absolutely continuous, then the Brothers-Ziemer theorem implies that $T f = g$ for some translation $T [18] . \quad \blacksquare$

Lemma 4.4 Let F be a nondecreasing strictly convex function with $F(0) = 0$. Consider a (vector-valued) sequence of functions $z_n \in L^1_{loc}(\mathbb{R}^m)$ such that z_n converges to some limit z weakly in $L^1_{loc}(\mathbb{R}^m)$. If

$$\lim_{n \to \infty} \int_{\mathbb{R}^m} F(\lvert z_n \rvert) \, dx = \int_{\mathbb{R}^m} F(\lvert z \rvert) \, dx < \infty ,$$

then

$$\lim_{n \to \infty} \int_{\mathbb{R}^m} F\left(\frac{1}{2} \lvert z_n - z \rvert\right) \, dx = 0 .$$

Proof. It suffices to show that under the assumptions of the lemma, there exists subsequence converging pointwise a.e. to z. This leads to Eq. (4.28) by an application of Fatou’s lemma to the sequence of nonnegative functions

$$\frac{F(\lvert z_n \rvert) + F(\lvert z \rvert)}{2} - F\left(\frac{\lvert z_n - z \rvert}{2}\right) \geq 0 .$$

By an approximation with bounded sets, we may assume that $z_n \rightharpoonup z$ in $L^1(\mathbb{R}^m)$. To show pointwise convergence, fix $\alpha > 0$, and consider the restriction of the functions z_n to the set $\{x \in \mathbb{R}^m : |z(x)| \leq \alpha\}$. It follows from the convexity of F that

$$\lim_{n \to \infty} \int_{|z(x)| \leq \alpha} F(|z_n|) \, dx \geq \int_{|z(x)| \leq \alpha} F(|z|) \, dx ,$$

$$\lim_{n \to \infty} \int_{|z(x)| > \alpha} F(|z_n|) \, dx \geq \int_{|z(x)| > \alpha} F(|z|) \, dx .$$

Adding the two inequalities, we deduce from Eq. (4.27) that

$$\lim_{n \to \infty} \int_{|z(x)| \leq \alpha} F(|z_n|) \, dx = \int_{|z(x)| \leq \alpha} F(|z|) \, dx .$$

On the other hand, since z_n converges to z weakly in L^1,

$$\lim_{n \to \infty} \int_{|z(x)| \leq \alpha} F'(\lvert z \rvert) \frac{z}{\lvert z \rvert} (z_n - z) \, dx = 0 .$$
everywhere. We conclude that
\[
\lim_{n \to \infty} \int_{|z(x)| \leq a} F(|z_n|) - F(|z|) - F'(|z|) \frac{z}{|z|} (z_n - z) \, dx = 0. \quad (4.33)
\]
Since the integrand is nonnegative by the convexity of \(F \), it converges to zero pointwise almost everywhere in the region where \(|z(x)| \leq a \). By strict convexity, the same is true for the sequence \(|z_n - z| \). The proof is completed by taking \(a \to \infty \).

4.3 Proof of Theorem 2

Assume for the moment that the functions \(f_n \) are uniformly bounded and that their symmetric decreasing rearrangements \(f_n^* \) are supported on the ball of radius \(R \) for some \(R > 0 \). By Lemma 4.2, there exists a sequence of translations \(T_n \) such that for any choice of \(\varepsilon > 0 \),
\[
J(f_n) - J(f_n^*) \geq \frac{\alpha_d}{R^{2d} J(f_n^*)} \int_{|x| \geq \beta_m R} 1_{T_n f_n(x) \geq \varepsilon} \, dx \quad (4.34)
\]
where \(\alpha_m \) and \(\beta_m \) depend only on the dimension.

The sequence \(T_n f_n \) is clearly weak\(^*\)-compact in \(W^{1,1} \). Combining Sobolev with Hölder, we see that the sequence \(T_n f_n 1_{|x| \leq \beta_m R} \) is compact in \(L^q \) for all \(1 \leq q < \infty \). Choosing a further subsequence, we may assume that \(T_n f_n 1_{|x| \leq \beta_m R} \to f \) in \(L^1 \). To estimate the part of \(T_n f_n \) outside the ball of radius \(\beta_m R \), we use that for any \(\varepsilon > 0 \), \(J(\min(f_n^*, \varepsilon)) \to J(\min(g, \varepsilon)) \neq 0 \), and
\[
\lim_{n \to \infty} \int_{|x| \geq \beta_m R} 1_{\{T_n f_n(x) > \varepsilon\}} \, dx = 0. \quad (4.35)
\]
On the other hand,
\[
\int_{|x| \geq \beta_m R} 1_{\{T_n f_n(x) \leq \varepsilon\}} \leq \int 1_{\{f_n^*(x) \leq \varepsilon\}} \leq \varepsilon \omega_m R^m. \quad (4.36)
\]
Taking first \(n \to \infty \) and then \(\varepsilon \to 0 \) shows that
\[
\lim_{n \to \infty} \|\{T_n f_n\} 1_{|x| > \beta_m R}\|_1 = 0 \quad (4.37)
\]
\(T_n f_n \) is compact in \(L^1 \) (and by uniform boundedness, also in \(L^q \) for \(1 \leq q < \infty \)). This implies the claim in the case when \(F(t) = |t| \). If \(F \) is strictly convex, then we may apply Lemma 4.3 to the sequence \(T_n f_n \) to see that implies that there exists a translation \(T_0 \) such that \(T_0 f = g \). We conclude with Lemma 4.4 that
\[
\inf_T J\left(\frac{1}{2}(T f - g)\right) \leq J\left(\frac{1}{2}(T_n T_0 f - g)\right) \to 0 \ (n \to \infty). \quad (4.38)
\]
This completes the proof in the case where the functions \(f_n \) are uniformly bounded and their rearrangements are supported in a common ball.
Consider now the general case of a sequence of functions f_n that satisfy the assumptions in Eqs. (1.10) and (1.11). For $R > 1$ to be determined below, decompose the functions into slices, $f_n = f^b_n + f^u_n$, $g = g^b + g^u$, as in Eqs. (2.3)-(2.4). By Lemma 2.2, the functions f^b_n also satisfy the assumptions of the theorem, with g^b in place of g. By Lemma 2.1, they are uniformly bounded, and by construction, their symmetric decreasing rearrangements $f^*_{n}^b$ are supported in a common ball.

If F is strictly is strictly convex, we estimate, for any translation T, \[J\left(\frac{1}{2}(Tf_n - g)\right) \leq J\left(\frac{1}{2}(Tf^b_n - g^b)\right) + J\left(\frac{1}{2}(Tf^u_n - g^u)\right). \] (4.39)

We showed in the first part of the proof that
\[\lim_{n \to \infty} \inf_{T} \left(\frac{1}{2}(Tf^b_n - g^b)\right) = 0. \] (4.40)

For the second term we use
\[\limsup_{n \to \infty} \sup_{T} J\left(\frac{1}{2}(Tf^u_n - g^u)\right) \leq \frac{1}{2} \left(\liminf_{n \to \infty} J(f^u_n) + J(g^u) \right) \leq J(g^u). \] (4.41)

It follows that
\[\liminf_{n \to \infty} \inf_{T} J\left(\frac{1}{2}(Tf_n - g)\right) \leq J(g^u), \] (4.42)

which can be made as small as we please by taking $R \to \infty$.

If $F(t) = |t|$, we have shown in the first part of the proof that there exists a sequence of translations such that f^b_n is compact in $L^{1+1/n}$ and ∇f_n is tight in L^1. Moreover, as R goes to infinity, $\|\nabla g^u\|_1$ becomes arbitrarily small. Hence $\|\nabla f^u_n\|_1$ are uniformly small which implies $\|f^u_n\|_{1+1/n}$ are small by Sobolev. We thus conclude that f_n is compact in $L^{1+1/n}$, and ∇f_n is tight in L^1. This completes the proof. \[\square \]

5 Applications

In this section, we illustrate how to use Theorems 1 and 2 to establish that all minimizing sequences for some variational problem converge up to the symmetries of the functional.

5.1 Dynamical Stability of gaseous stars

We will give a proof of the recent nonlinear stability results of G. Rein [14] on gaseous stars. Consider a self-gravitating star which satisfies the compressible Euler-Poisson system:
\[
\begin{align*}
\partial_t \rho + \nabla \cdot (\rho u) &= 0, \\
\rho \partial_t u + \rho (u \cdot \nabla) u &= -\nabla P(\rho) - \rho \nabla V, \\
\Delta V &= 4\pi \rho
\end{align*}
\] (5.1)
with the boundary condition \(\lim_{|x| \to \infty} V(t, x) = 0 \). Here \(\rho(t, x) \geq 0 \) and \(u(t, x) \in \mathbb{R}^3 \) are the mass density and velocity field of a gaseous star, and

\[
V_\rho(t, x) = - \int |x - y|^{-1} \rho(t, y) dy
\]

(5.2)
is the corresponding gravitational potential. For simplicity, we assume that the pressure is given by \(P(\rho) = \rho^\gamma \). The energy functional

\[
E(t) = \frac{1}{2} \int |u|^2 \rho dx + \frac{1}{\gamma - 1} \int \rho^\gamma dx - \frac{1}{2} \int \int \rho(x)|x - y|^{-1} \rho(y) dxdy
\]

(5.3)
is formally conserved under the motion generated by Eq. (5.1). A family of steady states is obtained by minimizing the time-independent functional

\[
\mathcal{H}(\rho) = \left\{ \frac{1}{\gamma - 1} \int \rho^\gamma dx - \frac{1}{2} \int \int \rho(x)|x - y|^{-1} \rho(y) dxdy \right\}
\]

(5.4)
subject to the mass constraint

\[
\int \rho(x) dx = M.
\]

(5.5)
A minimizer is given by

\[
\rho_0(x) \equiv c(\gamma) \left[E_0 - V_{\rho_0}(x) \right]^{1/\gamma - 1}
\]

(5.6)
where \(E_0 \leq 0 \) is a Lagrange multiplier associated with the mass constraint, and \(V_{\rho_0}(x) \) is the potential induced by \(\rho_0 \) through Eq. (5.2). The minimizer is unique up to translation. The main result in [14] is the following.

Theorem [14] For \(\gamma > 4/3 \), the symmetric steady state solution \(\rho_0(x) \) is dynamically stable up to translations, among possible weak solutions which satisfy both the mass conservation in Eq. (5.5) and an energy inequality \(E(t) \leq E(0) \).

Here, the distance from \(\rho_0 \) is measured by

\[
d(\rho, \rho_0) = \frac{1}{\gamma - 1} \int [\rho^\gamma - \rho_0^\gamma + (V_{\rho_0} - E_0)(\rho - \rho_0)] dx \geq 0.
\]

(5.7)
The crucial part is to establish that for any minimizing sequence \(\rho_n \), there exists a sequence of translations \(T_n \) on \(\mathbb{R}^3 \) such that

\[
||\nabla V_{T_n \rho_n} - \nabla V_{\rho_0}||_2 \to 0,
\]

(5.8)
see Theorem 1 in [14], and similar arguments in stable galaxy configurations in [9-12].

Proof. Denote by

\[
I(\rho) = \int \int \rho(x)|x - y|^{-1} \rho(y) dxdy = ||\nabla \rho||^2_2
\]

(5.9)
the gravitational potential energy associated with the mass distribution ρ.

Step 1. Compactness of symmetric minimizing sequences follows from [13, Lemma 4.1]. It is shown there that (5.8) holds with no translations needed for any symmetric minimizing sequence, that is,

$$\lim_{n \to \infty} \mathcal{I}(\rho_n - \rho_0) = 0.$$ \hfill (5.10)

As a matter of fact, the splitting and scaling argument used in the proof leads to an a priori estimate for the radius of $\rho_0(x)$, of the form $|x| \leq -\frac{3M^2}{3h_M}$, with an explicit negative constant h_M.

Step 2. Given a general minimizing sequence ρ_n with $\lim_{n \to \infty} \int \rho_n = M$. Using the equimeasurability of ρ_n with ρ_n^* and the Riesz rearrangement inequality, we see that the sequence of symmetrizations ρ_n^* is again a minimizing sequence, and that

$$\lim_{n \to \infty} \mathcal{I}(\rho_n) = \lim_{n \to \infty} \mathcal{I}(\rho_n^*) = \mathcal{I}(\rho_0).$$ \hfill (5.11)

By Step 1,

$$\lim_{n \to \infty} \mathcal{I}(\rho_n^* - \rho_0) = 0.$$ \hfill (5.12)

Since the Coulomb kernel is strictly symmetrically decreasing and positive definite, Eq. (5.8) follows directly from our Theorem 1.

5.2 Maximizing sequences for the HLS functional

We will show how to use Theorem 1 to show that all maximizing sequences for the Hardy-Littlewood-Sobolev inequality converge up to scalings, translations, and phase factors, as first proved by Lions [7, 8]. The Hardy-Littlewood-Sobolev inequality states that

$$\mathcal{I}(f) := \int_{\mathbb{R}^m} \int_{\mathbb{R}^m} f(x)|x - y|^{-\lambda} \tilde{f}(y) \, dx \, dy \leq I(m, p)||f||_p^2, \quad \frac{2}{p} + \frac{\lambda}{m} = 2$$ \hfill (5.13)

for any complex-valued f in $L^p(\mathbb{R}^d)$. Both the functional \mathcal{I} and the p-norm are invariant under the translation by vectors $a \in \mathbb{R}^m$ and scaling by factors $\sigma > 0$

$$Tf(x) = f(x - a), \quad Sf(x) = \sigma^{-m/p} f(x/\sigma).$$ \hfill (5.14)

The sharp constant

$$I(m, p) = \sup_{||f||_p^p = 1} \mathcal{I}(f),$$ \hfill (5.15)

was determined by Lieb in [4]. It is achieved for

$$g(x) = \left(\frac{2}{1 + |x|^2}\right)^{m/p};$$ \hfill (5.16)

in fact, g is the unique symmetrically decreasing optimizer of Eq. (5.15) with $\int_{|x|<1} g(x)^p \, dx = 1/2$ [26] [Theorem 4.3, Lemma 4.8].
Lieb’s identification of the optimizer combined the conformal invariance of Eq. (5.15 and the sharp Riesz rearrangement inequality with a subtle compactness argument. The most direct proof of the sharp Hardy-Littlewood-Sobolev inequality uses the competing symmetries technique to construct special maximizing sequences with good convergence properties, thus sidestepping the compactness issue [32, 33], (see [26, Theorem 4.6]). In fact, all maximizing sequences for Eq. (5.15) converge to \(g \) up to suitable scalings, translations, and multiplication by phase factors:

Theorem [7] For every sequence of functions \(f_n \) satisfying

\[
||f_n||_p = 1, \quad \lim_{n \to \infty} \mathcal{I}(f_n) = \mathcal{I}(g) \tag{5.17}
\]

there exist sequences of scalings \(S_n \), translations \(T_n \), and phase factors \(e^{i\theta_n} \) such that

\[
\lim_{n \to \infty} \mathcal{I}(e^{i\theta_n}T_n S_n f_n - g) = 0, \quad \lim_{n \to \infty} ||e^{i\theta_n}T_n S_n f_n - g|| = 0 . \tag{5.18}
\]

Proof. Step 1. Although it is not explicitly stated there, Lieb shows in his proof of the maximality of \(g \) that every maximizing sequence of symmetrically decreasing functions \(g_n \) for converges to \(g \) up to scalings [4, p. 536]. In other words, there exists a sequence of scalings \(S_n \) such that

\[
\lim_{n \to \infty} ||S_n g_n - g||_p = 0 . \tag{5.19}
\]

Since \(\mathcal{I} \) is continuous in \(L^p \) by the (non-sharp) Hardy-Littlewood Sobolev inequality, it follows that

\[
\lim_{n \to \infty} \mathcal{I}(S_n f_n - g) = 0 . \tag{5.20}
\]

The compactness of symmetric minimizing sequences up to scaling can also be shown directly, by using the splitting and scaling technique developed in [12].

Step 2. Consider a general maximizing sequence of nonnegative functions \(f_n \). Clearly \(f_n^* \) is again a maximizing sequence. By Step 1, there exists a sequence of scalings such that \(\mathcal{I}(S_n f_n^* - g) \to 0 \). Since \(f_n \) is a maximizing sequence, we have

\[
\lim_{n \to \infty} \mathcal{I}(f_n) = \lim_{n \to \infty} \mathcal{I}(f_n^*) = \mathcal{I}(g) . \tag{5.21}
\]

Since the kernel \(K(x - y) = |x - y|^{-\lambda} \) is positive definite and symmetrically decreasing, we may apply Theorem 1 to the sequence \(S_n f_n \) to obtain a sequence of translations such that

\[
\lim_{n \to \infty} \mathcal{I}(T_n S_n f_n - g) = 0 ; \tag{5.22}
\]

in particular, \(S_n T_n f_n \to g \) pointwise almost everywhere at least along suitable subsequences. Since \(\lim_{n \to \infty} ||f_n||_p = 1 = ||g||_p \), it follows from the characterization of the missing term in Fatou’s lemma that

\[
\lim_{n \to \infty} ||f_n T_n S_n f_n - g||_p = 0 . \tag{5.23}
\]
Conclusion. For a general maximizing sequence of real-value functions, it is easy to see that there exists a subsequence along which either the positive parts \([f_n]_+\) or the negative parts \([f_n]_-\) form again a maximizing sequence, and that the other part converges to zero. Similarly, Schwarz’ inequality implies that the real and imaginary part of a complex-valued sequence are again optimizing sequences, and that their ratio converges to a constant.

5.3 Minimizing sequences for the Sobolev inequality

Finally, we show the corresponding compactness result for minimizing sequences of the Sobolev inequality. The Sobolev inequality bounds the norm of a function in \(L^p\) by a corresponding gradient norm,

\[
\mathcal{J}(f) := \int_{\mathbb{R}^m} |\nabla f|^p \, dx \geq J(m, p) \|f\|^p_{L^p} . \quad p^* = \frac{mp}{m - p}, \quad 1 \leq p < m. \tag{5.24}
\]

The functional and the \(p^*\)-norm are invariant under translation by vectors \(a \in \mathbb{R}^m\) and scaling by a dilation factors \(\sigma > 0\)

\[
T f(x) = f(x - a), \quad S f(x) = \sigma^{-m/p^*} f(x/\sigma). \tag{5.25}
\]

The sharp constant

\[
J(m, p) = \sup_{\|f\|_{L^p} \leq 1} \mathcal{J}(f), \tag{5.26}
\]

was determined by Talenti [2] and Aubin [3]. For \(p > 1\) it is assumed for the function

\[
g_{\alpha, \beta}(x) = \left(\frac{1}{\alpha + \beta |x|^{p/p-1}} \right)^{p'/p}, \tag{5.27}
\]

where \(\alpha\) and \(\beta\) are positive constants determined by the values of \(\|g\|_{p^*}\) and \(\int_{|x|<1} g^{p^*}\). For \(p = 1, J(m, 1)\) is the isoperimetric constant in \(\mathbb{R}^m\), which is not assumed in \(W^{1,1}\) but by the characteristic function of a ball in \(BV\). The optimizer is unique up to scaling, translation, and multiplication by constants.

In their proofs, Talenti uses the rearrangement inequality for convex gradient functionals and Aubin uses the isoperimetric inequality to reduce the variational problem to radially decreasing functions, and then analyze the ordinary differential equation associated with the resulting one-dimensional problem. In the special case \(p = 2\), Eq. (5.26) is again conformally invariant, and the competing symmetries technique quickly yields the optimizers. A recent proof, using optimal transport techniques, avoids compactness issues altogether. We will give a proof that for \(p > 1\), all minimizing sequences converge up to scalings, translation, and multiplication by phase factors. In the case \(p = 1\), the minimizer is a function of bounded variation, but the minimizing sequence still has some tightness properties.

Theorem [7] Given a sequence of functions \(f_n \in W^{1,p}\) with

\[
\|f_n\|_p = 1, \quad \lim_{n \to \infty} \mathcal{J}(f_n) = J(m, p). \tag{5.28}
\]
1. If $p > 1$, there exist sequences of scalings, S_n, translations T_n, and phase factors $e^{i\theta_n}$ such that the sequence defined by satisfies
\[
\lim_{n \to \infty} ||\eta_n T_n S_n f_n - g||_p = 0, \quad \lim_{n \to \infty} J(\eta_n T_n S_n f_n - g) = 0.
\] (5.29)

2. If $p = 1$, there exist sequences of scalings S_n, translations T_n, and phase factors $e^{i\theta_n}$ such that the sequence of gradients $\nabla \{e^{i\theta_n} T_n S_n f_n\}$ is tight in L^1 and the sequence $e^{i\theta_n} T_n S_n f_n$ is compact in L^{∞}.

Proof. Step 1. Let g_n be a sequence of symmetrically decreasing functions with $||g_n||_{p^*} = 1$ and $\lim J(g_n) = J(m, p)$. By scaling, we may assume that
\[
\int_{|x| \leq 1} g_n^{p^*} = \int_{|x| \geq 1} g_n^{p^*} = \frac{1}{2}.
\] (5.30)
Choosing a subsequence, we may assume that g_n converges weakly in $W^{1,p}$ (or in BV if $p = 1$), and in L^{p^*} to some symmetrically decreasing limit function $g \in W^{1,p}$. Since the g_n are symmetrically decreasing, they also converge pointwise almost everywhere. Clearly, $||g||_{p^*} \leq 1$ and $J(g) \leq J(m, p)$.

We want to show that g_n can concentrate neither at $|x| = 0$ nor at $|x| = \infty$. Let \mathcal{X} be a symmetrically decreasing smooth cutoff function with values in $[0,1]$, satisfying $\mathcal{X}(x) = 1$ for $|x| < 1$ and $\mathcal{X}(x) = 0$ for $|x| > 2$. For $R > 2$, we split g_n into three parts,
\[
g^\ell(x) = \mathcal{X}(Rx) g(x), \quad g^r(x) = \mathcal{X}(x/R) g(x), \quad g^c = g - g^\ell - g^r,
\] (5.31)
and correspondingly for the functions g_n. It follows from the uniform bounds in Lemma 2.1 and the pointwise convergence that $g_n^c \to g^c$ strongly in L^q for all $q \geq 1$, and that $g_n^\ell \to g$ strongly in L^q for all $q < p^*$. Let
\[
\theta_n^\ell(R) = ||g_n^\ell||_{p^*}, \quad \theta_n^r(R) = ||g_n^r||_{p^*}.
\] (5.32)
We compute
\[
J(g_n) = \int |\nabla g_n|^p dx \geq \int |\mathcal{X}(x/R - \mathcal{X}(Rx)) \nabla g_n|^p dx
\]
\[
+ \int |\mathcal{X}(Rx) \nabla g_n|^p dx + \int |(1 - \mathcal{X}(x/R)) \nabla g_n|^p dx.
\] (5.33)
Using the product rule and the definition of J, the first term on the right hand side is estimated by
\[
\int |\mathcal{X}(x/R) - \mathcal{X}(Rx)) \nabla g_n|^p dx \geq J(g_n) - \int (R |\nabla \mathcal{X}(Rx)| + R^{-1} |\nabla \mathcal{X}(x/R)|) g_n dx
\]
\[
\geq (1 - \theta_n^\ell(R) - \theta_n^r(T))^{p/p^*} J(m, p) - C \left(R^{1/p^*} + 2^d \omega_d g_n(R) \right),
\]
where the constant C depends only on the cutoff function \mathcal{X}. We have used the definition of the sharp Sobolev constant $J(m, p)$ to estimate the first term, Hölder’s inequality for the second, and
the fact that \(g_n \) is symmetrically decreasing for the third. The second and third terms on the right hand side of Eq. (5.33) are similarly bounded below by

\[
\int |X(R x) \nabla g_n|^p \, dx \geq (\theta_n^l(R))^p/|p^*|^p J(m, p) - CR^{1/p^*} \tag{5.34}
\]

\[
\int |(1 - X(x/R)) \nabla g_n|^p \, dx \geq (\theta_n^r(R))^p/|p^*|^p J(m, p) - C2^d\omega_d g(2R) \tag{5.35}
\]

Inserting these estimates into Eq. (5.33) and taking limits, we deduce that

\[
\lim_{n \to \infty} \left\{ 1 - \left[(1 - \theta_n^l(R) - \theta_n^r(R))^p/|p^*|^p + (\theta_n^l(R))^p/|p^*|^p + (\theta_n^r(R))^p/|p^*|^p \right] \right\} \to 0 (R \to \infty) \tag{5.36}
\]

We have used that \(\lim \mathcal{J}(g_n) = J(m, p) \), and that \(g_n \) converges to \(g \) pointwise. Since \(\theta_n^l(R) \leq 1/2 \) and \(\theta_n^r(R) \leq 1/2 \) for all \(R > 2 \) by our choice of scaling, the strict convexity of the function \(t \to |p^*|/|p^*|^p \) implies that

\[
\lim_{n \to \infty} \{ \theta_n^l(R) + \theta_n^r(R) \} \to 0 (R \to 0) \tag{5.37}
\]

It follows that \(g_n \to g \) strongly in \(L^{p^*} \), and consequently \(\|g\|_{p^*} = 1 \). By the definition of the optimal constant \(J(m, p) \) and Fatou’s lemma, we have \(\|\nabla g\|^p = \mathcal{J}(g) = J(m, p) \), and \(\nabla g_n \) converges to \(\nabla g \) strongly in \(L^p \). Thus \(g \) is an extremal for the Sobolev inequality, and is given by Eq. (5.27), with \(\alpha \) and \(\beta \) determined by

\[
\|g\|_{p^*} = 1, \quad \int_{|x|<1} g^{p^*} = \frac{1}{2} \tag{5.38}
\]

Since all suitably scaled subsequences converge to the same limit, the entire sequence converges to \(g \) in \(L^p(p > 1) \), as claimed. For \(p = 1 \) we use that \(\|g\|^p_{p^*} = 1 \) and \(\lim \mathcal{J}(g_n) = J(1, p) \) which \(\nabla g_n \to \nabla g \) weakly in measure.

Step 2. Consider a minimizing sequence of nonnegative functions \(f_n \). Clearly the symmetric decreasing rearrangements \(f_n^* \) form again a minimizing sequence. If \(p > 1 \), by Step 1, there exists a sequence of scalings \(S_n \) such that \(\lim_{n \to \infty} \|S_n f_n^* - g\|_{p^*} = 0 \), \(\lim_{n \to \infty} \mathcal{J}(S_n f_n^* - g) = 0 \). For \(p > 1 \), the limiting function \(g \) is strictly symmetrically decreasing, strictly positive, and has a continuous distribution function. By Theorem 2 applied to \(S_n f_n \), there exists a sequence of translations \(T_n \) such that

\[
\lim_{n \to \infty} \mathcal{J}(T_n S_n f_n - g) = 0 \tag{5.39}
\]

It follows from the Sobolev inequality that

\[
\lim_{n \to \infty} \|T_n S_n f_n - g\|_{p^*} = 0 \tag{5.40}
\]

On the other hand, if \(p = 1 \), we then have \(\mathcal{J}(S_n f_n^*) \to \mathcal{J}(g) \) and \(\lim_{n \to \infty} \|S_n f_n^* - g\|_{p^*} = 0 \), and we can apply the second part of Theorem 2.

Conclusion. For a general complex-valued minimizing sequence, the claim follows by splitting the sequence into its real and imaginary parts and using Theorem 7.8 [26].

\[\square \]
Acknowledgements

The research stems from an extensive collaboration of Y. G. with Gerhard Rein on stellar dynamics. We thank Gerhard Rein for his interest, and Robert McCann for initiating our collaboration. A.B. gratefully acknowledges the hospitality of Princeton University during the Spring 2002 semester, and thanks Elliott Lieb for several useful conversations and the idea for the proof of Lemma 2.5. The work was supported in part by NSF grants DMS-0305161 and DMS-0308040 and two Sloan research fellowships.

References

28

