## MAT 351: Partial Differential Equations Assignment 8, due November 21, 2016

## Summary

A Hilbert space is a vector space $\mathcal{H}$ over $\mathbb{C}$ with an inner product $\langle f, g\rangle$ that is

- linear in the first slot: $\left\langle a_{1} f_{1}+a_{2} f_{2}, g\right\rangle=a_{1}\left\langle f_{1}, g\right\rangle+a_{2}\left\langle f_{2}, g\right\rangle$ for $a_{1}, a_{2} \in \mathbb{C}$
- Hermitian: $\langle f, g\rangle=\overline{\langle g, f\rangle}$
- positive definite: $\langle f, f\rangle \geq 0$, with equality only for $f=0$
such that $\mathcal{H}$ is complete under the norm $\|f\|=(\langle f, f\rangle)^{\frac{1}{2}}$, in the sense that every Cauchy sequence in $\mathcal{H}$ converges to a limit in $\mathcal{H}$.

Hilbert spaces share many geometric properties of Euclidean space, such as the Schwarz inequality $|\langle f, g\rangle| \leq\|f\|\|g\|$ and the parallelogram identity $\|f+g\|^{2}+\mid f-g \|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right)$. The most important examples are the finite-dimensional complex vector spaces $\mathbb{C}^{m}$ with inner product $u \cdot v$, and the function space $L^{2}(a, b)$ with inner product $\int_{a}^{b} f(x) \bar{g}(x) d x$.

Two vectors $f, g \in \mathcal{H}$ are orthogonal, if $\langle f, g\rangle=0$. In that case, we write $f \perp g$. We have

- Pythagoras: If $f \perp g$, then $\|f+g\|^{2}=\|f\|^{2}+\|g\|^{2}$, just as in $\mathbb{R}^{m}$. If $X_{1}, X_{2}, \ldots$ is a (finite or countable) sequence of orthogonal vectors in $\mathcal{H}$,
- Bessel's inequality $\|f\|^{2} \geq \sum_{n}\left|a_{n}\right|^{2}\left\|X_{n}\right\|^{2}$, where $a_{n}=\frac{\left\langle f, X_{n}\right\rangle}{\left\|X_{n}\right\|^{2}}$
follows from the fact that $f-\sum_{n} a_{n} X_{n}$ is orthogonal to $\sum_{n} a_{n} X_{n}$. For the partial sums

$$
S_{N}=\sum_{n=1}^{N} a_{n} X_{n}, \quad\left\|S_{N}\right\|^{2}=\sum_{n=1}^{N}\left|a_{n}\right|^{2}\left\|X_{n}\right\|^{2}
$$

Bessel's inequality implies that $\left\|S_{N}\right\|^{2}$ converges to $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}\left\|X_{n}\right\|^{2}$, and by the Cauchy criterion $S_{N}$ converges to $S=\sum_{n=1}^{\infty} a_{n} X_{n}$.

We say that the $\left\{X_{n}\right\}$ is an orthogonal basis for $\mathcal{H}$, if every $f \in \mathcal{H}$ can be written as a convergent series

$$
f=\sum_{n} a_{n} X_{n}
$$

In that case, we also say that the orthogonal sequence is complete. We will prove that $\{\sin n x\}_{n \geq 1}$ and $\{\cos n x\}_{n \geq 0}$ are orthogonal bases for $L^{2}(0, \pi)$, and that $\left\{e^{i n x}\right\}_{n \in \mathbb{Z}}$ is an orthogonal basis for $L^{2}(-\pi, \pi)$. In particular, each of the classical Fourier series of an $L^{2}$-function $f$ converges in $L^{2}$ to $f$. (We say that the Fourier series represents the function.) A more subtle question is under what conditions a Fourier series converges pointwise or even uniformly to $f$. There are examples of continuous $2 \pi$-periodic functions whose Fourier series diverges for every $x$ !

Theorem Let $X_{1}, X_{2}, \ldots$ be a sequence of orthogonal vectors. The following are equivalent:
(1) Finite linear combinations $\sum_{n=1}^{N} b_{n} X_{n}$ are dense in $\mathcal{H}$;
(2) If $\left\langle f, X_{n}\right\rangle=0$ for all $n$ then $f=0$;
(3) Parseval's identity: For each $f \in \mathcal{H},\|f\|^{2}=\sum_{n}\left|a_{n}\right|^{2}\left\|X_{n}\right\|^{2}$, where $a_{n}=\frac{\left\langle f, X_{n}\right\rangle}{\left\|X_{n}\right\|^{2}}$;
(4) $\left\{X_{n}\right\}_{n \geq 1}$ is an orthogonal basis.

## Assignments:

## Read Chapter 5 of Strauss.

31. (a) Find a pair a pair of ODE for $X$ and $Y$ such that $u(x, y)=X(x) Y(y)$ solves the PDE

$$
u \Delta u=|\nabla u|^{2}, \quad(x, y \in \mathbb{R})
$$

(Do not try to solve these equations).
(b) Can you find the general solution by superposition of such product form solutions? Please explain!
32. (a) On the interval $[-1,1]$, show that the function $x$ is orthogonal to the constant functions.
(b) Find a quadratic polynomial that is orthogonal to both 1 and $x$.
(c) Find a cubic polynomial that is orthogonal to all quadratics.
(These are the first three Legendre polynomials.)
33. Let $\phi$ be a $2 \pi$-periodic function with Fourier series $\phi(x)=\sum_{n} A_{n} e^{i n x}$.
(a) If $\phi$ is real-valued, show that $A_{-n}=\bar{A}_{n}$.
(b) If, additionally, $\phi$ is even, what can you say about the Fourier coefficients? Use this to represent $\phi$ as a cosine series.
(c) What if $\phi$ is odd?
34. (a) Find the Fourier sine series of the function $f(x)=x$ on $[0, \pi]$.
(b) Apply Parseval's identity to compute $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
(c) Integrate the sine series term by term to obtain a Fourier cosine series for the function $\frac{1}{2} x^{2}$.

Note that the constant of integration appears as the $n=0$ term in the series.
(d) Then by setting $x=0$, find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$.
35. Let $\gamma_{n}$ be a sequence of constants with $\lim _{n \rightarrow \infty} \gamma_{n}=\infty$. Define a sequence of functions on $[0,1]$ by $f_{n}(x)=\gamma_{n} \sin (n \pi x)$ for $0 \leq x \leq \frac{1}{n}$, and $f(x)=0$ otherwise.
(a) Show that $f_{n} \rightarrow 0$ pointwise, but not uniformly.
(b) If $\gamma_{n}=n^{1 / 3}$, prove that $f_{n} \rightarrow 0$ in $L^{2}$.
(c) If $\gamma_{n}=n^{2 / 3}$, show that $f_{n}$ does not converge in $L^{2}$.
36. Let $f$ be a smooth $2 \pi$-periodic function with $\int_{-\pi}^{\pi} f(x) d x=0$. Use the Fourier series representation and Parseval's identity to show that $\|f\| \leq\left\|f^{\prime}\right\|$.

