MAT 351: Partial Differential Equations Assignment 8, due November 21, 2016

Summary

A Hilbert space is a vector space \mathcal{H} over \mathbb{C} with an inner product $\langle f, g \rangle$ that is

- linear in the first slot: $\langle a_1f_1 + a_2f_2, g \rangle = a_1 \langle f_1, g \rangle + a_2 \langle f_2, g \rangle$ for $a_1, a_2 \in \mathbb{C}$
- Hermitian: $\langle f, g \rangle = \overline{\langle g, f \rangle}$
- positive definite: $\langle f, f \rangle \ge 0$, with equality only for f = 0

such that \mathcal{H} is **complete** under the norm $||f|| = (\langle f, f \rangle)^{\frac{1}{2}}$, in the sense that every Cauchy sequence in \mathcal{H} converges to a limit in \mathcal{H} .

Hilbert spaces share many geometric properties of Euclidean space, such as the **Schwarz inequality** $|\langle f, g \rangle| \leq ||f|| ||g||$ and the **parallelogram identity** $||f+g||^2 + |f-g||^2 = 2(||f||^2 + ||g||^2)$. The most important examples are the finite-dimensional complex vector spaces \mathbb{C}^m with inner product $u \cdot v$, and the function space $L^2(a, b)$ with inner product $\int_a^b f(x)\bar{g}(x) dx$.

Two vectors $f, g \in \mathcal{H}$ are **orthogonal**, if $\langle f, g \rangle = 0$. In that case, we write $f \perp g$. We have

• Pythagoras: If $f \perp g$, then $||f + g||^2 = ||f||^2 + ||g||^2$,

just as in \mathbb{R}^m . If X_1, X_2, \ldots is a (finite or countable) sequence of orthogonal vectors in \mathcal{H} ,

• Bessel's inequality $||f||^2 \ge \sum_n |a_n|^2 ||X_n||^2$, where $a_n = \frac{\langle f, X_n \rangle}{||X_n||^2}$

follows from the fact that $f - \sum_n a_n X_n$ is orthogonal to $\sum_n a_n X_n$. For the partial sums

$$S_N = \sum_{n=1}^N a_n X_n, \quad ||S_N||^2 = \sum_{n=1}^N |a_n|^2 ||X_n||^2,$$

Bessel's inequality implies that $||S_N||^2$ converges to $\sum_{n=1}^{\infty} |a_n|^2 ||X_n||^2$, and by the Cauchy criterion S_N converges to $S = \sum_{n=1}^{\infty} a_n X_n$.

We say that the $\{X_n\}$ is an **orthogonal basis** for \mathcal{H} , if every $f \in \mathcal{H}$ can be written as a convergent series

$$f = \sum_{n} a_n X_n$$

In that case, we also say that the orthogonal sequence is **complete**. We will prove that $\{\sin nx\}_{n\geq 1}$ and $\{\cos nx\}_{n\geq 0}$ are orthogonal bases for $L^2(0,\pi)$, and that $\{e^{inx}\}_{n\in\mathbb{Z}}$ is an orthogonal basis for $L^2(-\pi,\pi)$. In particular, each of the classical Fourier series of an L^2 -function f converges in L^2 to f. (We say that the Fourier series **represents** the function.) A more subtle question is under what conditions a Fourier series converges pointwise or even uniformly to f. There are examples of continuous 2π -periodic functions whose Fourier series diverges for every x!

Theorem Let X_1, X_2, \ldots be a sequence of orthogonal vectors. The following are equivalent:

- (1) Finite linear combinations $\sum_{n=1}^{N} b_n X_n$ are dense in \mathcal{H} ;
- (2) If $\langle f, X_n \rangle = 0$ for all n then f = 0;
- (3) **Parseval's identity:** For each $f \in \mathcal{H}$, $||f||^2 = \sum_n |a_n|^2 ||X_n||^2$, where $a_n = \frac{\langle f, X_n \rangle}{||X_n||^2}$;
- (4) $\{X_n\}_{n>1}$ is an orthogonal basis.

Assignments:

Read Chapter 5 of Strauss.

31. (a) Find a pair of ODE for X and Y such that u(x, y) = X(x)Y(y) solves the PDE

$$u\Delta u = |\nabla u|^2$$
, $(x, y \in \mathbb{R})$.

(Do not try to solve these equations).

(b) Can you find the general solution by superposition of such product form solutions? Please explain!

- 32. (a) On the interval [-1, 1], show that the function x is orthogonal to the constant functions.
 (b) Find a quadratic polynomial that is orthogonal to both 1 and x.
 (c) Find a cubic polynomial that is orthogonal to all quadratics.
 (These are the first three Legendre polynomials.)
- 33. Let φ be a 2π-periodic function with Fourier series φ(x) = ∑_n A_ne^{inx}.
 (a) If φ is real-valued, show that A_{-n} = Ā_n.
 (b) If, additionally, φ is even, what can you say about the Fourier coefficients? Use this to represent φ as a cosine series.
 (c) What if φ is odd?
- 34. (a) Find the Fourier sine series of the function f(x) = x on $[0, \pi]$.
 - (b) Apply Parseval's identity to compute $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (c) Integrate the sine series term by term to obtain a Fourier cosine series for the function $\frac{1}{2}x^2$.

Note that the constant of integration appears as the n = 0 term in the series.

(d) Then by setting x = 0, find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

- 35. Let γ_n be a sequence of constants with $\lim_{n\to\infty} \gamma_n = \infty$. Define a sequence of functions on [0,1] by $f_n(x) = \gamma_n \sin(n\pi x)$ for $0 \le x \le \frac{1}{n}$, and f(x) = 0 otherwise.
 - (a) Show that $f_n \to 0$ pointwise, but not uniformly.
 - (b) If $\gamma_n = n^{1/3}$, prove that $f_n \to 0$ in L^2 .
 - (c) If $\gamma_n = n^{2/3}$, show that f_n does not converge in L^2 .
- 36. Let f be a smooth 2π -periodic function with $\int_{-\pi}^{\pi} f(x) dx = 0$. Use the Fourier series representation and Parseval's identity to show that $||f|| \leq ||f'||$.