MAT 1600 : Probability I
 Assignment 6, due October 28, 2020

1. (Panchenko 2.2.12) Suppose that $\left(X_{n}\right)_{n \geq 1}$ are i.i.d. such that $\mathbb{E}\left|X_{1}\right|<\infty$ and $\mathbb{E} X_{1}=0$. If $\left(c_{n}\right)$ is a bounded sequence of real numbers, prove that

$$
\frac{1}{n} \sum_{i=1}^{n} c_{i} X_{i} \rightarrow 0 \quad \text { almost surely. }
$$

Hint: Either group the coefficients c_{i} according to their values, or examine the proof of the strong law of large numbers.
2. For $0<p<1$, let \mathbb{P}_{p} be the probability measure on $\Omega=\{0,1\}^{\mathbb{N}}$ (the space of binary sequences) defined by repeatedly tossing a coin with bias p.
(a) Prove that \mathbb{P}_{p} and \mathbb{P}_{q} are mutually singular when $p \neq q$. (Use the Strong Law of Large Numbers.)
(b) Conclude that the measures μ_{p} on $I:=(0,1)$, obtained by pushing \mathbb{P}_{p} forward with $\omega \mapsto X(\omega):=\sum_{i \geq 1} \omega_{i} 2^{-i}$ are mutually singular $\left(\mu_{p} \perp \mu_{q}\right)$ when $\left.p \neq q\right)$.
(c) Prove that for each p, the distribution function

$$
F_{p}(x):=\mathbb{P}_{p}(X \leq x)=\mu_{p}((0, x])
$$

is continuous in x, that is, X is continuously distributed with respect to \mathbb{P}_{p}.
Remark. We have seen (Panchenko p.14) that $\mu_{\frac{1}{2}}$ agrees with Lebesgue measure on I, in other words, $F_{\frac{1}{2}}=x$.
3. (Panchenko 2.2.9) If $\left(X_{n}\right)_{n \geq 1}$ are i.i.d. random variables that are not a.s. constant, then $\mathbb{P}\left(X_{n}\right.$ converges $)=0$.
4. (Panchenko 2.3.3)

Given any sequence of random variables $\left(Y_{i}\right)_{i \geq 1}$, let A be the event that $\lim _{i \rightarrow \infty} Y_{i}$ exists. Show that for any $\varepsilon>0$ there exist integers $k, n, m \geq 1$ such that

$$
A_{k, n, m}=\bigcap_{n \leq i<j \leq m}\left\{\left|Y_{j}-Y_{i}\right| \leq \frac{1}{k}\right\}
$$

satisfies $\mathbb{P}\left(A \Delta A_{k, n, m}\right) \leq \varepsilon$. (Use the continuity of measure and the Cauchy criterion.)
5. Simple random walk (Panchenko 2.3.1)

For $n \geq 1$, let $S_{n}=\sum_{i=1}^{n} X_{i}$, where $\left\{X_{i}\right\}_{i \geq 1}$ are i.i.d. random variables taking values ± 1, with $\mathbb{P}\left(X_{i}=1\right)=p$.
(a) Show that the event $A_{0}:=\left\{S_{n}=0\right.$ infinitely often $\}$ has probability 0 or 1 .
(b) Panchenko suggests to use the Hewitt-Savage 0-1 law. Is A_{0} a tail event? symmetric? Why/why not?
6. Simple random walk, cont'd (Panchenko 2.3.2)

In the setting of the previous problem, show that...
(a) \ldots if $p \neq \frac{1}{2}$ then $\mathbb{P}\left(A_{0}\right)=0$;
(b) \ldots if $p=\frac{1}{2}$ then $\mathbb{P}\left(A_{0}\right)=1$.

Hint: Consider the events $A_{-}:=\left\{\liminf S_{n} \leq-\frac{1}{2}\right\}$ and $A_{+}:=\left\{\limsup S_{n} \geq \frac{1}{2}\right\}$.

