MAT 1600 : Probability I Assignment 6, due October 28, 2020

1. (*Panchenko* 2.2.12) Suppose that $(X_n)_{n\geq 1}$ are i.i.d. such that $\mathbb{E}|X_1| < \infty$ and $\mathbb{E}X_1 = 0$. If (c_n) is a bounded sequence of real numbers, prove that

$$\frac{1}{n}\sum_{i=1}^{n}c_{i}X_{i}\to 0 \quad \text{almost surely.}$$

Hint: Either group the coefficients c_i according to their values, or examine the proof of the strong law of large numbers.

- 2. For $0 , let <math>\mathbb{P}_p$ be the probability measure on $\Omega = \{0, 1\}^{\mathbb{N}}$ (the space of binary sequences) defined by repeatedly tossing a coin with bias p.
 - (a) Prove that \mathbb{P}_p and \mathbb{P}_q are mutually singular when $p \neq q$. (Use the Strong Law of Large Numbers.)
 - (b) Conclude that the measures μ_p on I := (0, 1), obtained by pushing \mathbb{P}_p forward with $\omega \mapsto X(\omega) := \sum_{i>1} \omega_i 2^{-i}$ are mutually singular $(\mu_p \perp \mu_q)$ when $p \neq q$).
 - (c) Prove that for each p, the distribution function

$$F_p(x) := \mathbb{P}_p(X \le x) = \mu_p((0, x])$$

is continuous in x, that is, X is continuously distributed with respect to \mathbb{P}_p .

Remark. We have seen (Panchenko p.14) that $\mu_{\frac{1}{2}}$ agrees with Lebesgue measure on *I*, in other words, $F_{\frac{1}{2}} = x$.

- 3. (*Panchenko 2.2.9*) If $(X_n)_{n\geq 1}$ are i.i.d. random variables that are not a.s. constant, then $\mathbb{P}(X_n \text{ converges}) = 0.$
- 4. (Panchenko 2.3.3)

Given any sequence of random variables $(Y_i)_{i\geq 1}$, let A be the event that $\lim_{i\to\infty} Y_i$ exists. Show that for any $\varepsilon > 0$ there exist integers $k, n, m \geq 1$ such that

$$A_{k,n,m} = \bigcap_{n \le i < j \le m} \left\{ |Y_j - Y_i| \le \frac{1}{k} \right\}$$

satisfies $\mathbb{P}(A \Delta A_{k,n,m}) \leq \varepsilon$. (Use the continuity of measure and the Cauchy criterion.)

- 5. Simple random walk (Panchenko 2.3.1) For $n \ge 1$, let $S_n = \sum_{i=1}^n X_i$, where $\{X_i\}_{i\ge 1}$ are i.i.d. random variables taking values ± 1 , with $\mathbb{P}(X_i = 1) = p$.
 - (a) Show that the event $A_0 := \{S_n = 0 \text{ infinitely often}\}\$ has probability 0 or 1.
 - (b) Panchenko suggests to use the Hewitt-Savage 0-1 law. Is A_0 a tail event? symmetric? Why/why not?
- 6. *Simple random walk, cont'd (Panchenko 2.3.2)* In the setting of the previous problem, show that ...
 - (a) ... if $p \neq \frac{1}{2}$ then $\mathbb{P}(A_0) = 0$;
 - (b) ... if $p = \frac{1}{2}$ then $\mathbb{P}(A_0) = 1$.

Hint: Consider the events $A_- := \{\liminf S_n \le -\frac{1}{2}\}$ and $A_+ := \{\limsup S_n \ge \frac{1}{2}\}.$